JP2000119341A - Acrylonitrile-based polymer, and precursor fiber for carbon fiber using the same - Google Patents

Acrylonitrile-based polymer, and precursor fiber for carbon fiber using the same

Info

Publication number
JP2000119341A
JP2000119341A JP10293877A JP29387798A JP2000119341A JP 2000119341 A JP2000119341 A JP 2000119341A JP 10293877 A JP10293877 A JP 10293877A JP 29387798 A JP29387798 A JP 29387798A JP 2000119341 A JP2000119341 A JP 2000119341A
Authority
JP
Japan
Prior art keywords
acrylonitrile
based polymer
fiber
carbon fiber
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10293877A
Other languages
Japanese (ja)
Inventor
Mitsuo Hamada
光夫 浜田
Hideto Kakita
秀人 柿田
Yoshihiko Hosako
芳彦 宝迫
Teruyuki Yamada
輝之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP10293877A priority Critical patent/JP2000119341A/en
Publication of JP2000119341A publication Critical patent/JP2000119341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an acrylonitrile-based polymer capable of giving a precursor fiber, which can be fired at a high speed and reduce cross-sectional double structure after being treated to improve fire resistance, in order to simultaneously secure high carbon fiber productivity and properties, e.g. modulus of elastcity. SOLUTION: This acrylonitrile-based polymer serves as a stock for precursor fibers for carbon fibers, and has a V (min-1) value of 0.01 or more but below 0.3, where the V value is reciprocal of time before an exothermic peak appears in an isothermal exothermic curve, measured by differential scanning colorimetry effected at 230 deg.C in a flow of air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭素繊維の製造原料
として用いられるアクリロニトリル系ポリマーに関し、
さらに詳しくは炭素繊維の生産性と性能の両方に優れる
炭素繊維の製造原料用のアクリロニトリル系ポリマーに
関する。
The present invention relates to an acrylonitrile-based polymer used as a raw material for producing carbon fibers,
More specifically, the present invention relates to an acrylonitrile-based polymer which is excellent in both productivity and performance of carbon fiber and is used as a raw material for producing carbon fiber.

【0002】[0002]

【従来の技術】従来、アクリル系繊維を前駆体とする炭
素繊維および黒鉛繊維(本出願では、一括して炭素繊維
という。)はその優れた力学的性質により、航空宇宙用
途を始め、スポーツ、レジャー用途等の高性能複合材の
補強繊維素材として広い範囲で利用されている。さら
に、これら複合材料の高性能化のために炭素繊維の品
質、性能の向上が求められると共に、さらに製造コスト
の低減により産業資材用途への広がりが期待されてい
る。
2. Description of the Related Art Conventionally, carbon fibers and graphite fibers (hereinafter collectively referred to as carbon fibers) having an acrylic fiber as a precursor have been used for aerospace applications, sports, It is used in a wide range as a reinforcing fiber material for high-performance composite materials for leisure use and the like. Furthermore, in order to improve the performance of these composite materials, the quality and performance of carbon fibers are required to be improved, and furthermore, the reduction in production costs is expected to spread to industrial materials.

【0003】炭素繊維の前駆体としてのアクリロニトリ
ル系繊維は、衣料用アクリロニトリル繊維とは異なりあ
くまでも最終製品である炭素繊維を製造するための中間
製品である。従って、品質、性能の優れた炭素繊維を与
えるようなものが求められると同時に、炭素繊維となす
焼成工程において生産性が高く、低コストで提供し得る
ものであることが極めて重要である。
[0003] Acrylonitrile-based fibers as precursors of carbon fibers are different from acrylonitrile fibers for clothing and are merely intermediate products for producing carbon fibers as final products. Therefore, what is required is to provide a carbon fiber having excellent quality and performance, and at the same time, it is extremely important that the carbon fiber can be provided at a high productivity and at a low cost in a firing step for forming the carbon fiber.

【0004】炭素繊維の製造工程は、前駆体繊維の紡糸
工程、耐炎化工程、炭素化工程、黒鉛化工程から構成さ
れている。この中でアクリロニトリル系前駆体繊維の耐
炎化工程おいては、主にニトリル基の環化反応、酸化反
応、脱水素反応の3つから構成される複合反応が生じる
工程であり、炭素繊維の性能に大きな影響を与えること
が知られている。しかも、この耐炎化工程は一般に長時
間の処理を必要としているため、耐炎化処理時間を短縮
することは生産性向上に大きく寄与することになる。従
って、高い耐炎化反応性を有する前駆体繊維は耐炎化時
間の短縮には有利である。しかし、このように耐炎化反
応性が高い場合には、繊維表層の耐炎化が急速に進むの
につれて、内部への酸素拡散性が低下するため、内部の
酸化反応が進まず生焼け状態の断面二重構造が発生して
しまう。この断面二重構造が顕著な耐炎化繊維を用いた
場合、最終的に得られる炭素繊維の物性が低いことが知
られている。このように、耐炎化時間の短縮と断面二重
構造の低減化は相反するものであり、これらをバランス
よく実現するアクリロニトリル系炭素繊維用前駆体ポリ
マーが望まれていた。
[0004] The process of producing carbon fibers comprises a spinning process of precursor fibers, a flame-proofing process, a carbonizing process, and a graphitizing process. In this process, the acrylonitrile-based precursor fiber flame-retarding step is a step in which a complex reaction mainly composed of a nitrile group cyclization reaction, an oxidation reaction, and a dehydrogenation reaction occurs. Is known to have a significant effect on In addition, since the flame-proofing process generally requires a long time treatment, shortening the flame-proofing treatment time greatly contributes to the improvement of productivity. Therefore, a precursor fiber having a high oxidation resistance is advantageous for shortening the oxidation time. However, when the oxidation resistance is high as described above, as the oxidation of the fiber surface layer progresses rapidly, the oxygen diffusivity into the interior decreases. A heavy structure occurs. It is known that the properties of the finally obtained carbon fiber are low when the flame resistant fiber having a remarkable double cross section structure is used. As described above, the shortening of the flame resistance time and the reduction of the cross-sectional double structure are contradictory, and a precursor polymer for acrylonitrile-based carbon fiber that achieves these in a well-balanced manner has been desired.

【0005】耐炎化時間の短縮については、例えば、カ
ルボン酸基含有ビニルモノマーを用いるなど重合体組成
の限定により、重合体製造や紡糸工程での安定性も配慮
しながら、焼成時間の短縮を試みたもの(特公昭51−
7209号公報)、あるいは原料重合体にアミン類や過
酸化物を添加する方法(特公昭51−7209号公報、
特開昭48−87120号公報)等が提案されている。
また、特開平7−292526号公報では、不活性雰囲
気中で熱処理した後に、活性雰囲気中で熱処理を行う方
法が提案されている。しかしながら、これらは耐炎化で
の反応促進そのものが高速焼成を可能にすると考えられ
ているものの、一方で得られる炭素繊維の性能は耐炎化
糸の断面二重構造形成などによりむしろ損なわれる傾向
にあり、炭素繊維の生産性と性能の両面での向上は達成
されていない。
[0005] To shorten the flame-proofing time, for example, by limiting the polymer composition, such as by using a carboxylic acid group-containing vinyl monomer, an attempt is made to shorten the firing time while taking into account the stability in the polymer production and spinning process. Taro (Tokubosho 51-
No. 7209) or a method of adding amines or peroxides to a raw material polymer (JP-B-51-7209,
JP-A-48-87120) and the like have been proposed.
Japanese Patent Application Laid-Open No. 7-292526 proposes a method in which heat treatment is performed in an inert atmosphere and then heat treatment is performed in an active atmosphere. However, although it is thought that the promotion of the reaction itself in flame resistance enables high-speed sintering, the performance of the obtained carbon fiber tends to be rather impaired due to the formation of a double cross-sectional structure of the flame resistant yarn. However, improvement in both productivity and performance of carbon fiber has not been achieved.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来の問題点に鑑みてなされたものであり、炭素繊維の
生産性と高弾性率等の性能とを両立させるために、高速
焼成が可能で、耐炎化処理後の断面二重構造が低減され
得る前駆体繊維を与えるようなアクリロニトリル系ポリ
マーを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and has been developed in order to achieve both high productivity and high elastic modulus of carbon fiber. It is an object of the present invention to provide an acrylonitrile-based polymer which can provide a precursor fiber capable of reducing the cross-sectional double structure after the oxidation treatment.

【0007】[0007]

【課題を解決するための手段】本発明は、炭素繊維用前
駆体繊維の製造に用いられるアクリロニトリル系ポリマ
ーであって、示差走査熱量計を用いて空気気流中にて2
30℃で測定した等温発熱曲線における発熱ピーク出現
時間の逆数をV(min-1)としたときに、Vが0.0
1以上、0.3未満であることを特徴とするアクリロニ
トリル系ポリマーに関する。
DISCLOSURE OF THE INVENTION The present invention relates to an acrylonitrile-based polymer used for producing a precursor fiber for carbon fiber, which is obtained by using a differential scanning calorimeter in an air stream.
When the reciprocal of the appearance time of the exothermic peak in the isothermal exothermic curve measured at 30 ° C. is defined as V (min −1 ), V is 0.0
It relates to an acrylonitrile-based polymer characterized by being at least 1 and less than 0.3.

【0008】[0008]

【発明の実施の形態】Vは耐炎化反応速度の目安となる
値である。Vが小さすぎると耐炎化反応速度が小さく、
耐炎化反応が速やかに進行しないため、Vは0.01以
上であり、好ましくは0.05以上である。また、Vが
大き過ぎると耐炎化反応速度が大き過ぎ、このポリマー
を用いた前駆体繊維を耐炎化処理して耐炎化繊維に転換
した場合、表面のみが耐炎化が進み、内部が生焼けの状
態の断面二重構造が生じやすくなるので、Vは0.3未
満が好ましく、特に0.25以下が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION V is a value which is a measure of the oxidization resistance reaction rate. If V is too small, the oxidation-resistant reaction rate is low,
V is 0.01 or more, preferably 0.05 or more, because the flame-resistant reaction does not proceed quickly. On the other hand, if V is too large, the oxidization reaction rate is too high. If the precursor fiber using this polymer is oxidized and converted to oxidized fiber, only the surface will be oxidized, and the interior will be burnt. V is preferably less than 0.3, particularly preferably 0.25 or less.

【0009】本発明のアクリロニトリル系ポリマーで
は、このようなVにするために一般にはアクリロニトリ
ル単位に加えて、共重合成分としてポリマー中に耐炎化
反応を促進する効果があるカルボン酸基含有ビニルモノ
マー単位を含有することが好ましい。
In the acrylonitrile-based polymer of the present invention, a carboxylic acid group-containing vinyl monomer unit which has an effect of accelerating a flame-resistant reaction in the polymer as a copolymer component is generally added to the acrylonitrile unit in order to obtain V. Is preferable.

【0010】特に本発明のアクリロニトリル系ポリマー
を得るためには、ポリマー中のカルボン酸基含有ビニル
モノマー単位の共重合量をM(mol%)としたとき
に、Mが(イ)0.5±0.2、(ロ)1.5±0.
2、および(ハ)2.5±0.2の3種類の組成範囲に
入るようにカルボン酸基含有ビニルモノマーの共重合率
を変えた3種類のポリマーのMと、各ポリマーについて
測定したVの値から最小自乗法により求められる直線の
傾き(dV/dM)が0.1以下となるような重合条件
で重合を行うことが好ましい。
In particular, in order to obtain the acrylonitrile polymer of the present invention, when the copolymerization amount of the carboxylic acid group-containing vinyl monomer unit in the polymer is M (mol%), M is (a) 0.5 ± 0.5%. 0.2, (b) 1.5 ± 0.
2, and (c) M of three kinds of polymers in which the copolymerization ratio of the carboxylic acid group-containing vinyl monomer was changed so as to fall within three kinds of composition ranges of 2.5 ± 0.2, and V measured for each polymer. It is preferable to carry out the polymerization under such polymerization conditions that the slope (dV / dM) of the straight line determined by the least squares method from the value of is not more than 0.1.

【0011】ここで、(イ)、(ロ)および(ハ)の範
囲にある3種類のポリマーを得るための重合は、同一重
合条件で行われる必要があり、カルボン酸基含有ビニル
モノマーを同一とし、溶液重合または懸濁重合の区別お
よびそのときの溶媒または懸濁液、開始剤の種類、温
度、時間を同一としてモノマーの仕込量比のみを変えて
行う。
Here, the polymerization for obtaining the three kinds of polymers in the ranges (a), (b) and (c) needs to be carried out under the same polymerization conditions, and the carboxylic acid group-containing vinyl monomer is used in the same manner. The solution polymerization or the suspension polymerization is carried out, and the solvent or suspension at that time, the type of the initiator, the temperature and the time are the same, and only the charged ratio of the monomers is changed.

【0012】そして、その重合条件がdV/dMが0.
1以下となることがわかれば、本発明のアクリロニトリ
ル系ポリマーを得るための重合条件が定まり、同一条件
により、さらにVが0.01以上、0.3未満となるよ
うなカルボン酸基含有ビニルモノマーの仕込量比の条件
で本発明のアクリロニトリル系ポリマーを得ることがで
きる。
The polymerization conditions are such that dV / dM is 0.1.
If it is found that it becomes 1 or less, polymerization conditions for obtaining the acrylonitrile-based polymer of the present invention are determined, and under the same conditions, a carboxylic acid group-containing vinyl monomer such that V becomes 0.01 or more and less than 0.3. The acrylonitrile-based polymer of the present invention can be obtained under the conditions of the charge ratio.

【0013】尚、dV/dMが0.1を越えると、ポリ
マー中の組成斑に起因した耐炎化斑が生じやすく、最終
的な炭素繊維の性能を損ない易い。
When the dV / dM exceeds 0.1, oxidized spots due to composition unevenness in the polymer tend to occur, and the performance of the final carbon fiber tends to be impaired.

【0014】また、ポリマー中のアクリロニトリル単位
は97mol%以上であることが好ましい。共重合体中
のアクリロニトリル含有量が97mol%に満たない場
合、前駆体繊維を炭素繊維にしたときにアクリロニトリ
ル以外のコモノマーが欠陥点となり、炭素繊維の品質並
びに性能を損ない易い。
[0014] The acrylonitrile unit in the polymer is preferably at least 97 mol%. When the acrylonitrile content in the copolymer is less than 97 mol%, when the precursor fiber is made into carbon fiber, a comonomer other than acrylonitrile becomes a defect point, and the quality and performance of the carbon fiber are easily impaired.

【0015】また、前記カルボン酸基含有ビニルモノマ
ー単位の含有量は、0.2〜3mol%であり、好まし
くは0.5〜2.5mol%である。
[0015] The content of the carboxylic acid group-containing vinyl monomer unit is 0.2 to 3 mol%, preferably 0.5 to 2.5 mol%.

【0016】カルボン酸基含有ビニルモノマーとして具
体的には、アクリル酸、メタクリル酸、イタコン酸、マ
レイン酸、フマル酸、クロトン酸等のカルボキシル基を
有するビニル系モノマー、およびそれらの塩(例えばア
ンモニウム塩等)が挙げられる。この中でも、メタクリ
ル酸およびイタコン酸が好ましい。
Specific examples of the carboxylic acid group-containing vinyl monomer include vinyl monomers having a carboxyl group such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and salts thereof (for example, ammonium salts). Etc.). Of these, methacrylic acid and itaconic acid are preferred.

【0017】イタコン酸の場合は、重合方法がレドック
ス系水系懸濁重合である場合がより好ましい。このよう
にカルボン酸基含有ビニルモノマーの種類だけでなく、
重合条件(重合方法、開始剤)も耐炎化反応をコントロ
ールする上で重要である。
In the case of itaconic acid, the polymerization method is more preferably a redox aqueous suspension polymerization. Thus, not only the type of carboxylic acid group-containing vinyl monomer,
The polymerization conditions (polymerization method, initiator) are also important in controlling the flame-resistant reaction.

【0018】また、本発明のアクリロニトリル系ポリマ
ーはアクリロニトリルおよび上記カルボン酸基含有ビニ
ルモノマー以外にも本発明の要件を満足する範囲で、ア
クリル酸、メタクリル酸、マレイン酸、フマル酸、クロ
トン酸等のビニル基含有カルボン酸のエステル類、酢酸
ビニル、プロピオン酸ビニル、アクリルアミド、メタク
リルアミド、ジアセトンアクリルアミド、無水マレイン
酸、メタクリロニトリル、スチレン、α−メチルスチレ
ン等のモノマーを少量含んでいても良い。この中でも特
に共重合成分としてはアクリルアミドが好ましい。耐炎
化反応速度は、カルボン酸基の含有量が支配的な要因で
あるが、少量のアクリルアミドが共存することで急激に
増大するからである。
The acrylonitrile-based polymer of the present invention may be made of acrylic acid, methacrylic acid, maleic acid, fumaric acid, crotonic acid, or the like, in addition to acrylonitrile and the above-mentioned carboxylic acid group-containing vinyl monomer, as long as the requirements of the present invention are satisfied. It may contain a small amount of monomers such as vinyl group-containing carboxylic acid esters, vinyl acetate, vinyl propionate, acrylamide, methacrylamide, diacetone acrylamide, maleic anhydride, methacrylonitrile, styrene and α-methylstyrene. Of these, acrylamide is particularly preferred as the copolymer component. This is because the oxidization reaction rate is rapidly controlled by the coexistence of a small amount of acrylamide, although the carboxylic acid group content is a dominant factor.

【0019】本発明のアクリロニトリル系ポリマーを得
るための重合方法は本発明の要件を満たす範囲におい
て、溶液重合、懸濁重合等公知の方法のいずれにも限定
されないが、未反応モノマーや重合触媒残査、その他の
不純物類を極力のぞくことが好ましい。また前駆体繊維
の紡糸での延伸性や炭素繊維の性能発現性などの点か
ら、重合体の重合度は極限粘度[η]が0.8以上、特
に1.4以上が好ましい。また、極限粘度[η]が2.
0以下のものが通常用いられる。
The polymerization method for obtaining the acrylonitrile polymer of the present invention is not limited to any known methods such as solution polymerization and suspension polymerization as long as the requirements of the present invention are satisfied. Inspection and other impurities are preferably eliminated as much as possible. In view of the drawability of the precursor fiber in spinning and the performance development of the carbon fiber, the polymerization degree of the polymer is preferably such that the intrinsic viscosity [η] is 0.8 or more, particularly 1.4 or more. Further, the intrinsic viscosity [η] is 2.
Those having a value of 0 or less are usually used.

【0020】本発明の前駆体繊維は、このようなアクリ
ロニトリル系ポリマーを公知の溶剤に溶解して紡糸原液
とした後に、公知の方法に従って乾式、乾−湿式、湿式
紡糸法により紡出、凝固、延伸(浴中延伸、または空中
および浴中延伸)および乾燥緻密化を行い、前駆体繊維
にすることができる。
The precursor fiber of the present invention is prepared by dissolving such an acrylonitrile-based polymer in a known solvent to prepare a spinning solution, and then spinning, coagulating, and coagulating by a dry method, a dry-wet method, and a wet spinning method according to a known method. Stretching (drawing in a bath or drawing in air and in a bath) and dry densification can be performed to form precursor fibers.

【0021】浴中延伸は凝固繊維を直接行ってもよい
し、また空中にて凝固繊維をあらかじめ延伸した後に行
ってもよい。浴中延伸は通常50〜98℃の延伸浴中で
1回または2回以上の多段に分割するなどして行われ、
その前後あるいは中間にて水洗を行ってもよい。
The drawing in the bath may be performed directly on the coagulated fiber, or may be performed after the coagulated fiber is drawn in advance in the air. Stretching in the bath is usually performed in a stretching bath at 50 to 98 ° C. by dividing into one or two or more stages.
Water washing may be performed before, after, or in the middle.

【0022】これらの操作によって凝固繊維は浴中延伸
完了時までに約6倍以上延伸されることが好ましい。
By these operations, the coagulated fiber is preferably drawn about 6 times or more by the time the drawing is completed in the bath.

【0023】浴中延伸、洗浄後の繊維は公知の方法によ
って油剤処理を行った後、乾燥緻密化する。乾燥緻密化
は公知のいずれの方法によっても可能であるが、乾燥速
度、設備の簡便さ、繊維の緻密化効果など考慮した場合
100〜200℃程度の加熱ローラーによる方法が好ま
しい。また必要に応じて乾燥緻密化前あるいは後に、繊
維をさらに高温の加熱ローラーあるいは加圧スチームに
よって延伸を施してもよい。
The fiber after drawing and washing in a bath is subjected to an oil treatment by a known method, and then dried and densified. Drying and densification can be performed by any known method, but a method using a heating roller at about 100 to 200 ° C. is preferable in consideration of the drying speed, simplicity of equipment, and the effect of densifying the fiber. Further, if necessary, before or after dry densification, the fiber may be further stretched by a high-temperature heating roller or pressure steam.

【0024】このようにして得られた前駆体繊維は、2
00℃〜400℃の酸化性雰囲気中で加熱処理(耐炎化
処理)することにより耐炎化繊維に転換することができ
る。さらに、公知の方法により1000℃〜1500℃
程度の不活性雰囲気中で炭素化することにより炭素繊維
が得られる。
The precursor fiber thus obtained is
By performing heat treatment (flame-resistance treatment) in an oxidizing atmosphere at 00 ° C to 400 ° C, it can be converted into flame-resistant fiber. Furthermore, according to a known method, 1000 ° C to 1500 ° C.
Carbon fibers can be obtained by carbonization in a moderate inert atmosphere.

【0025】本発明の前駆体繊維を用いると、耐炎化処
理の際に高速焼成が可能で、得られる炭素繊維の性能も
優れている。
When the precursor fiber of the present invention is used, high-speed sintering can be performed at the time of the flame-resistant treatment, and the performance of the obtained carbon fiber is excellent.

【0026】[0026]

【実施例】以下に実施例を示してさらに本発明を具体的
に説明する。実施例および比較例における共重合体組
成、共重合体の極限粘度[η]および等温DSC発熱曲
線は次の方法で測定した。
The present invention will be described more specifically with reference to the following examples. The copolymer compositions, the intrinsic viscosities [η] of the copolymers, and the isothermal DSC exothermic curves in Examples and Comparative Examples were measured by the following methods.

【0027】(イ)「共重合体組成」1 H−NMR法(日本電子GSX−400型超伝導FT
−NMR)により測定した。
(A) "Copolymer composition" 1 H-NMR method (JEOL GSX-400 type superconducting FT)
-NMR).

【0028】(ロ)「共重合体極限粘度[η]」 25℃のジメチルホルムアミド溶液で測定した。(B) "Intrinsic viscosity of copolymer [η]" Measured with a dimethylformamide solution at 25 ° C.

【0029】(ハ)「等温DSC発熱曲線」 セイコー電子工業製DSC220Cを用いて、アクリロ
ニトリル系ポリマーを4.0mg秤量しアルミニウム製
試料容器に入れステンレス製メッシュカバーで押さえた
状態で乾燥空気気流中で230℃にて測定した。得られ
た等温発熱曲線が極大値をとるときの発熱ピーク時間t
(min)の逆数をV(min-1)とした。
(C) "Isothermal DSC exothermic curve" Using DSC220C manufactured by Seiko Denshi Kogyo, 4.0 mg of an acrylonitrile-based polymer was weighed, placed in an aluminum sample container, and pressed with a stainless steel mesh cover in a dry air stream. Measured at 230 ° C. Exothermic peak time t when the obtained isothermal exothermic curve takes a maximum value
The reciprocal of (min) was V (min -1 ).

【0030】また、実施例中の「AN」はアクリロニト
リル、「IA」はイタコン酸、「MAA」はメタクリル
酸、「AAm」はアクリルアミドを表す。
In the examples, "AN" represents acrylonitrile, "IA" represents itaconic acid, "MAA" represents methacrylic acid, and "AAm" represents acrylamide.

【0031】[実施例1]セパラブルフラスコに十分窒
素置換した蒸留水を入れ55℃に保持した。そこへ、レ
ドックス系重合開始剤である過硫酸アンモニウム、亜硫
酸水素アンモニウムおよび硫酸を入れ、引き続いてA
N、IA水溶液を一定速度で滴下した。その後、内温を
55℃に維持しながら攪拌を続け、滴下終了後から2時
間経過したところで重合を止め、析出した重合スラリー
から濾過、洗浄、乾燥してアクリロニトリル系ポリマー
を得た。同様な方法でさらに組成が異なるポリマーを2
種類重合した。得られたポリマーのNMR分析から、組
成はそれぞれ、AN/IA=99.5/0.5、98.
4/1.6、97.5/2.5(mol%)であった。
また、ポリマーの固有粘度は1.8であった。
Example 1 Distilled water sufficiently purged with nitrogen was placed in a separable flask and kept at 55 ° C. Thereto, ammonium persulfate, ammonium bisulfite and sulfuric acid, which are redox polymerization initiators, were added.
N, IA aqueous solution was dropped at a constant rate. Thereafter, stirring was continued while the internal temperature was maintained at 55 ° C., and after 2 hours from the completion of the dropwise addition, the polymerization was stopped, and the acrylonitrile-based polymer was obtained by filtering, washing and drying from the polymerized slurry that had precipitated. In the same manner, a polymer having a different composition
Type polymerized. From the NMR analysis of the obtained polymer, the composition was AN / IA = 99.5 / 0.5, 98.
4 / 1.6 and 97.5 / 2.5 (mol%).
The intrinsic viscosity of the polymer was 1.8.

【0032】このポリマーの等温発熱曲線をDSCによ
り測定した。その代表例としてAN/IA=99.5/
0.5の組成のポリマーの等温発熱曲線を図1に示し
た。この発熱曲線から、発熱ピーク出現時間は9.2分
であり、Vは0.11であった。他の2種のポリマーに
ついて同様に測定を行った結果を表1にまとめて示す。
3種類のポリマーの共重合量M(mol%)と発熱ピー
ク時間の逆数V(min -1)の値から最小自乗法により
dV/dMの値を求めたところ、2.7×10-2であっ
た(図2参照)。
The isothermal heat generation curve of this polymer was measured by DSC.
Measured. As a representative example, AN / IA = 99.5 /
The isothermal exotherm of the 0.5 composition polymer is shown in FIG.
Was. From this heat generation curve, the heat generation peak appearance time is 9.2 minutes.
And V was 0.11. To the other two polymers
Table 1 summarizes the results of similar measurements.
Copolymerization amount M (mol%) of three kinds of polymers and heat generation peak
Reciprocal V of the clock time (min -1) Value by the method of least squares
The value of dV / dM was determined to be 2.7 × 10-2So
(See FIG. 2).

【0033】[実施例2]実施例1と同様な重合方法に
より、表1に示した組成および固有粘度1.8のポリマ
ーを重合した。各ポリマーについて等温DSC測定を行
った結果を表1にまとめて示す。3種類のポリマーの
M、Vの値から最小自乗法によりdV/dMの値を求め
たところ、4.4×10-2であった。
Example 2 A polymer having the composition shown in Table 1 and an intrinsic viscosity of 1.8 was polymerized in the same manner as in Example 1. Table 1 summarizes the results of the isothermal DSC measurement for each polymer. The value of dV / dM was determined by the least squares method from the values of M and V of the three types of polymers and found to be 4.4 × 10 −2 .

【0034】[実施例3]セパラブルフラスコにジメチ
ルスルホキシド(以下DMSOと略す)を入れ60℃に
保持した。そこへ、アゾ系開始剤の2,2=|アゾジ−
(2,4−ジメチル−4−メトキシバレロニトリル)を
入れ、引き続いてAN、MAAを一定速度で滴下した。
その後、内温を60℃に維持しながら攪拌を続け、滴下
終了後から2時間経過したところで重合を止めた。得ら
れた溶液を大量の水へ少しづつ投入し、析出してきた沈
殿を濾過、洗浄、乾燥してアクリロニトリル系ポリマー
を得た。同様な方法でさらに組成が異なるポリマーを2
種類重合した。得られたポリマーのNMR分析から、組
成はそれぞれ、AN/MAA=99.4/0.6、9
8.5/1.5、97.3/2.7(mol%)であっ
た。また、ポリマーの固有粘度は1.8であった。
Example 3 Dimethyl sulfoxide (hereinafter abbreviated as DMSO) was placed in a separable flask and kept at 60 ° C. There, the azo initiator 2,2 = | azodi-
(2,4-Dimethyl-4-methoxyvaleronitrile) was added, and then AN and MAA were added dropwise at a constant rate.
Thereafter, stirring was continued while maintaining the internal temperature at 60 ° C., and polymerization was stopped when 2 hours had passed after the completion of the dropwise addition. The obtained solution was poured little by little into a large amount of water, and the deposited precipitate was filtered, washed and dried to obtain an acrylonitrile-based polymer. In the same manner, a polymer having a different composition
Type polymerized. From the NMR analysis of the obtained polymer, the composition was AN / MAA = 99.4 / 0.6, 9 respectively.
8.5 / 1.5 and 97.3 / 2.7 (mol%). The intrinsic viscosity of the polymer was 1.8.

【0035】各ポリマーについて等温DSC測定を行っ
た結果を表1にまとめて示す。3種類のポリマーのM、
Vの値から最小自乗法によりdV/dMの値を求めたと
ころ、5.0×10-3であった。
Table 1 shows the results of the isothermal DSC measurement for each polymer. M of three kinds of polymers,
When the value of dV / dM was calculated from the value of V by the least square method, it was 5.0 × 10 −3 .

【0036】[比較例1]セパラブルフラスコに十分窒
素置換した蒸留水/ジメチルアセトアミド(DMAc)
=6/1の割合で入れ60℃に保持する。そこへ、アゾ
ビスイソブチロニトリルを入れ、引き続いてAN、MA
Aを一定速度で滴下した。その後、内温を60℃に維持
しながら攪拌を続け、滴下終了後から2時間経過したと
ころで重合を止めた。析出してきた沈殿を濾過、洗浄、
乾燥してアクリロニトリル系ポリマーを得た。同様な方
法でさらに組成が異なるポリマーを2種類重合した。得
られたポリマーのNMR分析から、組成はそれぞれ、A
N/MAA=99.3/0.7、98.4/1.6、9
7.4/2.6(mol%)であった。また、共重合体
の固有粘度は1.8であった。
[Comparative Example 1] Distilled water / dimethylacetamide (DMAc) which had been sufficiently purged with nitrogen in a separable flask.
= 6/1 and maintained at 60 ° C. There, azobisisobutyronitrile was put, and then AN, MA
A was dropped at a constant rate. Thereafter, stirring was continued while maintaining the internal temperature at 60 ° C., and polymerization was stopped when 2 hours had passed after the completion of the dropwise addition. The precipitated precipitate is filtered, washed,
After drying, an acrylonitrile-based polymer was obtained. In the same manner, two types of polymers having different compositions were further polymerized. From the NMR analysis of the obtained polymer, the composition was A
N / MAA = 99.3 / 0.7, 98.4 / 1.6, 9
It was 7.4 / 2.6 (mol%). In addition, the intrinsic viscosity of the copolymer was 1.8.

【0037】各ポリマーについて等温DSC測定を行っ
た結果を表1にまとめて示す。3種類のポリマーのM、
Vの値から最小自乗法によりdV/dMの値を求めたと
ころ、4.2×10-2であった。
The results of the isothermal DSC measurement for each polymer are summarized in Table 1. M of three kinds of polymers,
When the value of dV / dM was determined from the value of V by the least square method, it was 4.2 × 10 −2 .

【0038】[比較例2]実施例3と同様な重合方法に
より、表1に示した組成および固有粘度1.8のポリマ
ーを重合した。各ポリマーについて等温DSC測定を行
った結果を表1にまとめて示す。3種類のポリマーの
M、Vの値から最小自乗法によりdV/dMの値を求め
たところ、2.0×10-1であった。
Comparative Example 2 A polymer having the composition shown in Table 1 and an intrinsic viscosity of 1.8 was polymerized in the same manner as in Example 3. Table 1 summarizes the results of the isothermal DSC measurement for each polymer. When the value of dV / dM was determined by the least square method from the values of M and V of the three polymers, it was 2.0 × 10 −1 .

【0039】[比較例3]実施例3と同様な重合方法に
より、表1に示した組成および固有粘度1.8のポリマ
ーを重合した。このポリマーについて同様に等温発熱曲
線をDSCにより測定を行ってVを求めたところ、1.
4であった。
Comparative Example 3 A polymer having the composition shown in Table 1 and an intrinsic viscosity of 1.8 was polymerized in the same manner as in Example 3. When the isothermal exothermic curve of this polymer was measured in the same manner by DSC, V was obtained.
It was 4.

【0040】[0040]

【表1】 [実施例4]実施例2で得られたポリマーのうち、AN
/MAA=99.5/0.5の組成のポリマーをジメチ
ルホルムアミド(以下DMFと略す)に23重量%にな
るように溶解し、紡糸原液とした。この紡糸原液を直径
0.15mmの口金から空気中に吐出し、DMF/水の
混合溶媒中で凝固させた。その後、さらに空気中で1.
5倍、さらに温水中で3.4倍延伸しながら洗浄・脱溶
剤した後、シリコン系油剤溶液中に浸漬し、140℃の
加熱ローラーにて乾燥緻密化した。引き続いて、180
℃の熱板上で1.5倍延伸し、捲取速度77m/min
にて1.2dtexの前駆体繊維を得た。
[Table 1] Example 4 Among the polymers obtained in Example 2, AN
A polymer having a composition of /MAA=99.5/0.5 was dissolved in dimethylformamide (hereinafter abbreviated as DMF) to a concentration of 23% by weight to prepare a spinning dope. This spinning stock solution was discharged into the air from a die having a diameter of 0.15 mm, and was coagulated in a mixed solvent of DMF / water. Then, further in air 1.
After being washed and desolvated while stretching 5 times and further 3.4 times in warm water, it was immersed in a silicone oil solution and dried and densified with a 140 ° C. heating roller. Followed by 180
Stretched 1.5 times on a hot plate at ℃, take-up speed 77m / min
Thus, a 1.2 dtex precursor fiber was obtained.

【0041】この繊維を空気中230℃雰囲気中に60
分間放置して耐炎化処理を行い耐炎化繊維に転換した。
得られた耐炎化繊維を樹脂で包埋しカットして横断面を
出し研磨した後、反射顕微鏡で断面の状態を観察したと
ころ、繊維断面は均一に黒く着色しており、断面二重構
造は観察されなかった。
This fiber is placed in an atmosphere of 230 ° C. in air for 60 hours.
The mixture was left standing for a minute to be subjected to an oxidization-resistant treatment, and converted into oxidized-resistant fibers.
After embedding the obtained oxidized fiber in a resin and cutting it to obtain a cross section and polishing it, observing the state of the cross section with a reflection microscope, the fiber cross section is uniformly colored black, and the cross section double structure is Not observed.

【0042】[比較例3]比較例1で得られたポリマー
のうち、AN/MAA=99.3/0.7の組成のポリ
マーから実施例5と同様の方法で前駆体繊維を得た。こ
の繊維を空気中230℃雰囲気中に60分間放置して耐
炎化処理を行い耐炎化繊維に転換した。得られた耐炎化
繊維を樹脂で包埋しカットして横断面を出し研磨したの
ち反射顕微鏡で断面の状態を観察したところ、繊維表面
のみが黒く着色して、内部が着色していない断面二重構
造が観察された。
Comparative Example 3 From the polymer obtained in Comparative Example 1, a precursor fiber was obtained in the same manner as in Example 5 from a polymer having a composition of AN / MAA = 99.3 / 0.7. This fiber was left in an atmosphere of 230 ° C. in the air for 60 minutes to be subjected to a flameproofing treatment, thereby being converted to a flameproofed fiber. After embedding the obtained oxidized fiber in a resin and cutting it to obtain a cross section and polishing it, the state of the cross section was observed with a reflection microscope. Only the fiber surface was colored black and the inside was not colored. Heavy structures were observed.

【0043】[0043]

【発明の効果】本発明のアクリロニトリル系ポリマーを
用いて炭素繊維用前駆体繊維を製造すると、耐炎化処理
の際に高速に焼成することが可能で、かつ得られる耐炎
化繊維の断面二重構造を低減することができる。従っ
て、炭素繊維製造工程の生産性が向上し、高弾性率等の
優れた品質・性能を有する炭素繊維が得られるので、生
産性と品質・性能を両立させることができる。
When the acrylonitrile-based polymer of the present invention is used to produce a precursor fiber for carbon fiber, it can be fired at a high speed during the oxidization treatment, and has a double sectional structure of the oxidized fiber obtained. Can be reduced. Therefore, the productivity of the carbon fiber manufacturing process is improved, and carbon fibers having excellent quality and performance such as high elastic modulus can be obtained, so that both productivity and quality and performance can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】示差走査熱量計(DSC)により測定したアク
リロニトリル系ポリマーの等温発熱曲線の1例である。
FIG. 1 is an example of an isothermal heat generation curve of an acrylonitrile-based polymer measured by a differential scanning calorimeter (DSC).

【図2】実施例および比較例について、カルボン酸基含
有ビニルモノマーの共重合量Mと発熱ピークの逆数Vの
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the copolymerization amount M of a carboxylic acid group-containing vinyl monomer and the reciprocal V of an exothermic peak in Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宝迫 芳彦 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 (72)発明者 山田 輝之 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 Fターム(参考) 4J100 AJ02Q AJ08Q AJ09Q AM02P CA04 DA25 FA08 FA21 JA11 4L035 BB06 BB11 BB17 BB71 BB85 BB91 FF01 GG02 GG04 HH10 MB03 MB04 4L037 CS02 CS03 PA55 PA61 PA65 PF44 PS02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshihiko Hosako 20-1 Miyukicho, Otake City, Hiroshima Prefecture Inside Mitsubishi Rayon Co., Ltd. Central Research Laboratory (72) Inventor Teruyuki Yamada 20-1 Miyukicho, Otake City, Hiroshima Prefecture No. F term in Central Research Laboratory of Mitsubishi Rayon Co., Ltd. (reference) 4J100 AJ02Q AJ08Q AJ09Q AM02P CA04 DA25 FA08 FA21 JA11 4L035 BB06 BB11 BB17 BB71 BB85 BB91 FF01 GG02 GG04 HH10 MB03 MB04 4L037 CS02 CS03 PA55 PA61 PA65

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維用前駆体繊維の製造に用いられ
るアクリロニトリル系ポリマーであって、示差走査熱量
計を用いて空気気流中にて230℃で測定した等温発熱
曲線における発熱ピーク出現時間の逆数をV(mi
-1)としたときに、Vが0.01以上、0.3未満で
あることを特徴とするアクリロニトリル系ポリマー。
1. An acrylonitrile-based polymer used for producing a precursor fiber for carbon fiber, the reciprocal of the appearance time of an exothermic peak in an isothermal exothermic curve measured at 230 ° C. in an air stream using a differential scanning calorimeter. To V (mi
An acrylonitrile-based polymer, wherein V is 0.01 or more and less than 0.3 when n -1 ).
【請求項2】 ポリマー中のカルボン酸基含有ビニルモ
ノマー単位の共重合量をM(mol%)としたときに、
Mが(イ)0.5±0.2、(ロ)1.5±0.2、お
よび(ハ)2.5±0.2の3種類の組成範囲に入るよ
うにカルボン酸基含有ビニルモノマーの共重合率を変え
た3種類のポリマーのMと、各ポリマーについて測定し
たVの値から最小自乗法により求められる直線の傾き
(dV/dM)が0.1以下となるような重合条件で重
合を行って得られる請求項1記載のアクリロニトリル系
ポリマー。
2. When the amount of a carboxylic acid group-containing vinyl monomer unit in a polymer is represented by M (mol%),
Carboxylic acid group-containing vinyl such that M falls within three types of composition ranges of (a) 0.5 ± 0.2, (b) 1.5 ± 0.2, and (c) 2.5 ± 0.2. Polymerization conditions such that the slope (dV / dM) of a straight line obtained by the least squares method from the M of three types of polymers having different copolymerization rates of the monomers and the value of V measured for each polymer is 0.1 or less. The acrylonitrile-based polymer according to claim 1, which is obtained by polymerizing with acrylonitrile.
【請求項3】 ポリマー中のアクリロニトリル単位の含
有量が97mol%以上であり、前記カルボン酸基含有
ビニルモノマー単位の含有量が0.2〜3mol%であ
る請求項1または2記載のアクリロニトリル系ポリマ
ー。
3. The acrylonitrile-based polymer according to claim 1, wherein the content of the acrylonitrile unit in the polymer is 97 mol% or more, and the content of the carboxylic acid group-containing vinyl monomer unit is 0.2 to 3 mol%. .
【請求項4】 前記共重合成分であるカルボン酸基含有
ビニルモノマーがメタクリル酸である請求項3記載のア
クリロニトリル系ポリマー。
4. The acrylonitrile-based polymer according to claim 3, wherein the carboxylic acid group-containing vinyl monomer as the copolymer component is methacrylic acid.
【請求項5】 前記共重合成分であるカルボン酸基含有
ビニルモノマーがイタコン酸であり、かつ重合方法がレ
ドックス系開始剤を用いた水系懸濁重合によって得られ
た請求項3記載のアクリロニトリル系ポリマー。
5. The acrylonitrile-based polymer according to claim 3, wherein the carboxylic acid group-containing vinyl monomer as the copolymerization component is itaconic acid, and the polymerization method is obtained by aqueous suspension polymerization using a redox-based initiator. .
【請求項6】 請求項1〜5のいずれかに記載のアクリ
ロニトリル系ポリマーからなる炭素繊維用前駆体繊維。
6. A precursor fiber for carbon fiber, comprising the acrylonitrile-based polymer according to claim 1.
【請求項7】 請求項6の炭素繊維用前駆体繊維を耐炎
化し、炭素化して得られる炭素繊維。
7. A carbon fiber obtained by subjecting the precursor fiber for carbon fiber according to claim 6 to flame resistance and carbonization.
JP10293877A 1998-10-15 1998-10-15 Acrylonitrile-based polymer, and precursor fiber for carbon fiber using the same Pending JP2000119341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10293877A JP2000119341A (en) 1998-10-15 1998-10-15 Acrylonitrile-based polymer, and precursor fiber for carbon fiber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10293877A JP2000119341A (en) 1998-10-15 1998-10-15 Acrylonitrile-based polymer, and precursor fiber for carbon fiber using the same

Publications (1)

Publication Number Publication Date
JP2000119341A true JP2000119341A (en) 2000-04-25

Family

ID=17800320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10293877A Pending JP2000119341A (en) 1998-10-15 1998-10-15 Acrylonitrile-based polymer, and precursor fiber for carbon fiber using the same

Country Status (1)

Country Link
JP (1) JP2000119341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203317A (en) * 2008-02-27 2009-09-10 Mitsubishi Rayon Co Ltd Polyacrylonitrile-based polymer particle, and method for producing same
WO2012050171A1 (en) 2010-10-13 2012-04-19 三菱レイヨン株式会社 Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203317A (en) * 2008-02-27 2009-09-10 Mitsubishi Rayon Co Ltd Polyacrylonitrile-based polymer particle, and method for producing same
WO2012050171A1 (en) 2010-10-13 2012-04-19 三菱レイヨン株式会社 Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US9920456B2 (en) 2010-10-13 2018-03-20 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US10233569B2 (en) 2010-10-13 2019-03-19 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US10662556B2 (en) 2010-10-13 2020-05-26 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US11332852B2 (en) 2010-10-13 2022-05-17 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof

Similar Documents

Publication Publication Date Title
JP3933712B2 (en) Acrylonitrile-based precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
JP5484906B2 (en) Method for producing polyacrylonitrile-based precursor fiber for carbon fiber
CN104246033A (en) Carbon fiber bundle and method of producing carbon fiber bundle
CN104246032A (en) Carbon fiber bundle and method of producing carbon fibers
JP2011046942A (en) Polyacrylonitrile copolymer, polyacrylonitrile precursor fiber for carbon fiber, and manufacturing method for carbon fiber
JP2013103992A (en) Polyacrylonitrile-based copolymer for carbon fiber precursor fiber
US11286580B2 (en) Method for producing acrylonitrile-based fiber
JP5724647B2 (en) Polyacrylonitrile-based copolymer, method for producing the same, carbon fiber precursor fiber, and carbon fiber
JPH11229232A (en) Production of acrylonitrile-based precursor yarn for carbon fiber
JP2000119341A (en) Acrylonitrile-based polymer, and precursor fiber for carbon fiber using the same
JP4887219B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
JP2011001653A (en) Method for producing polyacrylonitrile-based fiber
JP7202459B2 (en) Method for producing acrylonitrile-based copolymer for carbon fiber
JPS60181322A (en) Manufacture of carbon fiber
CN109790648B (en) Method for producing polyacrylonitrile-based fiber and polyacrylonitrile-based copolymer used therein
JP2009256859A (en) Acrylonitrile-based copolymer solution and polyacrylonitrile-based precursor fiber for carbon fiber
JP2000119342A (en) Acrylonitrile-based polymer, and precursor fiber for carbon fiber using the same
JPS63275718A (en) Production of high-tenacity carbon fiber
JPH11200140A (en) Production of acrylic fiber precursor
TWI762414B (en) Method for producing carbon fibers
JPWO2019003914A1 (en) Method for producing carbon fiber precursor fiber and method for producing carbon fiber
JP2018053389A (en) Carbon fiber precursor fiber and method for producing carbon fiber
JPH1036450A (en) Starting polyacrylonitrile/pitch material for production of carbonaceous material
JP2002145938A (en) Acrylonitrile-based polymer and carbon material using the same
JP2002145939A (en) Acrylonitrile-based polymer and carbon material using the same