JPH0376173A - Superconducting element and manufacture thereof - Google Patents

Superconducting element and manufacture thereof

Info

Publication number
JPH0376173A
JPH0376173A JP1211312A JP21131289A JPH0376173A JP H0376173 A JPH0376173 A JP H0376173A JP 1211312 A JP1211312 A JP 1211312A JP 21131289 A JP21131289 A JP 21131289A JP H0376173 A JPH0376173 A JP H0376173A
Authority
JP
Japan
Prior art keywords
superconducting
metal
superconducting element
oxide
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1211312A
Other languages
Japanese (ja)
Inventor
Haruhiro Hasegawa
晴弘 長谷川
Juichi Nishino
西野 壽一
Mutsuko Hatano
睦子 波多野
Hideaki Nakane
中根 英章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1211312A priority Critical patent/JPH0376173A/en
Publication of JPH0376173A publication Critical patent/JPH0376173A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a metal superconducting material laminated layer structure having high superconducting critical temperature by forming a laminated layer structure of a thin film of a material superconducted by alloying different metal to metal antiferromagnetic material and a thin film of different material from the antiferromagnetic material. CONSTITUTION:In the case of a laminated layer structure made of a metal superconducting material, sapphire board 1 is cleaned with hot phosphoric acid by a vacuum depositing method, surface-treated, CrRe alloy 2, Si 3 are alternately formed to form a laminated layer thin film. The arriving vacuum degree of a depositing chamber is about 10<-11>Torr, an electron beam depositing method is used, Cr, Re are simultaneously deposited, and Re concentration is set to 30%. The thickness of the film is set by a period of CrRe alloy/Si = 50/100Angstrom to 1500Angstrom of total film thickness. As a result, a structure similar to an oxide superconductor having high superconducting critical temperature Tc is obtained, thereby realizing a high superconducting critical temperature Tc.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は高い臨界温度を有する超電導材料およ化物超電
導材料の相図については、フィズイ力ルレビュ−B  
38 (1988年)第2477頁から第2485頁(
Phy、 Rev、B  38(1988)pp、24
77−2485)において論じられている。また、反強
磁性材料である金属CrとReの合金の相図については
、ジャーナルオブ ザ フィズイ力ル ソサイエティ 
オブジャパン 52 (1983年)第2301頁から
第2303頁(J 、 Phys、 Soc、 Jpn
  52(1983)pp、2301−2303)にお
いて論じられている。また、磁気電気効果を利用した超
電導三端子素子については、アイ イー イーイー エ
レクトロン デバイス レターズEDL−10(198
9年)第183頁から第185頁(I EEE Ele
ctron Device Lett。 EDL−10(1989)pp、183−185)にお
いて論じられている。
The present invention describes phase diagrams of superconducting materials and compound superconducting materials with high critical temperatures.
38 (1988) pp. 2477-2485 (
Phy, Rev, B 38 (1988) pp, 24
77-2485). In addition, regarding the phase diagram of alloys of metals Cr and Re, which are antiferromagnetic materials, please refer to the Journal of the Physiology Society.
of Japan 52 (1983) pp. 2301-2303 (J, Phys, Soc, Jpn
52 (1983) pp. 2301-2303). Regarding superconducting three-terminal devices using magnetoelectric effects, see IEE Electron Device Letters EDL-10 (198
9) pages 183 to 185 (I EEE Ele
ctron Device Lett. EDL-10 (1989) pp. 183-185).

【発明が解決しようとする課題】[Problem to be solved by the invention]

上記酸化物超電導材料は、酸素量により超電導特性が強
く影響を受ける他、四元系と構成元素が多いため混合相
を形成しやすく、これを用いて素子を作製した場合、金
属超電導材料に比べて微細加工が困難等、多くの問題を
有した。 また上記磁気電気効果を利用した超電導三端子素子は第
2図に示す如く、ジョセフソン接合と。 その一方の超電導電極の反対側に形成された磁気電気材
料Cr2O,と、ゲート電極からなる。その動作は磁気
電気材料Cr2O,にゲート電圧を印加し磁気モーメン
トを生じ使め、これによる磁場をジョセフソン接合に及
ぼしジョセフソン電流を制御することにより行う。しか
し第2図の構成では磁場はジョセフソン接合に超電導電
極を介して及ぼされるので、超電導材料のマイスナー効
果により磁場は排除され、ゲート電圧の効果が十分得ら
れないという問題があった。 また従来、Nb系超電導材料を用いたジョセフソン素子
は二端子素子のため、従来のシリコン素子たとえばMO
Sトランジスタに用いた論理の適用が困難であるという
問題があった。 また酸化物超電導材料を用いた超電導三端子素子は上記
酸化物超電導材料固有の問題のため実現が困難であった
。 本発明の第一の目的は超電導臨界温度Tcの高い金属超
電導材料積層構造体とそれを用いた超電導素子を提供す
ることにある。 本発明の第二の目的は上記磁気電気効果を利用した、高
い増@率の超電導三端子素子に好適な構造を提供するこ
とにある。 本発明の第三の目的は上記磁気電気効果を利用した超電
導三端子素子において上記金属超電導材料を用いるに好
適な構造及びその製造方法を提供することにある。 本発明の第四の目的は上記磁気電気効果を利用した超電
導三端子素子において従来のNb系超電導材料を用いる
に好適な構造及びその製造方法を提供することにある。 本発明の第五の目的は酸化物超電導材料を用い、磁気電
気効果を利用した超電導素子を提供することにある。
The superconducting properties of the above oxide superconducting materials are strongly affected by the amount of oxygen, and since they are quaternary and have many constituent elements, they tend to form mixed phases, and when an element is fabricated using them, compared to metal superconducting materials, There were many problems such as difficulty in microfabrication. Furthermore, the superconducting three-terminal device that utilizes the above-mentioned magnetoelectric effect is called a Josephson junction, as shown in Figure 2. It consists of a magnetoelectric material Cr2O formed on the opposite side of one superconducting electrode and a gate electrode. The operation is performed by applying a gate voltage to the magnetoelectric material Cr2O to generate a magnetic moment, and applying the resulting magnetic field to the Josephson junction to control the Josephson current. However, in the configuration shown in FIG. 2, since the magnetic field is applied to the Josephson junction via the superconducting electrode, the magnetic field is excluded by the Meissner effect of the superconducting material, and there is a problem that the effect of the gate voltage cannot be sufficiently obtained. Furthermore, conventionally, Josephson devices using Nb-based superconducting materials are two-terminal devices, so conventional silicon devices such as MO
There was a problem in that it was difficult to apply the logic used in the S transistor. Further, it has been difficult to realize a superconducting three-terminal device using an oxide superconducting material due to problems inherent to the above-mentioned oxide superconducting material. A first object of the present invention is to provide a metal superconducting material laminated structure having a high superconducting critical temperature Tc and a superconducting element using the same. A second object of the present invention is to provide a structure suitable for a superconducting three-terminal element with a high rate of increase, which utilizes the above magnetoelectric effect. A third object of the present invention is to provide a structure suitable for using the above-mentioned metal superconducting material in a superconducting three-terminal element utilizing the above-mentioned magnetoelectric effect, and a method for manufacturing the same. A fourth object of the present invention is to provide a structure suitable for using the conventional Nb-based superconducting material in a superconducting three-terminal element utilizing the above-mentioned magnetoelectric effect, and a manufacturing method thereof. A fifth object of the present invention is to provide a superconducting element using an oxide superconducting material and utilizing the magnetoelectric effect.

【課題を解決するための手段】[Means to solve the problem]

上記第一の目的を達成するために本発明の超電導材料積
層構造体は、金属反強磁性材料にこれと裏なる金属を合
金化せ使めて超電導化した材料の薄膜と、これと異なる
材料の薄膜との積層構造からなる。またこの積層構造体
を用いて超電導素子を形成するものである。 上記第二の目的を達成するために本発明の超電導素子は
、一対の超電導電極と、この超電導電極間に存する磁気
電気材料からなるジョセフソントンネル障壁膜と、この
磁気電気材料に電場を生じ使めるゲート電極と、からな
るものである。 上記第三の目的を達成するために本発明の超電導素子は
、少なくともCrを含む合金を超電導電極とし、その酸
化物を磁気電気材料とするものである。さらにこの少な
くともCrを含む合金をたとえばCrRe合金とするも
のである。 上記第四の目的を達成するために本発明の超電導素子は
、金、@Nbからなる一対の超電導電極と。 磁気電気材料からなるジョセフソントンネル障壁膜と、
この磁気電気材料に電場を生じ使めるゲート電極と、か
らなり、好ましくはこの磁気電気材料として少なくとも
Alを含む酸化物たとえばTbA Q OX、またはG
dA Q Ox、またはDyAlOxを用いるものであ
る。 上記第五の目的を達成するために本発明の超電導素子は
、酸化物超電導材料からなる超電導電極と、この超電導
電極に接する磁気電気材料と、この磁気電気材料に電場
を生じ使めるゲート電極と、からなり、好ましくはこの
磁気電気材料として酸化物超電導材料と類似結晶構造の
ペロブスカイト型結晶構造を有するもの、たとえばTb
Al○×、またはGdA Q Ox、またはDyAlO
xを用いるものである。
In order to achieve the above first object, the superconducting material laminated structure of the present invention comprises a thin film of a material made superconducting by alloying a metal antiferromagnetic material with an underlying metal, and a material different from the thin film. It consists of a laminated structure with a thin film. Further, this laminated structure is used to form a superconducting element. In order to achieve the above second object, the superconducting element of the present invention includes a pair of superconducting electrodes, a Josephson tunnel barrier film made of a magnetoelectric material existing between the superconducting electrodes, and an electric field generated in the magnetoelectric material. and a gate electrode that connects the gate electrode. In order to achieve the third object, the superconducting element of the present invention uses an alloy containing at least Cr as a superconducting electrode and an oxide thereof as a magnetoelectric material. Further, the alloy containing at least Cr is, for example, a CrRe alloy. In order to achieve the fourth object, the superconducting element of the present invention includes a pair of superconducting electrodes made of gold and @Nb. Josephson tunnel barrier film made of magnetoelectric material;
a gate electrode capable of generating an electric field in the magnetoelectric material, preferably an oxide containing at least Al, such as TbA Q OX, or G
This uses dA Q Ox or DyAlOx. In order to achieve the fifth object, the superconducting element of the present invention includes a superconducting electrode made of an oxide superconducting material, a magnetoelectric material in contact with the superconducting electrode, and a gate electrode that can be used to generate an electric field in the magnetoelectric material. Preferably, the magnetoelectric material is one having a perovskite crystal structure similar to that of the oxide superconducting material, such as Tb.
Al○×, or GdA Q Ox, or DyAlO
This uses x.

【作用】[Effect]

酸化物超電導材料たとえば超電導臨界温度Tcが約90
にであるY−Ba−Cu−0は、第3図に示した相図の
如く、酸素量が増加し正孔の濃度が増加すると反強磁性
秩序が消失し、その直後に超電導性が出現する。この反
強磁性秩序はCuO二次元面において実現される。相図
において反強磁性と超電導性が隣接していることは酸化
物超電導材料に共通の性質であり、その高い超電導臨界
温度Tcの発現機構は明確ではないものの深い関係があ
ると考えられている。一方、CrRe合金は第4図に示
した相図の如く、反強磁性材料CrにReを合金化せ使
めたときその濃度が増加すると反強磁性材料から超電導
材料に転移する。つまりCrRe合金においてRe濃度
を増加させることは反強磁性秩序を消失させ超電導性を
出現させるという意味で、上記酸化物超電導材料の酸素
量を増加させることと同等である。さらに酸化物超電導
材料の反強磁性秩序がCuO二次元面において実現して
いることを考慮すれば、CrRe合金薄膜またはCrR
e合金薄膜とこれと異なる材料の薄膜の積層構造により
高い超電導臨界温度Tcが得られ、上記第一の目的が達
成できる。尚、Crに合金化せ使める金属は反強磁性秩
序を消失させ超電導性を出現させれば上記Reに限らな
いことは言うまでもない。また反強磁性材料は、異なる
材料の混合により反強磁性材料から超電導材料に転移す
れば十分であり、たとえばCr −M o合金、Mn。 γ−Fe等、Crに限らないことは言うまでもない。ま
た上記CrRe合金と積層するこれと異なる材料として
は、積層構造における隣り同志のCrRe合金薄膜間の
相互作用を緩和する材料である絶縁体、たとえばSiO
x、AlOx、MgO,、または、接合により金属から
染み出た波動関数がエキシトンを形成した場合、そのエ
キシトンエネルギーが超電導臨界温度Tcの上限を与え
、十分高い超電導臨界温度Tcが実現する材料である半
導体、たとえばS i 、 G e 、 A Q 1−
xGaxAs。 InSb、InAs、または、十分キャリアを有する材
料である金属、たとえばAu、Ag、Cuが好ましい、
また、積層構造におけるCrRe合金薄膜の膜厚、及び
これと異なる材料の薄膜の膜厚は、Cr Re合金の二
次元性が実現することが必要であり、薄膜が島状になる
ことなく十分な被覆性が得られれば、前者は1000Å
以上でも十分であるが、好ましくは500A以下、より
好ましくは50Å以下、後者は1000Å以上でも十分
であるが、好ましくは500Å以下、より好ましくは5
0A以下とするものである。 一対の超電導電極と、この超電導電極間に存するジョセ
フソントンネル障壁膜と、からなるジョセフソン素子に
おいて、このジョセフソントンネル障壁膜を磁気電気材
料とし、さらにこの磁気電気材料に電場を生じ使めるゲ
ート電極を形成する。 これにより三端子型の超電導素子が実現する。さらにゲ
ート電圧印加により磁気電気効果から生じた磁気モーメ
ントは超電導電極のマイスナー効果に妨げられることな
く有効にジョセフソントンネル障壁膜に作用するのでゲ
ート電圧の効果が十分及ぼされる増幅率の大きい超電導
素子が実現でき、これにより上記第二の目的が達成でき
る。 少なくともCrを含む合金を超電導電極とし、しかる後
にその表面を酸化する。生成する酸化物に含まれるCr
2O,は磁気電気材料であるので超電導材料と磁気電気
材料の接続構造が実現されたことになり、これにより上
記第三の百的が達成できる。この少なくともCrを含む
合金としてはたとえば上記CrR5合金が挙げられる。 さらにこのCr2O,が含まれる表面酸化膜を100Å
以下程度とし、その上に超電導電極を形成、さらにこの
Cr2O,が含まれる酸化膜にゲート電極を形成すれば
上記三端子型の、ゲート電極を備えたジョセフソン素子
が実現できることは言うまでもない。 Nb−AM−AIOK−Nbジョセフソン素子はA 1
20 xをジョセフソントンネル障壁膜とし、NbとA
l及びANO*の良好な接合性、InPb合金に比較し
て高融点金gNbの高い材料の安定性、等の故に信頼性
の高い超電導素子であると評価されている。Nbからな
る下部超電導電極を形成機、A2を含む金属、たとえば
Afl−TbまたはAM−GdまたはAl−Dyを成膜
、その後これを酸化し、さらにNbからなる上部超電導
電極及びこの酸化物に電場を生じ使めるゲート電極を形
成する。TbAnO,、またはGdA Q Ox、また
はDyAnO,は磁気電気材料であり、NbとAl及び
A 110 xは良好な接合性を示すので、磁気電気効
果を作用せ使め、かつ信頼性の高いジョセフソン素子、
すなわち三端子型の超電導素子が実現でき、これにより
上記第四の目的が達成できる。 磁気電気材料GdA Q O,は格子定数a軸=5.2
47A、b軸=5.304A、c軸=7.447人の斜
方晶ペロブスカイト型結晶構造、DyAlO,は格子定
数a軸=5.21人、b軸=5.31人、C軸=7.4
0人の斜方晶ペロブスカイト型結晶構造をとる。酸化物
超電導材料La1.aasro、tacu04は格子定
数a軸=3.78人(1,41本a=5.33人)、C
軸= 13.23大の正方晶に2NiF、型結晶構造、
Y B a2Cu、 O。 は格子定数a軸=3.82人(1,41*a=:5.3
9人)、b軸=3.89A (1,41*b=5.49
A)、c軸=11.68Aの斜方晶酸素欠損ペロブスカ
イト型結晶構造。 Bi、 5rzCaN−1CuNO2N+*+Zは格子
定数a軸〜b軸〜5.4人、T Q 2 B a、 C
an−I CUNO2N+4+Zは格子定数a軸〜b軸
〜5.4人をとる。従ってGdAl○s + D y 
A +203と上記酸化物超電導材料の格子定数の不整
合性はいずれも約3%程度と小さく、結晶性を損なわず
に両者を接合することが可能となり、磁気電気材料Gd
AlO,。 DyAlO,に電場を生じ使めるゲート電極を設ければ
磁気電気効果を利用した超電導素子が実現でき、これに
より上記第五の目的が達成できる。尚、上記説明では磁
気電気材料としてGdAl○、。 DyA Q O,を例示したが、酸化物超電導材料と類
似結晶構造であり、格子不整合性が10%以下、より好
ましくは5%以下、さらに好ましくは工%以下であれば
、これらの材料に限らないことは言うまでもない。
Oxide superconducting materials, for example, have a superconducting critical temperature Tc of about 90
In Y-Ba-Cu-0, as shown in the phase diagram shown in Figure 3, when the amount of oxygen increases and the concentration of holes increases, the antiferromagnetic order disappears, and immediately after that, superconductivity appears. do. This antiferromagnetic order is realized in the two-dimensional plane of CuO. The fact that antiferromagnetism and superconductivity are adjacent in the phase diagram is a common property of oxide superconducting materials, and although the mechanism of the development of the high superconducting critical temperature Tc is not clear, it is thought that there is a deep relationship. . On the other hand, as shown in the phase diagram shown in FIG. 4, the CrRe alloy transforms from an antiferromagnetic material to a superconducting material when the antiferromagnetic material Cr is alloyed with Re and its concentration increases. In other words, increasing the Re concentration in the CrRe alloy causes the antiferromagnetic order to disappear and superconductivity to appear, which is equivalent to increasing the amount of oxygen in the oxide superconducting material. Furthermore, considering that the antiferromagnetic order of the oxide superconducting material is realized on the two-dimensional surface of CuO, it is possible to
A high superconducting critical temperature Tc can be obtained by the laminated structure of an e-alloy thin film and a thin film made of a different material, thereby achieving the above-mentioned first objective. It goes without saying that the metal that can be alloyed with Cr is not limited to the above-mentioned Re, as long as the antiferromagnetic order disappears and superconductivity appears. It is also sufficient for the antiferromagnetic material to be transformed from an antiferromagnetic material to a superconducting material by mixing different materials, such as Cr--Mo alloy, Mn. Needless to say, the material is not limited to Cr, such as γ-Fe. In addition, as a material different from the above-mentioned CrRe alloy and laminated thereon, an insulator which is a material that alleviates the interaction between adjacent CrRe alloy thin films in the laminated structure, such as SiO
x, AlOx, MgO, or when the wave function seeped out of the metal due to bonding forms an exciton, the exciton energy gives the upper limit of the superconducting critical temperature Tc, and it is a material that achieves a sufficiently high superconducting critical temperature Tc. Semiconductors, such as S i , G e , A Q 1-
xGaxAs. Preferred are InSb, InAs, or metals that are carrier-rich materials, such as Au, Ag, Cu.
In addition, the thickness of the CrRe alloy thin film in the laminated structure and the thickness of the thin film made of a different material need to be sufficient to realize the two-dimensionality of the CrRe alloy, so that the thin film does not become island-like. If coverage is obtained, the former is 1000 Å
The latter is sufficient, but preferably 500 Å or less, more preferably 50 Å or less, and the latter is sufficient even if it is 1000 Å or more, but preferably 500 Å or less, more preferably 5
It shall be 0A or less. In a Josephson device consisting of a pair of superconducting electrodes and a Josephson tunnel barrier film existing between the superconducting electrodes, the Josephson tunnel barrier film is used as a magnetoelectric material, and an electric field is generated in the magnetoelectric material. Form a gate electrode. This realizes a three-terminal superconducting element. Furthermore, the magnetic moment generated from the magnetoelectric effect by applying the gate voltage effectively acts on the Josephson tunnel barrier film without being hindered by the Meissner effect of the superconducting electrode, so a superconducting element with a large amplification factor where the effect of the gate voltage is sufficiently exerted is created. This makes it possible to achieve the above second objective. An alloy containing at least Cr is used as a superconducting electrode, and then its surface is oxidized. Cr contained in the generated oxide
Since 2O is a magnetoelectric material, a connection structure between a superconducting material and a magnetoelectric material has been realized, thereby achieving the third hundredth objective. Examples of the alloy containing at least Cr include the above-mentioned CrR5 alloy. Furthermore, a surface oxide film containing this Cr2O was added to a thickness of 100 Å.
It goes without saying that the above-mentioned three-terminal type Josephson device with a gate electrode can be realized by forming a superconducting electrode thereon and forming a gate electrode on the oxide film containing Cr2O. Nb-AM-AIOK-Nb Josephson element is A1
20x is a Josephson tunnel barrier film, Nb and A
It has been evaluated as a highly reliable superconducting element due to its good bonding properties between L and ANO*, and the high stability of the high melting point gold gNb material compared to InPb alloy. A lower superconducting electrode made of Nb is formed using a forming machine, and a metal containing A2, such as Afl-Tb, AM-Gd, or Al-Dy, is formed into a film, and then this is oxidized, and an electric field is applied to the upper superconducting electrode made of Nb and this oxide. This creates a usable gate electrode. TbAnO, GdA Q Ox, or DyAnO is a magnetoelectric material, and Nb, Al, and A 110 x exhibit good bonding properties, so the magnetoelectric effect can be used and the Josephson material has high reliability. element,
That is, a three-terminal type superconducting element can be realized, thereby achieving the fourth objective. The magnetoelectric material GdA Q O, has a lattice constant a-axis = 5.2
47A, b-axis = 5.304A, c-axis = 7.447m orthorhombic perovskite crystal structure, DyAlO, has lattice constants a-axis = 5.21m, b-axis = 5.31m, c-axis = 7 .4
It has an orthorhombic perovskite crystal structure. Oxide superconducting material La1. aasro, tacu04 has lattice constant a axis = 3.78 people (1,41 lines a = 5.33 people), C
Axis = 13.23 large tetragonal 2NiF, type crystal structure,
YB a2Cu, O. is the lattice constant a-axis = 3.82 people (1,41*a=:5.3
9 people), b axis = 3.89A (1,41*b = 5.49
A), Orthorhombic oxygen-deficient perovskite crystal structure with c-axis = 11.68A. Bi, 5rzCaN-1CuNO2N+*+Z is the lattice constant a-axis ~ b-axis ~ 5.4 people, T Q 2 B a, C
an-I CUNO2N+4+Z takes lattice constants a-axis ~ b-axis ~ 5.4 people. Therefore, GdAl○s + D y
The lattice constant mismatch between A +203 and the above-mentioned oxide superconducting material is as small as about 3%, making it possible to bond the two without impairing crystallinity, making it possible to bond the magnetoelectric material Gd.
AlO,. If DyAlO is provided with a gate electrode that can be used to generate an electric field, a superconducting element utilizing the magnetoelectric effect can be realized, thereby achieving the fifth objective. In the above description, GdAl○ is used as the magnetoelectric material. Although DyAQO is given as an example, these materials can be used as long as they have a similar crystal structure to oxide superconducting materials and have a lattice mismatch of 10% or less, more preferably 5% or less, and even more preferably 5% or less. Needless to say, there is no limit.

【実施例】【Example】

以下、本発明を実施例を参照して詳細に説明する。第1
図を用いて本発明の第1の実施例を説明する。本実施例
は金属系超電導材料からなる積層構造体を作製した例で
ある。真空蒸着法を用い。 サファイア基板1 (c面)を熱リン酸により洗浄。 表面処理を行った後、CrRe合金2.Si3を交互に
成膜は積層薄膜を形成した。蒸着室の到達真空度は約1
0−11Torrである。いずれの蒸着も電子ビーム蒸
着法を用い、Cr、Reについては同時蒸着を行い、R
e濃度が30%、すなわちCr、、Re、、とした、膜
厚はCr Re合金/ S i =50λ/100Aの
周期で全膜厚1500人とした。第1図に得られた金属
系超電導材料の断面図を示す。次に通常の四端子測定法
により抵抗率の温度依存性測定を行った。その結果、得
られた超電導臨界温度Tcは報告されているCr、。R
e、。の値よりも高く、二次元積層化による超電導臨界
温度Tcの改善が認められた。 次に第5図を用いて本発明の第2の実施例を説明する1
本実施例はCrを含む合金、CrRe合金を超電導電極
とし、その酸化物を磁気電気材料とした超電導素子の例
である。本実施例で用いた真空蒸着装置は到達真空度約
10″″11Torrの蒸着室と、酸素ガスが導入でき
る試料交換室の2つの真空槽からなる。基板としてサフ
ァイア基板1 (R面)を用い、熱リン酸により表面を
洗浄した後、本発明の第1の実施例と同様に電子ビーム
蒸着法を用い同時蒸着によりCr、。Re3゜膜を20
00λ成膜し、下部超電導電極4を形成した。次に交換
室に搬送した後、酸素ガスを1気圧導入し、表面を酸化
することにより、磁気電気材料Cr、O,を含む酸化物
を形成し、ジョセフソントンネル障壁H5とした(第5
図(a))。次に、この基板を再度蒸着室に搬送し、下
部超電導電極4の成膜方法と同様にCr7゜Re、。膜
を200OA成膜し、上部超電導電極6を形成した。レ
ジスト塗布後、通常の光りソグラフィ法を用い、このレ
ジストをパターニングした後、イオンミリング法により
上部超電導電極6を加工し、面積5μmX5μmのジョ
セフソン接合7を形成した。次に再度、光リソグラフイ
法を用い、ジョセフソントンネル障壁膜5上に化学的気
相成長法によりPSG (PSGはP hosphos
ilicata glassの略であるl+)を約10
00A形威し、ゲート電極8とした(第5図(b))。 このようにして得られた三端子型の超電導素子の超電導
電極4,6間の電流−電圧特性をゲート電圧Vgをパラ
メータとして第5図(c)に示す。Vg=OVでは最大
超電導電流はlm=100μAであるが、Vg=0.I
Vではrm=10μAであり、ゲート電圧により超電導
電流が制御できることが確認できる。本実施例ではジョ
セフソントンネル障壁膜が磁気電気材料からなるので、
ゲート電圧印加により生じた磁気モーメントが直接、ジ
ョセフソン電流に作用し、これによりジョセフソントン
ネル障壁膜と磁気電気材料が異なる三端子型の超電導素
子よりも高い増幅率の三端子型の超電導素子が実現でき
る。 次に第6図を用いて本発明の第3の実施例を説明する。 本実施例は超電導電極がNbからなる超電導素子の例で
ある。NbからなるターゲットGcl、Affからなる
ターゲットの二元ターゲットを有する直流スパッタリン
グ装置を用い、Si基板l上にAr雰囲気中でNbを2
000λ成膜し下部超電導電極4を形成した。大気に曝
すことなく十分に冷却した後、Gd、Aflを8oλ成
膜した。次に99.999%の高純度の酸素ガスを真空
槽に導入し、磁気電気材料GdAlOxを形成し、ジョ
セフソントンネル障壁膜5とした。真空排気後、下部超
電導電極4と同様にAr雰囲気中で直流スパッタリング
法によりNbを200OA戊膜し上部超電導電極6を形
成した(第6図(a))。 以下、本発明の第2の実施例と同様に光りソグラフィ法
を用い、磁気電気材料に電場を生じ使めるゲート電極を
設け、これにより三端子型の超電導素子を実現した。第
6図(b)に超電導電極4゜6間の電流−電圧特性のゲ
ート電圧Vg依存性を示す。これより増幅率の高い三端
子型の超電導素子が確認される。尚、本実施例ではジョ
セフソントンネル障壁膜5としてG d A 10 *
を用いたが、GdAlOXと同じAlを含む酸化物の磁
気電気材料であるTbAlOx、またはDyA +20
8を用いても本実施例と同様の効果が得られることは言
うまでもない。また本実施例では金属Gd、Allを成
膜し、しかる後これを酸化することによりG d A 
n Oxを形成したが、GdAlO,をスパッタリング
ターゲットとし高周波スパッタリング法を用いることに
よりGdAfl○8を形成しても本実施例と同様の超電
導素子が得られることは言うまでもない。またCrは磁
気ディスクのms材料として利用され1表面がCr酸化
物で覆われた安定な材料である。従ってこれをジョセフ
ソントンネル障壁膜として用いると安定なジョセフソン
素子が実現できる。さらにcr203は磁気電気材料で
あるので、本実施例と同様にこれにゲート電極を設ける
ことによりと、本実施例と同様にジョセフソントンネル
障壁膜が磁気電気材料からなる三端子型の超電導素子が
実現できることは言うまでもない。 次に第7図を用いて本発明の第4の実施例を説明する。 本実施例は超電導電極が酸化物超電導材料からなる超電
導素子の例である。 DyBa2Cu、、sOxとD y A D Oxの二
元ターゲットの高周波マグネトロンスパッタリング装置
を用い、5rTiO,基板l上に、Ar:02=1:1
.圧力30 m Torrt基板温度730℃の条件で
DyBa2Cu30xを2000人成膜し下部超電導電
極4を形成した。大気に曝すことなく続いて磁気電気材
料DyAlOオを100A形成し、ジョセフソントンネ
ル障壁膜5とした。次に下部超電導電極4と同様にD 
y B a、 Cu、 Oxを2000人成膜し上部超
電導電極6を形成した(第7図(a))。 以下、本発明の第2の実施例と同様に光りソグラフィ法
を用い、磁気電気材料に電場を生じ使めるゲート電極を
設け、これにより三端子型の超電導素子を実現した。第
7図(b)に超電導電極4゜6間の電流−電圧特性のゲ
ート電圧Vg依存性を示す。これより増幅率の高い三端
子型の超電導素子が実現できたことが確認される。尚、
本実施例ではDyBa2Cu、OxとD y A Q 
Oxを連続成膜したが、両者の相互拡散を防止するため
、両者間に厚さ1μm以下のA u y A g y 
P d + P tからなる金属群から選ばれた少なく
とも一者またはその複合体からなる薄膜を形成しても本
実施例と同様の超電導素子が得られる。上記金属特にA
uはクーパ一対の広がりの程度を与える。超電導のコヒ
ーレンス長がおよそ1μmと見積もられ、膜厚と同程度
と極めて長く、拡散防止層として有効である。 さらに、本発明の第2.第3.第4の実施例のそれぞれ
の材料について、第8図に示した構造を有する三端子型
の超電導素子を製造し、これについても高い増幅率が得
られた。
Hereinafter, the present invention will be explained in detail with reference to Examples. 1st
A first embodiment of the present invention will be described with reference to the drawings. This example is an example in which a laminated structure made of metallic superconducting materials was manufactured. Using vacuum evaporation method. Clean sapphire substrate 1 (c-side) with hot phosphoric acid. After surface treatment, CrRe alloy 2. A laminated thin film was formed by alternately depositing Si3. The ultimate vacuum in the deposition chamber is approximately 1
It is 0-11 Torr. All depositions use electron beam evaporation, Cr and Re are simultaneously deposited, and R
The e concentration was 30%, that is, Cr, Re, etc., and the total film thickness was 1500 with a cycle of CrRe alloy/S i =50λ/100A. FIG. 1 shows a cross-sectional view of the obtained metallic superconducting material. Next, the temperature dependence of resistivity was measured using the usual four-terminal measurement method. As a result, the superconducting critical temperature Tc obtained is reported to be Cr. R
e. It was recognized that the superconducting critical temperature Tc was improved by two-dimensional stacking. Next, a second embodiment of the present invention will be explained using FIG.
This example is an example of a superconducting element in which an alloy containing Cr, CrRe alloy, is used as a superconducting electrode, and its oxide is used as a magnetoelectric material. The vacuum evaporation apparatus used in this example consists of two vacuum chambers: a evaporation chamber with an ultimate vacuum of about 10''''11 Torr, and a sample exchange chamber into which oxygen gas can be introduced. A sapphire substrate 1 (R side) was used as the substrate, and after cleaning the surface with hot phosphoric acid, Cr was deposited simultaneously using the electron beam evaporation method as in the first embodiment of the present invention. Re3゜membrane 20
00λ film was formed to form the lower superconducting electrode 4. Next, after transporting to the exchange chamber, 1 atm of oxygen gas was introduced to oxidize the surface, forming an oxide containing magnetoelectric materials Cr, O, and forming the Josephson tunnel barrier H5 (No. 5
Figure (a)). Next, this substrate was transported to the vapor deposition chamber again, and Cr7°Re was deposited in the same manner as in the method for forming the lower superconducting electrode 4. A film of 200 OA was deposited to form an upper superconducting electrode 6. After applying the resist, the resist was patterned using a normal photolithography method, and then the upper superconducting electrode 6 was processed using an ion milling method to form a Josephson junction 7 with an area of 5 μm×5 μm. Next, using photolithography again, PSG (PSG is Phosphos) was deposited on the Josephson tunnel barrier film 5 by chemical vapor deposition.
(l+), which stands for ilicata glass, is about 10
The gate electrode 8 was formed using the 00A type (FIG. 5(b)). The current-voltage characteristics between the superconducting electrodes 4 and 6 of the three-terminal superconducting element thus obtained are shown in FIG. 5(c) using the gate voltage Vg as a parameter. When Vg=OV, the maximum superconducting current is lm=100μA, but when Vg=0. I
At V, rm=10 μA, and it can be confirmed that the superconducting current can be controlled by the gate voltage. In this example, the Josephson tunnel barrier film is made of magnetoelectric material, so
The magnetic moment generated by applying the gate voltage directly acts on the Josephson current, and this results in a three-terminal superconducting element with a higher amplification factor than a three-terminal superconducting element in which the Josephson tunnel barrier film and magnetoelectric materials are different. realizable. Next, a third embodiment of the present invention will be described using FIG. 6. This example is an example of a superconducting element in which the superconducting electrode is made of Nb. Using a DC sputtering device with a dual target consisting of a target Gcl consisting of Nb and a target consisting of Aff, 2 Nb was deposited on a Si substrate l in an Ar atmosphere.
000λ film was formed to form the lower superconducting electrode 4. After sufficiently cooling without exposing to the atmosphere, Gd and Afl were deposited to a thickness of 8oλ. Next, 99.999% high purity oxygen gas was introduced into the vacuum chamber, and a magnetoelectric material GdAlOx was formed to form the Josephson tunnel barrier film 5. After evacuation, the upper superconducting electrode 6 was formed by depositing 200 OA of Nb by direct current sputtering in an Ar atmosphere in the same manner as the lower superconducting electrode 4 (FIG. 6(a)). Thereafter, similarly to the second embodiment of the present invention, photolithography was used to provide a gate electrode that can be used to generate an electric field in the magnetoelectric material, thereby realizing a three-terminal superconducting element. FIG. 6(b) shows the dependence of the current-voltage characteristic between the superconducting electrodes 4° and 6 on the gate voltage Vg. This confirms a three-terminal superconducting element with a higher amplification factor. In this example, G d A 10 * is used as the Josephson tunnel barrier film 5.
However, TbAlOx, which is an oxide magnetoelectric material containing the same Al as GdAlOX, or DyA +20
It goes without saying that even if 8 is used, the same effect as in this embodiment can be obtained. Further, in this example, by forming a film of metal Gd and All and then oxidizing it, G d A
Although nOx was formed, it goes without saying that a superconducting element similar to this example can also be obtained by forming GdAfl◯8 by using a high frequency sputtering method using GdAlO as a sputtering target. Further, Cr is a stable material that is used as an MS material for magnetic disks and one surface is covered with Cr oxide. Therefore, if this is used as a Josephson tunnel barrier film, a stable Josephson device can be realized. Furthermore, since cr203 is a magnetoelectric material, by providing a gate electrode thereon as in this example, a three-terminal superconducting element in which the Josephson tunnel barrier film is made of a magnetoelectric material can be obtained. It goes without saying that this can be achieved. Next, a fourth embodiment of the present invention will be described using FIG. 7. This example is an example of a superconducting element in which the superconducting electrode is made of an oxide superconducting material. Using a high-frequency magnetron sputtering device with dual targets of DyBa2Cu, sOx and DyADOx, Ar:02=1:1 was deposited on the 5rTiO substrate l.
.. The lower superconducting electrode 4 was formed by 2000 people depositing DyBa2Cu30x under conditions of a pressure of 30 m Torrt and a substrate temperature of 730°C. Subsequently, a magnetoelectric material DyAlO was formed at a thickness of 100 Å without exposing it to the atmosphere to form the Josephson tunnel barrier film 5. Next, similarly to the lower superconducting electrode 4, D
yBa, Cu, and Ox were deposited by 2000 people to form the upper superconducting electrode 6 (FIG. 7(a)). Thereafter, similarly to the second embodiment of the present invention, photolithography was used to provide a gate electrode that can be used to generate an electric field in the magnetoelectric material, thereby realizing a three-terminal superconducting element. FIG. 7(b) shows the dependence of the current-voltage characteristics between the superconducting electrodes 4 and 6 on the gate voltage Vg. This confirms that a three-terminal superconducting element with a high amplification factor has been realized. still,
In this example, DyBa2Cu, Ox and D y A Q
Ox was continuously formed into a film, but in order to prevent mutual diffusion between the two, there was a layer of A u y A g y with a thickness of 1 μm or less between the two.
A superconducting element similar to this example can also be obtained by forming a thin film made of at least one member selected from the metal group consisting of P d + P t or a composite thereof. The above metals, especially A
u gives the degree of spread of the Cooper pair. The coherence length of superconductivity is estimated to be approximately 1 μm, which is extremely long and comparable to the film thickness, making it effective as a diffusion prevention layer. Furthermore, the second aspect of the present invention. Third. A three-terminal superconducting element having the structure shown in FIG. 8 was manufactured using each material of the fourth example, and a high amplification factor was also obtained with this element.

【発明の効果】【Effect of the invention】

以上説明したように1本発明によれば、金属反強磁性材
料にこれと異なる金属を合金化せ使め超電導化した材料
の薄膜と、これと異なる材料の薄膜とを@層化させるこ
とにより、高い超電導臨界温度Tcを有する酸化物超電
導体に類似の構造が得られるので、これにより高い超電
導臨界温度Tcが実現可能となる。また、一対の超電導
電極と両者間に存するジョセフソントンネル障壁膜から
なるジョセフソン素子において、ジョセフソントンネル
障壁膜を磁気電気材料から構成し、さらにこの磁気電気
材料に電場を生じ使めるゲート電極を設ける。これによ
りゲート電圧により生じた磁気モーメントが直接、ジョ
セフソン電流に作用するので、ジョセフソントンネル障
壁膜と磁気電気材料を個別に構成した三端子型の超電導
素子よりも増幅率の高い超電導素子が実現可能となる。
As explained above, according to the present invention, a metal antiferromagnetic material is alloyed with a different metal, and a thin film of a superconducting material and a thin film of a different material are layered. , a structure similar to an oxide superconductor having a high superconducting critical temperature Tc can be obtained, thereby making it possible to realize a high superconducting critical temperature Tc. In addition, in a Josephson device consisting of a pair of superconducting electrodes and a Josephson tunnel barrier film between them, the Josephson tunnel barrier film is made of a magnetoelectric material, and a gate electrode that can be used to generate an electric field in the magnetoelectric material is also used. will be established. As a result, the magnetic moment generated by the gate voltage directly acts on the Josephson current, resulting in a superconducting element with a higher amplification factor than a three-terminal superconducting element in which the Josephson tunnel barrier film and magnetoelectric material are configured separately. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の超電導材料積層構造体
の断面図、第2図は従来の磁気電気材料を用いた三端子
型の超電導素子の断面図、第3図は酸化物超電導材料Y
Ba2Cu、Oxの相図、第4図はCrRe合金の相図
、第5図(a)、(b)は本発明の第2の実施例の超電
導素子の断面図、第6図(a)、jI7図(a)はそれ
ぞれ本発明の第3゜第4の実施例の超電導素子の断面図
、第5図(C)、第6図(b)、第7図(b)はそれぞ
れ本発明の第2.第3.第4の実施例の素子の電流−電
圧特性図、第8図は本発明の変形例の素子の断面図であ
る。 符号の説明 10.・基板、2・・・CrRe合金、3・・・Si、
4・・・下部超電導電極、5・・・ジョセフソントンネ
ルl壁膜、6・・・上部超電導電極、7・・・ジョセフ
ソン接合、8・・・ゲート電極。 多/田 茶3 r”il ′r′Ba−x、こtLJ OHx 療41ヨ r′、−ト奄棒 1K)
FIG. 1 is a cross-sectional view of a superconducting material laminated structure according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view of a three-terminal superconducting element using a conventional magnetoelectric material, and FIG. Superconducting material Y
Figure 4 is the phase diagram of Ba2Cu and Ox, Figure 4 is the phase diagram of CrRe alloy, Figures 5 (a) and (b) are cross-sectional views of the superconducting element of the second embodiment of the present invention, Figure 6 (a), jI7 (a) is a cross-sectional view of a superconducting element according to the third and fourth embodiments of the present invention, and FIG. 5 (C), FIG. 6 (b), and FIG. Second. Third. A current-voltage characteristic diagram of the device of the fourth embodiment, and FIG. 8 is a sectional view of the device of a modification of the present invention. Explanation of symbols 10.・Substrate, 2...CrRe alloy, 3...Si,
4... Lower superconducting electrode, 5... Josephson tunnel l wall film, 6... Upper superconducting electrode, 7... Josephson junction, 8... Gate electrode. Ta/Tacha 3 r”il 'r'Ba-x, KotLJ OHx Treatment 41 Yor', -Toba 1K)

Claims (1)

【特許請求の範囲】 1、金属超電導材料と、該金属超電導材料と異なる材料
との積層構造を少なくとも含んで構成されたる超電導素
子であって、該金属超電導材料が反強磁性材料と、該反
強磁性材料と異なる金属との合金からなることを特徴と
する超電導素子。 2、請求項1に記載の超電導素子において、上記反強磁
性材料が、Cr、Cr−Mo合金、Mn_2_y−Fe
からなる群から選ばれた少なくとも一者であることを特
徴とする超電導素子。 3、請求項1に記載の超電導素子において、上記反強磁
性材料がCr、上記反強磁性材料と異なる金属がReで
あることを特徴とする超電導素子。 4、請求項1に記載の超電導素子において、上記金属超
電導材料と異なる材料がSiO_x、AnO_x、Mg
O_x、Si、Ge、 Al_1_−_xGa_xAs、InSb、InAs、
Au、Ag、Cuからなる群から選ばれた少なくとも一
者であることを特徴とする超電導素子。 5、一対の超電導電極と、該超電導電極間に存するジョ
セフソントンネル障壁膜と、該ジョセフソントンネル障
壁膜に電場を生じ使める手段とを、少なくとも含んで構
成されたる超電導素子であって、該ジョセフソントンネ
ル障壁膜が磁気電気材料からなることを特徴とする超電
導素子。 6、請求項5に記載の超電導素子において、上記一対の
超電導電極のうち少なくとも一者がCrを含む金属から
なり、かつ上記ジョセフソントンネル障壁膜が少なくと
もCr酸化物を含むことを特徴とする超電導素子。 7、請求項5に記載の超電導素子において、上記一対の
超電導電極のうち少なくとも一者がNbからなり、かつ
上記ジョセフソントンネル障壁膜が少なくともAlを含
む酸化物からなることを特徴とする超電導素子。 8、請求項7に記載の超電導素子において、上記少なく
ともAlを含む酸化物が、TbAlO_x、GdAlO
_x、DyAlO_xからなる群から選ばれた少なくと
も一者であることを特徴とする超電導素子。 9、請求項5に記載の超電導素子において、上記一対の
超電導電極のうち少なくとも一者が酸化物超電導材料か
らなり、かつ上記ジョセフソントンネル障壁膜が少なく
ともペロブスカイト型結晶構造の酸化物であることを特
徴とする超電導素子。 10、請求項9に記載の超電導素子において、上記酸化
物超電導体が(La_1_−_xM_x)_2CuO_
4_−_δ(0≦x≦1、δ≧0、M=Ca、Sr、B
a)またはLnBa_2Cu_3O_7_−_δ(δ≧
0、Ln=Y、La、Nd、Sm、Eu、Gd、Dy、
Ho、Er、Tm、Yb、Lu)またはBi−Sr−(
Ca_1_−_yY_y)−Cu−O(y≧0)または
Tl−Ba−Ca−Cu−Oまたは Ln′_2_−_xCe_xCuO_4_−_δ(0≦
x≦2、δ≧0、Ln′:Pr、Nd、Sm)または少
なくともCuを含む酸化物超電導体であり、または上記
ペロブスカイト型結晶構造の酸化物が TbAlO_xまたはGdAlO_xまたはDyAlO
_xであることを特徴とする超電導素子。 11、請求項6に記載の超電導素子の製造方法であって
、上記Crを含む金属を形成する工程、該Crを酸化す
ることにより上記Cr酸化物を形成する工程、を少なく
とも含むことを特徴とする超電導素子の製造方法。 12、請求項7または8に記載の酸化物超電導素子の製
造方法であって、上記Nbを形成する工程、Alと該A
l以外の複合金属を形成する工程、該複合金属を酸化す
ることにより上記少なくともAlを含む酸化物を形成す
る工程、を少なくとも含むことを特徴とする超電導素子
の製造方法。 13、金属超電導材料と、該金属超電導材料と異なる材
料とからなる超電導材料積層構造体であって、該金属超
電導材料が反強磁性材料と、該反強磁性材料と異なる金
属との合金からなることを特徴とする超電導材料積層構
造体。
[Scope of Claims] 1. A superconducting element comprising at least a laminated structure of a metal superconducting material and a material different from the metal superconducting material, the metal superconducting material comprising an antiferromagnetic material and the antiferromagnetic material. A superconducting element characterized by being made of an alloy of a ferromagnetic material and a different metal. 2. The superconducting element according to claim 1, wherein the antiferromagnetic material is Cr, Cr-Mo alloy, Mn_2_y-Fe
A superconducting element characterized by being at least one member selected from the group consisting of: 3. The superconducting element according to claim 1, wherein the antiferromagnetic material is Cr, and the metal different from the antiferromagnetic material is Re. 4. In the superconducting element according to claim 1, the material different from the metal superconducting material is SiO_x, AnO_x, Mg
O_x, Si, Ge, Al_1_-_xGa_xAs, InSb, InAs,
A superconducting element characterized by being at least one member selected from the group consisting of Au, Ag, and Cu. 5. A superconducting element comprising at least a pair of superconducting electrodes, a Josephson tunnel barrier film existing between the superconducting electrodes, and means for generating and using an electric field in the Josephson tunnel barrier film, A superconducting device characterized in that the Josephson tunnel barrier film is made of a magnetoelectric material. 6. The superconducting element according to claim 5, wherein at least one of the pair of superconducting electrodes is made of a metal containing Cr, and the Josephson tunnel barrier film contains at least Cr oxide. element. 7. The superconducting element according to claim 5, wherein at least one of the pair of superconducting electrodes is made of Nb, and the Josephson tunnel barrier film is made of an oxide containing at least Al. . 8. The superconducting element according to claim 7, wherein the oxide containing at least Al is TbAlO_x, GdAlO
A superconducting element characterized by being at least one member selected from the group consisting of __x and DyAlO_x. 9. The superconducting element according to claim 5, wherein at least one of the pair of superconducting electrodes is made of an oxide superconducting material, and the Josephson tunnel barrier film is at least an oxide having a perovskite crystal structure. Features of superconducting elements. 10. The superconducting element according to claim 9, wherein the oxide superconductor is (La_1_-_xM_x)_2CuO_
4_−_δ(0≦x≦1, δ≧0, M=Ca, Sr, B
a) or LnBa_2Cu_3O_7_-_δ(δ≧
0, Ln=Y, La, Nd, Sm, Eu, Gd, Dy,
Ho, Er, Tm, Yb, Lu) or Bi-Sr-(
Ca_1_-_yY_y)-Cu-O(y≧0) or Tl-Ba-Ca-Cu-O or Ln'_2_-_xCe_xCuO_4_-_δ(0≦
x≦2, δ≧0;
A superconducting element characterized by being _x. 11. The method for manufacturing a superconducting element according to claim 6, comprising at least the steps of forming the metal containing Cr, and forming the Cr oxide by oxidizing the Cr. A method for manufacturing a superconducting element. 12. The method for manufacturing an oxide superconducting element according to claim 7 or 8, comprising the step of forming the Nb, Al and the A
A method for manufacturing a superconducting element, comprising at least the steps of forming a composite metal other than Al, and forming an oxide containing at least Al by oxidizing the composite metal. 13. A superconducting material laminated structure comprising a metal superconducting material and a material different from the metal superconducting material, the metal superconducting material comprising an alloy of an antiferromagnetic material and a metal different from the antiferromagnetic material. A superconducting material laminated structure characterized by:
JP1211312A 1989-08-18 1989-08-18 Superconducting element and manufacture thereof Pending JPH0376173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1211312A JPH0376173A (en) 1989-08-18 1989-08-18 Superconducting element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1211312A JPH0376173A (en) 1989-08-18 1989-08-18 Superconducting element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0376173A true JPH0376173A (en) 1991-04-02

Family

ID=16603856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1211312A Pending JPH0376173A (en) 1989-08-18 1989-08-18 Superconducting element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0376173A (en)

Similar Documents

Publication Publication Date Title
US5274249A (en) Superconducting field effect devices with thin channel layer
EP0390704B1 (en) Tunnel junction type Josephson device and method for fabricating the same
JPH02177381A (en) Tunnel junction element of superconductor
JPH10507590A (en) Multilayer composite and method of manufacture
JPH03218686A (en) Josephson element
EP0482198B1 (en) Superconducting tunnel junction element comprising a magnetic oxide material and its use
JPH0376173A (en) Superconducting element and manufacture thereof
JP4230179B2 (en) Oxide multilayer film including perovskite oxide film
JPH0221676A (en) Tunnel junction between superconductors
JP2931779B2 (en) Superconducting element
JPH0278282A (en) Josephson element
JPH02391A (en) Superconductive field-effect transistor
JP5054463B2 (en) Josephson junction element, formation method thereof, and superconducting junction circuit
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JP3186035B2 (en) Laminated thin film for field effect element and field effect transistor using the laminated thin film
JPH03105807A (en) Laminate membrane of oxide superconductor and oxide magnetic substance
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JPH03242320A (en) Oxide superconductor thin film
JPH01183175A (en) Superconducting 3-terminal element
JPH10178220A (en) Tunnel-type superconducting junction element
JPH02186681A (en) Superconductive junction device
JPH03118148A (en) Laminated body of oriented superconductive substance and metal
JPH01170074A (en) Semicondcutor substrate provided with superconductor layer
JPH01170078A (en) Semiconductor substrate provided with superconductor layer