JPH02186681A - Superconductive junction device - Google Patents
Superconductive junction deviceInfo
- Publication number
- JPH02186681A JPH02186681A JP1004869A JP486989A JPH02186681A JP H02186681 A JPH02186681 A JP H02186681A JP 1004869 A JP1004869 A JP 1004869A JP 486989 A JP486989 A JP 486989A JP H02186681 A JPH02186681 A JP H02186681A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- oxide
- junction
- barrier layer
- tunnel barrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004888 barrier function Effects 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000001301 oxygen Substances 0.000 claims abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 11
- 239000013078 crystal Substances 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 5
- 229910014454 Ca-Cu Inorganic materials 0.000 claims description 4
- 229910000510 noble metal Inorganic materials 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000012212 insulator Substances 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 239000010409 thin film Substances 0.000 abstract description 35
- 239000010408 film Substances 0.000 abstract description 20
- 238000000034 method Methods 0.000 abstract description 18
- 239000000758 substrate Substances 0.000 abstract description 11
- 238000004544 sputter deposition Methods 0.000 abstract description 9
- 229910052788 barium Inorganic materials 0.000 abstract description 8
- 229910052727 yttrium Inorganic materials 0.000 abstract description 8
- 229910052802 copper Inorganic materials 0.000 abstract description 7
- 239000007772 electrode material Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 230000005668 Josephson effect Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は高速、低消費電力でスイッチング動作を行う超
電導スイッチング装置等超電導エレクトロニクスの分野
に係り、とくに液体窒素温度で動作可能な超電導接合装
置に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to the field of superconducting electronics such as superconducting switching devices that perform switching operations at high speed and with low power consumption, and particularly relates to superconducting bonding devices that can operate at liquid nitrogen temperatures. It is something.
Y−Ba−Cu酸化物あるいはBi−Sr−Ca−Cu
酸化物等の酸化物系超電導材料は、臨界温度が90に以
上であり、液体窒素温度において完全な超電導性を示す
ものである。これらY−B a −Cu酸化物等の超電
導材料をエレクトロニクスの分野に応用するためには基
本的な超電導素子であるジョセフソン接合、すなわち超
電導接合装置を得る必要がある。Y-Ba-Cu oxide or Bi-Sr-Ca-Cu
Oxide-based superconducting materials such as oxides have a critical temperature of 90 or higher and exhibit complete superconductivity at liquid nitrogen temperatures. In order to apply these superconducting materials such as Y-Ba-Cu oxide to the field of electronics, it is necessary to obtain a Josephson junction, which is a basic superconducting element, that is, a superconducting junction device.
Y−Ba−Cu酸化物あるいはBi−SrCa−Cu酸
化物を用いた超電導接合装置としては、これら酸化物の
多結晶体から成る一枚の超電導薄膜を用い、この一部分
に薄幅の狭いくびれを形成する。多結晶超電導薄膜の結
晶粒界部は電流を通したときに超電導弱結合すなわちジ
ョセフソン接合としての特性を示す。このようないわゆ
る粒界ジョセフソン接合の構造と特性に関してはアプラ
イド フィジックス レターズ、51巻。A superconducting bonding device using Y-Ba-Cu oxide or Bi-SrCa-Cu oxide uses a single superconducting thin film made of polycrystals of these oxides, and a thin narrow constriction is formed in a part of the superconducting thin film. Form. The grain boundaries of polycrystalline superconducting thin films exhibit characteristics of superconducting weak bonds, ie Josephson junctions, when current is passed through them. Regarding the structure and properties of so-called grain boundary Josephson junctions, see Applied Physics Letters, Volume 51.
20号(1987年)第200頁から第202頁(Ap
pljed Physics Letters、 Vo
l、 51 。20 (1987), pp. 200-202 (Ap.
pljed Physics Letters, Vo
l, 51.
No、20 (1987)pp、200−202) に
記載されている。No. 20 (1987) pp. 200-202).
しかしながら上記従来技術は以下に述べる問題点を有し
た。すなわち粒界ジョセフソン接合は微小なジョセフソ
ン接合の集合体であり、微小なジョセフソン接合が直列
および並列に接続された状態にある。ジョセフソン接合
の直列接続はとくに全体としての特性を低下させる。要
素となるジョセフソン接合の臨界電流および電圧−電流
特性がすべて等しければ、ジョセフソン接合全体の電圧
−電流特性の形態は同一である。直列につながったジョ
セフソン接合の臨界電流および電圧−電流特性が互に異
なる場合、ジョセフソン接合全体の電圧−電流特性にお
いて零電圧近傍で丸味が見られる。このような丸味を有
する特性は互に異なる電圧−電流特性を加算してみれば
明らかである。However, the above conventional technology had the following problems. That is, a grain boundary Josephson junction is an aggregate of minute Josephson junctions, and the minute Josephson junctions are connected in series and in parallel. Series connection of Josephson junctions particularly degrades the overall performance. If the critical current and voltage-current characteristics of the Josephson junctions are all the same, the form of the voltage-current characteristics of the entire Josephson junction is the same. When the critical current and voltage-current characteristics of Josephson junctions connected in series are different from each other, the voltage-current characteristics of the entire Josephson junction exhibit roundness near zero voltage. Such a rounded characteristic becomes clear when different voltage-current characteristics are added together.
電圧−電流特性における丸味の存在はスイッチング素子
を構成したときの利得の低下、あるいは超電導量子干渉
デバイスを構成したときの感度の低下につながる。要素
となるジョセフソン接合を人工的に形成することのでき
ない粒界ジョセフソン接合において、要素となるジョセ
フソン接合特性の不一致による接合全体特性の丸味の存
在は避は難いところである。The presence of roundness in voltage-current characteristics leads to a decrease in gain when a switching element is constructed or a decrease in sensitivity when a superconducting quantum interference device is constructed. In grain boundary Josephson junctions in which the elemental Josephson junctions cannot be artificially formed, it is inevitable that the overall joint characteristics will be rounded due to the mismatch in the elemental Josephson junction characteristics.
そこで本発明の目的は、粒界ジョセフソン接合一
に特有の丸味を持った特性を示さず、単一ジョセフソン
接合としての特性を有する超電導接合装置を提供するこ
とにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a superconducting bonding device that does not exhibit the rounded characteristics characteristic of grain boundary Josephson junctions, but has the characteristics of a single Josephson junction.
上記目的を達成するために以下の技術的手段を採用した
。The following technical means were adopted to achieve the above objectives.
すなわちY−Ba−Cu酸化物、あるいはBi5r−C
a−Cu酸化物をはじめとする酸素を成分として含む超
電導材料を電極として用いたサンドイッチ形超電導接合
装置を形成することにより、粒界ジョセフソン接合に特
有な直列接続による劣化した特性を有さす、単一接合と
してのジョセフソン接合特性を得る。2枚の超電導電極
によって挟まれたトンネル障壁層としては、その構成元
素を超電導電極材を構成する元素の中から選び、この組
成を超電導電極材とは異ならしめることにより、半導体
あるいは絶縁体特性を有する膜層を形成する。たとえば
Y−Ba−Cu酸化物は、YあるいはBaを欠くことに
よって絶縁体特性となる。That is, Y-Ba-Cu oxide or Bi5r-C
By forming a sandwich-type superconducting bonding device using a superconducting material containing oxygen as a component such as a-Cu oxide as an electrode, it is possible to eliminate the deteriorated characteristics due to series connection peculiar to grain boundary Josephson junctions. Obtain Josephson junction properties as a single junction. For the tunnel barrier layer sandwiched between two superconducting electrodes, its constituent elements are selected from among the elements constituting the superconducting electrode material, and by making this composition different from that of the superconducting electrode material, semiconductor or insulator properties can be improved. Form a membrane layer with For example, Y--Ba--Cu oxide exhibits insulating properties due to the lack of Y or Ba.
別のトンネル障壁層構造材として、超電導電極材を構成
する元素の中から選ばれた元素の組合せによって半導体
およびM縁体を形成するとともに、その結晶構造を超電
導電極材とは異ならしめることにより得る。たとえばY
−Ba−Cu酸化物を超電導電極とするジョセフソン接
合において、非晶質Y−Ba−Cu酸化物あるいはBa
とYの原子位置が不規則なY−Ba−Cu酸化物結晶を
トンネル障壁層として用いる。Another tunnel barrier layer structure material is obtained by forming a semiconductor and an M-edge body by a combination of elements selected from among the elements constituting the superconducting electrode material, and making the crystal structure different from that of the superconducting electrode material. . For example, Y
- In a Josephson junction using Ba-Cu oxide as a superconducting electrode, amorphous Y-Ba-Cu oxide or Ba
A Y--Ba--Cu oxide crystal in which the atomic positions of Y and Y are irregular is used as the tunnel barrier layer.
さらに以上のごとき方法によって得られる酸化物1ヘン
ネル障壁層と超電導電極材の両界面にA u 。Furthermore, A u is added to both interfaces between the oxide 1-Hennel barrier layer obtained by the above method and the superconducting electrode material.
ptあるいはAg等の貴金属を挿入することにより超電
導接合装置を得る。A superconducting bonding device is obtained by inserting a noble metal such as PT or Ag.
上に述べた超電導接合装置における超電導電極材料とト
ンネル障壁層材料との組合せの例示およびそれらの製法
の例示は以下の通りである。Examples of combinations of superconducting electrode materials and tunnel barrier layer materials in the above-mentioned superconducting bonding device and examples of their manufacturing methods are as follows.
まずYとBaとCuの組成比が化学量論組成、すなわち
1:2:3であるY−Ba−Cu酸化物薄膜を上下電極
とする場合、Y−Ba−Cu酸化物薄膜はスパッタリン
グ等の製膜手段を用いて、60o℃以上の高基板温度に
て形成することにより、膜形成後の熱処理を施すことな
しに超電導特性を得ることができる。さらに300℃以
下の基板温度で同一組成のY−Ba−Cu酸化物の極薄
層すなわち膜厚1〜10nmの非晶質薄膜をスパッタリ
ング等の方法により形成し、トンネル障壁層とする。Y
−Ba−Cu酸化物薄膜は基板温度600℃〜700℃
にて堆積させることにより超電導結晶を得ることができ
るが、非晶質状態のY−B a −Cu酸化物薄膜は7
50℃以下の熱処理によって結晶化させることはできな
い。したがってY−Ba−Cu酸化物薄膜を積重ねるこ
とによってもトンネル障壁層部分が結晶化することはな
い。First, when using Y-Ba-Cu oxide thin films with a stoichiometric composition ratio of Y, Ba, and Cu, that is, 1:2:3, as the upper and lower electrodes, the Y-Ba-Cu oxide thin films are formed by sputtering, etc. By forming the film at a high substrate temperature of 60° C. or higher using a film forming method, superconducting properties can be obtained without performing heat treatment after film formation. Furthermore, an extremely thin layer of Y--Ba--Cu oxide having the same composition, that is, an amorphous thin film with a thickness of 1 to 10 nm, is formed by a method such as sputtering at a substrate temperature of 300 DEG C. or less to form a tunnel barrier layer. Y
-Ba-Cu oxide thin film has a substrate temperature of 600°C to 700°C
A superconducting crystal can be obtained by depositing a thin film of Y-B a -Cu oxide in an amorphous state.
It cannot be crystallized by heat treatment below 50°C. Therefore, even by stacking Y--Ba--Cu oxide thin films, the tunnel barrier layer portion does not crystallize.
YとBaとCuの組成比が化学量論組成のY−B a
−Cu酸化物薄膜を上下電極とし、組成の異なるY−B
a−Cu酸化物極薄膜をトンネル障壁層とする超電導接
合装置の場合においては以下の通りである。すなわち、
Y−Ba−Cu酸化物の上下電極の製膜方法は上に述べ
た方法と同一である。Y−Ba−Cu酸化物トンネル障
壁層に関しては、たとえばY:Ba:Cuの組成比が2
=1=1でかつ膜厚が1〜10nmの範囲のY−Ba−
Cu極薄膜を用いる。トンネル障壁層の膜形成温度は室
温であっても、電極材形成温度と同一であっても問題は
ない。Y-B a where the composition ratio of Y, Ba and Cu is stoichiometric
-Cu oxide thin films are used as upper and lower electrodes, and Y-B with different compositions
In the case of a superconducting junction device using an ultra-thin a-Cu oxide film as a tunnel barrier layer, the process is as follows. That is,
The method for forming the upper and lower electrodes of Y--Ba--Cu oxide is the same as the method described above. Regarding the Y-Ba-Cu oxide tunnel barrier layer, for example, the composition ratio of Y:Ba:Cu is 2.
Y-Ba- where =1=1 and the film thickness is in the range of 1 to 10 nm
An ultra-thin Cu film is used. There is no problem whether the tunnel barrier layer is formed at room temperature or the same temperature as the electrode material formation temperature.
トンネル障壁層をAu、Y−Ba−Cu酸化物およびA
uのサンドイッチ形状にする場合、Y−B a −Cu
酸化物電極材の形成方法は前記方法と同一とする。トン
ネル障壁層に関しては両側Au膜の膜厚を1〜30nm
の範囲とし、Y−Ba−Cu酸化物の膜厚を1〜10n
mの範囲とする。The tunnel barrier layer is made of Au, Y-Ba-Cu oxide and A
When making a sandwich shape of u, Y-B a -Cu
The method for forming the oxide electrode material is the same as the method described above. Regarding the tunnel barrier layer, the thickness of the Au film on both sides is 1 to 30 nm.
The film thickness of Y-Ba-Cu oxide is 1 to 10 nm.
The range is m.
Au膜の形成温度は室温とし、Y−Ba−Cu酸化物薄
膜の形成温度および組成は任意とする。The formation temperature of the Au film is room temperature, and the formation temperature and composition of the Y-Ba-Cu oxide thin film are arbitrary.
超電導電極材をBi−Sr−Ca−Cu酸化物とした場
合も同様の超電導接合装置構造および製造方法とする。Even when Bi-Sr-Ca-Cu oxide is used as the superconducting electrode material, the same superconducting bonding device structure and manufacturing method are used.
トンネル障壁層材としてAuに代えてAgあるいはpt
等を用いる場合も同様である。Ag or pt instead of Au as tunnel barrier layer material
The same applies when using .
本発明にかかる超電導接合装置は以下の点で超電導トン
ネル特性を得るのに必要な性能を有している。The superconducting junction device according to the present invention has the performance necessary to obtain superconducting tunneling characteristics in the following points.
一般にY−Ba−Cu酸化物をはじめとする酸化物系超
電導材料はコヒーレンス長さが短く、超電導特性がとぎ
れやすい。たとえばY−Ba−Cu酸化物のコヒーレン
ス長さは1.4nmであり、この値は斜方晶ペロブスカ
イト型結晶のC軸方向の格子定数とほぼ等しい。さらに
Y−Ba−Cu酸化物に異種材料を接続した場合、コン
タクト抵抗が増大しやすい。これはY−Ba−Cu酸化
物等の酸化物超電導材料に異種物質、たとえば金属や半
導体を接触させた場合、界面におけるY−Ba−Cu酸
化物の酸素原子が拡散し、酸素濃度が減少するとともに
、超電導特性が劣化するか、あるいは界面の超電導性が
消失するからである。In general, oxide-based superconducting materials such as Y--Ba--Cu oxides have a short coherence length, and their superconducting properties tend to be interrupted. For example, the coherence length of Y--Ba--Cu oxide is 1.4 nm, and this value is approximately equal to the lattice constant in the C-axis direction of an orthorhombic perovskite crystal. Furthermore, when a different material is connected to the Y-Ba-Cu oxide, contact resistance tends to increase. This is because when an oxide superconducting material such as Y-Ba-Cu oxide is brought into contact with a different substance, such as a metal or a semiconductor, the oxygen atoms of the Y-Ba-Cu oxide at the interface diffuse and the oxygen concentration decreases. At the same time, the superconducting properties deteriorate or the superconductivity of the interface disappears.
Y−Ba−Cu酸化物中の酸素濃度が斜方晶結晶として
本来あるべき値から減少するに従って、超電導臨界温度
が93Kから低下し、Y原子の濃度に相当する酸素濃度
が失われた時点で超電導性が消失する。とくにY−Ba
−Cu酸化物中の酸素原子は結合が弱く、不安定である
からこのような現象が生じやすい。超電導電極とトンネ
ル障壁層の界面において、超電導状態から半導体あるい
は絶縁状態に不連続に変化することが望ましい。上に述
べたごとき、界面における超電導特性の劣化は、とくに
コヒーレンス長さの短い酸化物超電導材料を用いた場合
、超電導トンネル特性を得難くする。As the oxygen concentration in the Y-Ba-Cu oxide decreases from its original value as an orthorhombic crystal, the superconducting critical temperature decreases from 93K, and at the point when the oxygen concentration corresponding to the concentration of Y atoms is lost. Superconductivity disappears. Especially Y-Ba
This phenomenon tends to occur because the oxygen atoms in the -Cu oxide have weak bonds and are unstable. It is desirable that the interface between the superconducting electrode and the tunnel barrier layer changes discontinuously from a superconducting state to a semiconductor or insulating state. As described above, the deterioration of superconducting properties at the interface makes it difficult to obtain superconducting tunneling properties, especially when an oxide superconducting material with a short coherence length is used.
これに対して本発明にかかる超電導接合装置は、トンネ
ル障壁層に酸化物超電導材料と共通する材料を用いてい
る。したがって超電導電極材とトンネル障壁層の界面に
おいて、超電導電極材の酸素濃度が低下し、超電導特性
劣化層が生じることはない。この理由はトンネル障壁層
材においても酸素原子の拡散による混入が無い程に十分
な酸素濃度、すなわち、Y:Ba:Cuの組成比が1:
2:3に対して7に近い組成比の酸素をあらかじめ保持
させるからである。さらにAu、PtあるいはAg等貴
金属の挿入は酸素原子の相互拡散を防止する。したがっ
て超電導電極材からトンネル障壁層に向けて不連続に超
電導状態から絶縁状態に分布させることができる。In contrast, the superconducting junction device according to the present invention uses a material common to the oxide superconducting material for the tunnel barrier layer. Therefore, the oxygen concentration of the superconducting electrode material decreases at the interface between the superconducting electrode material and the tunnel barrier layer, and a layer with degraded superconducting properties does not occur. The reason for this is that the tunnel barrier layer material has a sufficient oxygen concentration so that there is no mixing due to oxygen atoms diffusion, that is, the composition ratio of Y:Ba:Cu is 1:
This is because oxygen having a composition ratio close to 7 to 2:3 is held in advance. Furthermore, insertion of noble metals such as Au, Pt or Ag prevents interdiffusion of oxygen atoms. Therefore, it is possible to discontinuously distribute the superconducting state to the insulating state from the superconducting electrode material toward the tunnel barrier layer.
以下、本発明の実施例を以下に示す。 Examples of the present invention will be shown below.
[実施例1]
Y−Ba−Cu酸化物から成る第1図に示すごとき超電
導接合装置を以下に示す工程により作製した。基板材に
は結晶方位が(100)のMg○単結晶1を用いた。高
周波マグネトロンスパッタリング装置を用い、Arと酸
素の混合ガス雰囲気中において放電を行うことにより、
厚さ400nmのY−Ba−Cu酸化物薄膜2を形成し
た。[Example 1] A superconducting bonding device as shown in FIG. 1 made of Y--Ba--Cu oxide was manufactured by the steps shown below. Mg◯ single crystal 1 with a (100) crystal orientation was used as the substrate material. By performing discharge in a mixed gas atmosphere of Ar and oxygen using a high frequency magnetron sputtering device,
A Y-Ba-Cu oxide thin film 2 with a thickness of 400 nm was formed.
膜形成時の基板温度は700℃とし、高周波印加電力は
100W、膜堆積速度は3nm/min。The substrate temperature during film formation was 700° C., the high frequency applied power was 100 W, and the film deposition rate was 3 nm/min.
混合ガス圧力は0.6Pa、酸素ガス分圧は50%とし
た。ターゲツト材にはYBa−Cu酸化物の焼結体を用
いた。基板温度700℃で製膜を行い、かつ組成をY、
BaおよびCuの比が1=2:3になるように調製する
ことにより、超電導相のY−Ba−Cu酸化物薄膜2を
得た。The mixed gas pressure was 0.6 Pa, and the oxygen gas partial pressure was 50%. A sintered body of YBa-Cu oxide was used as the target material. The film was formed at a substrate temperature of 700°C, and the composition was Y,
By adjusting the ratio of Ba and Cu to be 1=2:3, a superconducting phase Y--Ba--Cu oxide thin film 2 was obtained.
つぎに同一スパッタリング装置中において、組成が異な
る別のスパッタリングターゲットをターゲット電極移動
操作により基板材直下に設置した。Next, in the same sputtering apparatus, another sputtering target having a different composition was placed directly below the substrate material by moving the target electrode.
上記超電導相酸化物薄膜を得るのと同一の条件により、
トンネル障壁層材4を形成した。トンネル障壁層材の組
成は、Y、BaおよびCuの比が2:1:1になるよう
に調製し、膜厚は3nmとした。Under the same conditions as for obtaining the above superconducting phase oxide thin film,
A tunnel barrier layer material 4 was formed. The composition of the tunnel barrier layer material was adjusted so that the ratio of Y, Ba and Cu was 2:1:1, and the film thickness was 3 nm.
これら下部電極薄膜2およびトンネル障壁層4はMgO
製のマスクを用いることにより、@0.511mの細線
状パタンに形成した。These lower electrode thin film 2 and tunnel barrier layer 4 are made of MgO
A thin line pattern of @0.511 m was formed by using a mask manufactured by Co., Ltd.
さらにY−Ba−Cu酸化物薄膜から成る」二部電極3
を同じく、高周波マグネトロンスパッタリング法により
形成した。薄膜の形成条件は下部電極薄膜2と同一とし
、膜厚は600nmとした。Furthermore, a two-part electrode 3 consisting of a Y-Ba-Cu oxide thin film
was similarly formed by high frequency magnetron sputtering method. The conditions for forming the thin film were the same as those for the lower electrode thin film 2, and the film thickness was 600 nm.
MgO製のマスクを用いることにより、幅0.5mmで
トンネル障壁層4および下部電極薄膜2に対して直交す
る細線状パタンを得た。以上の工程によりY−Ba−C
u酸化物から成る十字状超電導接合装置を得た。By using a mask made of MgO, a thin line pattern with a width of 0.5 mm and perpendicular to the tunnel barrier layer 4 and the lower electrode thin film 2 was obtained. Through the above steps, Y-Ba-C
A cross-shaped superconducting bonding device made of U oxide was obtained.
Y−Ba−Cu酸化物の上、下部電極薄膜2゜3の臨界
温度は70に以上であり、斜方晶のペロブスカイト型結
晶構造を有した。超電導接合装置は第4図に示すごとく
、20Kにおいてジョセフソン電流を有するとともに超
電導接合に特有のヒステリシスを有する。The critical temperature of the upper and lower electrode thin films 2.3 of Y--Ba--Cu oxide was above 70°C, and had an orthorhombic perovskite crystal structure. As shown in FIG. 4, the superconducting junction device has a Josephson current at 20K and has hysteresis peculiar to superconducting junctions.
[実施例2]
Y−Ba−Cu酸化物から成る第2図に示すごとき超電
導接合装置を以下に示す工程により作製した。Y−Ba
−Cu酸化物下部電極2の形成条件は実施例1と同一の
方法および条件により形成した。トンネル障壁層5の形
成条件は以下の条件により行った。すなわち、下部電極
薄膜を形成するのに用いたのと同一のターゲットを用い
、基板温度を300 ’C以下に保った状態で、スパッ
タリング法により膜厚3nmのY−Ba−Cu酸化物薄
膜5を得た。Y、BaおよびCuの組成比は1:2:3
となるように調整した。Y−Ba−Cu酸化物薄膜3か
ら成る上部電極の形成方法および形成条件は実施例1と
同一とした。[Example 2] A superconducting bonding device as shown in FIG. 2 made of Y-Ba-Cu oxide was manufactured by the steps shown below. Y-Ba
The -Cu oxide lower electrode 2 was formed using the same method and conditions as in Example 1. The tunnel barrier layer 5 was formed under the following conditions. That is, using the same target used to form the lower electrode thin film and keeping the substrate temperature below 300'C, a Y-Ba-Cu oxide thin film 5 with a thickness of 3 nm was formed by sputtering. Obtained. The composition ratio of Y, Ba and Cu is 1:2:3
It was adjusted so that The method and conditions for forming the upper electrode made of the Y--Ba--Cu oxide thin film 3 were the same as in Example 1.
上記条件で形成したY−Ba−Cu酸化物薄膜の構造は
別に形成した厚膜によって調べた結果によれば非晶質で
あった。上記のごとく形成せる超電導接合装置の特性は
実施例1の場合と同じく、ジョセフソン電流を有すると
ともに超電導接合に特有のヒステリシスを有する。The structure of the Y--Ba--Cu oxide thin film formed under the above conditions was found to be amorphous according to the results of examination using a separately formed thick film. The characteristics of the superconducting junction device formed as described above include a Josephson current and hysteresis peculiar to superconducting junctions, as in the first embodiment.
[実施例3]
Y−Ba−Cu酸化物から成る第3図に示すごとき超電
導接合装置を以下に示す工程により作製した。YBa−
Cu酸化物下部電極2の形成条件は実施例1と同一の方
法および条件により形成した。トンネル障壁層5は以下
の方法により形成した。すなわち、下部電極薄膜2を形
成したのと同一のスパッタリング装置中において、Au
板をターゲラ1〜材として、Au薄膜6のスパッタリン
グによる膜形成を行う。膜厚は3nmとする。つぎに下
部電極薄膜2を形成するのに用いたのと同一のターゲッ
トを用い、基板温度を300℃以下に保った状態で、ス
パッタリング法により膜厚3nmのY −B a −C
u酸化物薄膜5を得る。Y。[Example 3] A superconducting bonding device as shown in FIG. 3 made of Y-Ba-Cu oxide was manufactured by the steps shown below. YBa-
The Cu oxide lower electrode 2 was formed using the same method and conditions as in Example 1. Tunnel barrier layer 5 was formed by the following method. That is, in the same sputtering apparatus in which the lower electrode thin film 2 was formed, Au
Using the plate as a target material, an Au thin film 6 is formed by sputtering. The film thickness is 3 nm. Next, using the same target used to form the lower electrode thin film 2 and keeping the substrate temperature below 300°C, a Y-B a -C film with a thickness of 3 nm was formed by sputtering.
A u oxide thin film 5 is obtained. Y.
BaおよびCuの組成比は1:2:3となるように調製
した。さらにこの上に上記方法により膜厚3nmのAu
膜6を形成する。Y−Ba−Cu酸化物薄膜から成る上
部電極3の形成方法および形成条件は実施例1と同一と
する。The composition ratio of Ba and Cu was adjusted to be 1:2:3. Further, on top of this, a 3 nm thick Au film was formed by the above method.
A film 6 is formed. The method and conditions for forming the upper electrode 3 made of a Y--Ba--Cu oxide thin film are the same as in Example 1.
上記のごとく形成せる超電導接合装置の特性は実施例1
の場合と同じく、ジョセフソン電流を有するとともに超
電導接合に特有のヒステリシスを有する。さらにヒステ
リシスを有するために、粒界ジョセフソン接合に特有の
零電圧近傍における電圧−電流特性の丸味は存在しない
。The characteristics of the superconducting bonding device formed as described above are shown in Example 1.
As in the case of , it has Josephson current and hysteresis characteristic of superconducting junctions. Furthermore, because of the hysteresis, the roundness of voltage-current characteristics near zero voltage that is characteristic of grain boundary Josephson junctions does not exist.
以上のごとき超電導接合装置の製造方法、構造および特
性はY−Ba−Cu酸化物に限ったものではなく、Bi
−Sr−Ca−Cu酸化物、TQ−B a −Ca −
Cu酸化物等信の酸化物系高臨界温度超電導材料を用い
た場合も同様に適用可能である。The manufacturing method, structure and characteristics of the superconducting bonding device as described above are not limited to Y-Ba-Cu oxide, but
-Sr-Ca-Cu oxide, TQ-B a -Ca -
The present invention can be similarly applied to the case where an oxide-based high critical temperature superconducting material such as Cu oxide is used.
本発明によれば、超電導接合装置において以下の効果を
有する。According to the present invention, the superconducting bonding device has the following effects.
(1)酸化物系超電導材料を用いたサンドインチ形超電
導接合装置の形成を可能にする。すなわち、ジョセフソ
ン効果の4.2に以上における高温度における利用を可
能にする。(1) It enables the formation of a sandwich-type superconducting bonding device using oxide-based superconducting materials. That is, the Josephson effect can be utilized at high temperatures of 4.2 or higher.
(2)ヒステリシス特性を有するために、磁場信号を印
加したときの接合電流の調節幅を従来の粒界ジョセフソ
ン接合と比較して大きくとれる。このことは超電導量子
干渉デバイス磁束計に適用したときの感度向上、スイッ
チング素子に用いたときの利得向上につながる。(2) Since it has hysteresis characteristics, the adjustment width of the junction current when a magnetic field signal is applied can be made larger than that of a conventional grain boundary Josephson junction. This leads to improved sensitivity when applied to superconducting quantum interference device magnetometers and improved gain when used in switching elements.
第1図は本発明の実施例1にかかる超電導接合装置の断
面図、第2図は本発明の実施例2にかかる超電導接合装
置の断面図、第3図は本発明の実施例3にかかる超電導
接合装置の断面図、第4図は実施例1にかかる超電導接
合装置の電圧−電流特性図である。
1−M g O基板、2− Y −B a −Cu酸化
物下部電極薄膜、3・・・Y−Ba−Cu酸化物上部電
極薄膜、4=・Y−Ba−Cu (2: 1 : 1)
酸化物トンネル障壁層、5・・・Y−Ba−Cu非晶質
トンネル障壁層、6・・・Au薄膜。FIG. 1 is a cross-sectional view of a superconducting bonding device according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view of a superconducting bonding device according to a second embodiment of the present invention, and FIG. A sectional view of the superconducting bonding device, and FIG. 4 is a voltage-current characteristic diagram of the superconducting bonding device according to the first embodiment. 1-MgO substrate, 2-Y-Ba-Cu oxide lower electrode thin film, 3...Y-Ba-Cu oxide upper electrode thin film, 4=.Y-Ba-Cu (2: 1: 1 )
Oxide tunnel barrier layer, 5... Y-Ba-Cu amorphous tunnel barrier layer, 6... Au thin film.
Claims (1)
電導電極と、上記2枚の超電導電極によって挟まれたト
ンネル障壁層を有する超電導接合装置において、上記ト
ンネル障壁層が、上記超電導電極を構成する元素によっ
て得られる半導体あるいは絶縁体材料によって形成され
ることを特徴とする超電導接合装置。 2、上記酸素を成分として含む超電導材料が、Y−Ba
−Cu酸化物あるいはBi−Sr−Ca−Cu酸化物で
あることを特徴とする請求項1記載の超電導接合装置。 3、上記トンネル障壁層の材料は、上記超電導電極の材
料とは異なる組成を有することを特徴とする請求項1ま
たは2記載の超電導接合装置。 4、上記トンネル障壁層の材料の結晶構造が上記超電導
電極の材料の結晶構造とは異なることを特徴とする請求
項1または2記載の超電導接合装置。 5、上記トンネル障壁層と上記超電導電極の界面に貴金
属が挟まれて成ることを特徴とする請求項1ないし4の
一に記載の超電導接合装置。 6、上記貴金属として、Au、PtあるいはAgを用い
ることを特徴とする請求項5記載の超電導接合装置。[Claims] 1. In a superconducting junction device having two superconducting electrodes made of a superconducting material containing oxygen as a component and a tunnel barrier layer sandwiched between the two superconducting electrodes, the tunnel barrier layer comprises: A superconducting bonding device characterized in that it is formed of a semiconductor or insulator material obtained from the elements constituting the superconducting electrode. 2. The superconducting material containing oxygen as a component is Y-Ba
2. The superconducting bonding device according to claim 1, wherein the superconducting bonding device is -Cu oxide or Bi-Sr-Ca-Cu oxide. 3. The superconducting junction device according to claim 1 or 2, wherein the material of the tunnel barrier layer has a composition different from that of the material of the superconducting electrode. 4. The superconducting junction device according to claim 1 or 2, wherein the crystal structure of the material of the tunnel barrier layer is different from the crystal structure of the material of the superconducting electrode. 5. The superconducting junction device according to any one of claims 1 to 4, characterized in that a noble metal is sandwiched between the interface between the tunnel barrier layer and the superconducting electrode. 6. The superconducting bonding device according to claim 5, wherein Au, Pt, or Ag is used as the noble metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1004869A JPH0831623B2 (en) | 1989-01-13 | 1989-01-13 | Superconducting joining device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1004869A JPH0831623B2 (en) | 1989-01-13 | 1989-01-13 | Superconducting joining device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02186681A true JPH02186681A (en) | 1990-07-20 |
JPH0831623B2 JPH0831623B2 (en) | 1996-03-27 |
Family
ID=11595681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1004869A Expired - Lifetime JPH0831623B2 (en) | 1989-01-13 | 1989-01-13 | Superconducting joining device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0831623B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0476967A (en) * | 1990-07-19 | 1992-03-11 | Sumitomo Electric Ind Ltd | Superconducting device and its manufacture |
JPH0513834A (en) * | 1991-07-02 | 1993-01-22 | Sumitomo Electric Ind Ltd | Superconducting device and its manufacture |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63274190A (en) * | 1987-05-06 | 1988-11-11 | Furukawa Electric Co Ltd:The | Superconducting thin film |
JPS63299281A (en) * | 1987-05-29 | 1988-12-06 | Toshiba Corp | Superconducting device |
JPS6446990A (en) * | 1987-08-17 | 1989-02-21 | Matsushita Electric Ind Co Ltd | Josephson element and manufacture thereof |
-
1989
- 1989-01-13 JP JP1004869A patent/JPH0831623B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63274190A (en) * | 1987-05-06 | 1988-11-11 | Furukawa Electric Co Ltd:The | Superconducting thin film |
JPS63299281A (en) * | 1987-05-29 | 1988-12-06 | Toshiba Corp | Superconducting device |
JPS6446990A (en) * | 1987-08-17 | 1989-02-21 | Matsushita Electric Ind Co Ltd | Josephson element and manufacture thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0476967A (en) * | 1990-07-19 | 1992-03-11 | Sumitomo Electric Ind Ltd | Superconducting device and its manufacture |
JPH0513834A (en) * | 1991-07-02 | 1993-01-22 | Sumitomo Electric Ind Ltd | Superconducting device and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPH0831623B2 (en) | 1996-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02177381A (en) | Tunnel junction element of superconductor | |
JPH03228384A (en) | Superconducting element | |
JPH02186681A (en) | Superconductive junction device | |
JP2500302B2 (en) | Superconducting element and superconducting circuit | |
US5565415A (en) | Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material | |
JPH0272685A (en) | Method for forming weakly coupled superconductor part | |
JPS63225599A (en) | Preparation of oxide superconductive thin film | |
JPH0297073A (en) | Tunnel type josephson junction element | |
JP3186035B2 (en) | Laminated thin film for field effect element and field effect transistor using the laminated thin film | |
JPH02194667A (en) | Superconducting transistor and manufacture thereof | |
JP3155641B2 (en) | Superconducting tunnel junction device | |
JP3076503B2 (en) | Superconducting element and method of manufacturing the same | |
JP2868286B2 (en) | Superconducting element and circuit element having the same | |
JP2931779B2 (en) | Superconducting element | |
JP2691065B2 (en) | Superconducting element and fabrication method | |
JP2976427B2 (en) | Method of manufacturing Josephson device | |
JPH04118978A (en) | Superconducting element and manufacture thereof | |
JPH02292877A (en) | Oxide superconducting transistor device | |
JPH01183175A (en) | Superconducting 3-terminal element | |
JPS63318176A (en) | Manufacture of oxide superconductive junction | |
JPH02264486A (en) | Superconductive film weakly coupled element | |
JPH04288885A (en) | Tunnel-type josephson element | |
JPH0194681A (en) | Superconductive coupling device | |
JPH10178220A (en) | Tunnel-type superconducting junction element | |
JPH05335640A (en) | Superconductive element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |