JPH0375281A - Porous electroconductive ceramics sliding material - Google Patents
Porous electroconductive ceramics sliding materialInfo
- Publication number
- JPH0375281A JPH0375281A JP20679289A JP20679289A JPH0375281A JP H0375281 A JPH0375281 A JP H0375281A JP 20679289 A JP20679289 A JP 20679289A JP 20679289 A JP20679289 A JP 20679289A JP H0375281 A JPH0375281 A JP H0375281A
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- porous
- porosity
- ceramic
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 31
- 239000000463 material Substances 0.000 title abstract description 37
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 23
- 150000004767 nitrides Chemical class 0.000 claims abstract description 16
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 3
- 239000000843 powder Substances 0.000 claims description 15
- 239000003921 oil Substances 0.000 claims description 12
- 239000000314 lubricant Substances 0.000 claims description 9
- 150000002484 inorganic compounds Chemical class 0.000 claims description 6
- 229910010272 inorganic material Inorganic materials 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 238000005121 nitriding Methods 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052689 Holmium Inorganic materials 0.000 claims description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 4
- 229910052772 Samarium Inorganic materials 0.000 claims description 4
- 229910052771 Terbium Inorganic materials 0.000 claims description 4
- 229910052776 Thorium Inorganic materials 0.000 claims description 4
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000004519 grease Substances 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 229910052693 Europium Inorganic materials 0.000 claims description 3
- 229910052765 Lutetium Inorganic materials 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 2
- 150000001247 metal acetylides Chemical class 0.000 claims 1
- 229910021332 silicide Inorganic materials 0.000 claims 1
- 238000005260 corrosion Methods 0.000 abstract description 2
- 230000007797 corrosion Effects 0.000 abstract description 2
- 238000005245 sintering Methods 0.000 description 17
- 239000002245 particle Substances 0.000 description 9
- 239000011148 porous material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- -1 polyethylene Polymers 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000005461 lubrication Methods 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 238000001272 pressureless sintering Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000011863 silicon-based powder Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910021612 Silver iodide Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- HUTDDBSSHVOYJR-UHFFFAOYSA-H bis[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphaplumbetan-2-yl)oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O HUTDDBSSHVOYJR-UHFFFAOYSA-H 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000338 selenium disulfide Inorganic materials 0.000 description 1
- JNMWHTHYDQTDQZ-UHFFFAOYSA-N selenium sulfide Chemical compound S=[Se]=S JNMWHTHYDQTDQZ-UHFFFAOYSA-N 0.000 description 1
- 229960005265 selenium sulfide Drugs 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229940045105 silver iodide Drugs 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、摺動部材に係り、特に高い耐摩耗性。[Detailed description of the invention] [Industrial application field] The present invention relates to a sliding member, particularly one having high wear resistance.
導電性が要求される部材に好適な多孔質導電性反応焼結
セラミックスに関する。The present invention relates to porous electrically conductive reactive sintered ceramics suitable for members requiring electrical conductivity.
機械類のほとんどが摩擦機構部を有しているが、その寿
命を左右するのは耐摩耗材料をどのように最適に組合せ
るかが最も大きな要因をしめる。そし、各機器の使用条
件は多様であり、たとえば。Most machinery has a friction mechanism, and the most important factor that determines its lifespan is how to optimally combine wear-resistant materials. And the conditions of use of each device are diverse, for example.
無潤滑状態、潤滑でも高速、高負荷での使用条件は過酷
な動作条件範囲となる。このような各条件にすべて適用
できる耐摩耗材料があれば理想的であるが、一長一短が
ありその上うな材料は出来ていないのが現状である。特
公昭50−28365号公報に記載のように冷凍機コン
プレッサ用耐摩耗焼結材料としては、Mo、Ta、W、
Nbの金属硫化物及び金属炭化物を添加した複合焼結材
が使用されており、この材料は特徴を持った耐摩耗部材
であるが、軸受材料としては相手材を摩耗させる欠点を
有し、不適当である。Operating conditions without lubrication and even with lubrication at high speeds and high loads are harsh operating conditions. It would be ideal if there was a wear-resistant material that could be applied to all of these conditions, but it has both advantages and disadvantages, and at present no such material has been made. As described in Japanese Patent Publication No. 50-28365, wear-resistant sintered materials for refrigerator compressors include Mo, Ta, W,
A composite sintered material containing Nb metal sulfide and metal carbide is used, and although this material is a wear-resistant member with characteristics, it has the drawback of wearing out the mating material and is not suitable as a bearing material. Appropriate.
これを解決するために、セラミックスを利用することが
検討されている。To solve this problem, the use of ceramics is being considered.
一般に、耐摩耗性に優れたSiCや5iaN4などが知
られている。その焼結技術としては、常圧焼結法、加圧
焼結法9反応焼結法がある。この中で常圧焼結法、加圧
焼結法は焼結時の寸法変化率が15〜20%あり、変形
や寸法精度が悪く高度な技術が必要である。この焼結時
の寸法変化率が大きいために焼結後の加工に時間とコス
トがかかり、エンジニアリングセラミックスが普及しず
らい理由の一つとなっている。他方1反応焼結法は他の
材料に比較して焼結時の寸法変化率が小さいことが知ら
れているが、特開昭58−140375号広報に示すよ
うに金属Si粉末の窒化物で構成されているだけで導電
性については開示されていない。In general, SiC, 5iaN4, etc., which have excellent wear resistance, are known. Sintering techniques include normal pressure sintering, pressure sintering, and 9-reaction sintering. Among these, the pressureless sintering method and the pressure sintering method have a dimensional change rate of 15 to 20% during sintering, have poor deformation and dimensional accuracy, and require advanced technology. This large rate of dimensional change during sintering requires time and cost for processing after sintering, which is one of the reasons why engineering ceramics are difficult to become popular. On the other hand, it is known that the one-reaction sintering method has a smaller dimensional change rate during sintering than other materials, but as shown in JP-A-58-140375, nitride of metal Si powder However, the conductivity is not disclosed.
また焼結時の寸法変化が小さいと予測される材料に従来
から耐火物に使用されている5iaN+結合材があるが
、特開昭58−88169号広報に開示されているよう
に導電性については開示されておらず、機械的強度が5
0 M P a程度しかなく構造用材料として使用する
には不適当である。In addition, 5iaN+ binder, which has been conventionally used for refractories, is a material that is predicted to have a small dimensional change during sintering, but as disclosed in JP-A-58-88169, the conductivity is Not disclosed, mechanical strength 5
It has only about 0 MPa and is unsuitable for use as a structural material.
一方、耐熱性のあるヒータ材や導電材として有用な導電
性セラミックスに対する開発要望が強い。On the other hand, there is a strong demand for the development of conductive ceramics that are useful as heat-resistant heater materials and conductive materials.
電気抵抗率の小さいセラミックスが得られれば。If we can obtain ceramics with low electrical resistivity.
現流製品の性能改善やセラミックスの新しい用途開拓が
期待される。従来の導電性セラミックスは、例えば、特
開昭57−41796号に開示されているように、Si
Cや5iaN+に導電性化合物を混合し、ホットプレス
焼結により上記問題を解決している。It is expected to improve the performance of current products and develop new uses for ceramics. Conventional conductive ceramics include, for example, Si
The above problem is solved by mixing C or 5iaN+ with a conductive compound and hot press sintering.
しかし、ホットプレス法は、焼結に膨大なエネルギを必
要とするために製造コストが高いという問題がある。However, the hot press method requires a huge amount of energy for sintering, so there is a problem in that the manufacturing cost is high.
更に特開昭60−60983号に開示されているように
、5isNaに導電性化合物を混合し、ホットプレス法
よりもエネルギ的に有効な常圧焼結法により導電性セラ
ミックスを得ているが、焼結助剤を利用するために焼結
時の寸法変化率が15〜18%あり、変形などの問題が
ある。Furthermore, as disclosed in JP-A No. 60-60983, conductive ceramics are obtained by mixing 5isNa with a conductive compound and performing pressureless sintering, which is more energetically effective than the hot pressing method. Due to the use of a sintering aid, the dimensional change rate during sintering is 15 to 18%, resulting in problems such as deformation.
しかし、これまでに低抵抗のセラミックスを利用した潜
動部材については、検討されていない。However, so far no study has been conducted on a latent member using low-resistance ceramics.
前記したように従来の材料は、シール材料、軸受材料、
ベース材料、シリンダ材料、クランクシャフト材料、ア
クチュエータ材料として適用する際、どうしても相手材
を摩耗させるという問題があった。As mentioned above, conventional materials include seal materials, bearing materials,
When applied as a base material, cylinder material, crankshaft material, or actuator material, there is a problem that the material inevitably wears out the other material.
本発明の目的は、無潤滑及び潤滑中でのシール材料、軸
受材料、ベーン材料、シリンダ材料、クランクシャフト
材料、アクチュエータ材料として優れた導電性を有する
多孔質セラミックス材料を提供することにある。An object of the present invention is to provide a porous ceramic material that has excellent electrical conductivity as a seal material, bearing material, vane material, cylinder material, crankshaft material, and actuator material in the absence of lubrication and in lubrication.
本発明の目的は、気孔率5から30%の多孔質導電性セ
ラミックスにより、シール部材、軸受。The object of the present invention is to provide a sealing member and a bearing using porous conductive ceramics having a porosity of 5 to 30%.
ベーン材料、シリンダ材料、クランクシャフト材料、ア
クチュエータ材料、ガイドレールの耐摩耗性、耐腐蝕性
、導電性、高速運転性に優れた各種装置を提供すること
にある。The purpose of the present invention is to provide vane materials, cylinder materials, crankshaft materials, actuator materials, and various devices with excellent wear resistance, corrosion resistance, electrical conductivity, and high-speed operability for guide rails.
上記目的は、金属粉末は周期表III族からVIII族
に属するもので、特にTi、Zr、V、Nb、Ta。For the above purpose, the metal powder belongs to groups III to VIII of the periodic table, in particular Ti, Zr, V, Nb and Ta.
Cr、Ce、Co、Mn、Hf、W、Mo、Fe。Cr, Ce, Co, Mn, Hf, W, Mo, Fe.
Pr、Nd、Sm、Eu、Gd、Tb、Dy。Pr, Nd, Sm, Eu, Gd, Tb, Dy.
Ho、Yb、Lu、Th、Co、Niの少なくとも一種
以上からなり、たとえば、Tiの窒化物は電気抵抗率が
約10−5Ω備オーダと小さく、低抵抗かつ多孔質の焼
結体が得られ、この気・孔中に油。It is composed of at least one of Ho, Yb, Lu, Th, Co, and Ni, and for example, Ti nitride has a small electrical resistivity of about 10-5Ω order, and a porous sintered body with low resistance can be obtained. , oil in this qi/hole.
固体潤滑剤、グリース、樹脂のうち少なくとも一種以上
を含浸させることにより耐摩耗性に優れた摺動部材が達
成される。A sliding member with excellent wear resistance can be achieved by impregnating it with at least one of solid lubricant, grease, and resin.
本発明において、金属Si粉末から生成する金属窒化物
を50vOQ%以下とする理由は、50voQ%より多
くすると抵抗率が10−3Ω備より大きくなるためであ
る。In the present invention, the reason why the metal nitride produced from the metal Si powder is set to 50 vOQ% or less is that if the amount exceeds 50 voQ%, the resistivity becomes greater than 10 -3 Ω.
また本発明において、金属窒化物で結合する無機化合物
の含有量を70voQ%以下とする方が良い、70vo
f1%より多くなると結合材である金属窒化物の量が少
なくなるため機械的強度が低下するためである。In addition, in the present invention, it is preferable that the content of the inorganic compound bonded with metal nitride is 70voQ% or less, 70voQ% or less.
This is because when it exceeds f1%, the amount of metal nitride as a binder decreases, resulting in a decrease in mechanical strength.
本発明において、無機化合物は、硬度の大きいSiC,
TiN、TiC,ZrN、ZrCの少なくとも一種とす
るのが好ましい。また、無機化合物の平均粒径は0.5
から100μmとするのが好ましい。なぜなら、0
.5μmより小さいと無機化合物が脱落しやすくなるか
らである。また100μmより大きいと粒子の脱落が生
じやすくなり汚染の元になるからである。特に2から2
0μmとすると相手材を支えるのに有効であり、粒子の
脱落防止に最適である。また、無機化合物にウィスカや
長繊維を使用しても良い。ウィスカは、平均アスペクト
比200以下、平均長さ200μm以下のものが好まし
い。また長繊維を配向することにより、電気特性に方向
性を持たせることが可能である。In the present invention, the inorganic compound is SiC with high hardness,
It is preferable to use at least one of TiN, TiC, ZrN, and ZrC. In addition, the average particle size of the inorganic compound is 0.5
It is preferable to set it to 100 micrometers. Because 0
.. This is because if it is smaller than 5 μm, the inorganic compound will easily fall off. Moreover, if the diameter is larger than 100 μm, particles tend to fall off, which may cause contamination. Especially 2 to 2
When it is 0 μm, it is effective in supporting the mating material and is optimal for preventing particles from falling off. Further, whiskers or long fibers may be used as the inorganic compound. The whiskers preferably have an average aspect ratio of 200 or less and an average length of 200 μm or less. Furthermore, by orienting the long fibers, it is possible to impart directionality to the electrical properties.
本発明において、気孔率を30%以下とするのが好まし
い。気孔率が30%を越えると強度が小さくなるからで
ある。またこの気孔は主に開気孔からなる。なぜなら、
金属粉末からなる成形体を窒化性ガス雰囲気下で焼結し
、金属粉末が窒化性ガスと反応して窒化物に変化して焼
結体を得るためには、窒化性ガスが成形体中を通過する
通気孔が必要であるからである。この場合の焼結により
。In the present invention, the porosity is preferably 30% or less. This is because when the porosity exceeds 30%, the strength decreases. The pores mainly consist of open pores. because,
In order to sinter a molded body made of metal powder in a nitriding gas atmosphere and obtain a sintered body by reacting with the nitriding gas and converting it into nitride, the nitriding gas must pass through the molded body. This is because it requires a ventilation hole to pass through. By sintering in this case.
金属粉末の種類によっては金属粉末同志が反応する場合
があるが特性上問題はない。例えば。Depending on the type of metal powder, metal powders may react with each other, but there is no problem in terms of characteristics. for example.
TiA(1,TiAfla 、TiSi、ZrAQなど
が一部生成する場合がある。TiA(1, TiAfla, TiSi, ZrAQ, etc.) may be partially generated.
成形体は、窒素及び/又はアンモニアに必要に応じて水
素、アルゴン、ヘリウムなどを加えた窒化性ガス雰囲気
下で金属粉末の融点以下で長時間加熱した後高温で加熱
するのが好ましい。The compact is preferably heated for a long time at a temperature below the melting point of the metal powder in a nitriding gas atmosphere containing nitrogen and/or ammonia and optionally hydrogen, argon, helium, etc., and then heated at a high temperature.
本発明において、成形用バインダはポリビニルブチラー
ルやポリエチレンなどの有機高分子化合物やシリコンイ
ミド化合物やポリシラン化合物などの有機Si高分子化
合物などを適量添加し、好ましくは8〜15重量部添加
し、成形体の粒子体積充填率を65%以上とするのが好
ましい。In the present invention, the molding binder contains an appropriate amount of an organic polymer compound such as polyvinyl butyral or polyethylene, or an organic Si polymer compound such as a silicon imide compound or a polysilane compound, preferably 8 to 15 parts by weight. It is preferable that the particle volume filling rate is 65% or more.
成形方法は、射出成形、プレス成形、ラバープレス成形
、押出し成形、ドクターブレード法、金型粉末成形など
形状と要求特性に応じて成形方法を選択する。The molding method is selected depending on the shape and required characteristics, such as injection molding, press molding, rubber press molding, extrusion molding, doctor blade method, mold powder molding, etc.
前記金属粉末は、市販のものをそのまま用いることがで
きる、またミルなどにより粉砕した丸みを帯びた粒子や
造粒粉を使用してもよい。As the metal powder, commercially available products can be used as they are, or rounded particles or granulated powder pulverized by a mill or the like may be used.
本発明における多孔質導電性セラミックスは、放電加工
も可能である。The porous conductive ceramic in the present invention can also be subjected to electrical discharge machining.
本発明において、金属粉末から生成する化合物は窒化均
相中心であることが好ましい、なぜなら酸化性ガス中で
焼結すると酸化物相が生威し、電気抵抗率が大きくなる
からである。In the present invention, it is preferable that the compound formed from the metal powder has a nitrided homogeneous phase center, because when sintered in an oxidizing gas, an oxide phase grows and the electrical resistivity increases.
本発明において、電気抵抗率を10−8Ω0以下、特に
10″″4a11以下とすることにより静電防止やヒー
タ付与、電気回路の機能を持たせることが出来る。In the present invention, by setting the electrical resistivity to 10 -8 Ω0 or less, particularly 10''4a11 or less, it is possible to provide antistatic, heater, and electric circuit functions.
ここで粘度400センチポアズ以上の油にグラファイト
、二硫化モリブデン、二硫化タングステン、二硫化チタ
ン、BN、フッ素欄脂、二硫化テ、ルル、二硫化セレン
、水酸化バリウム、塩化鉄。Here, the oil with a viscosity of 400 centipoise or more contains graphite, molybdenum disulfide, tungsten disulfide, titanium disulfide, BN, fluorine resin, tetra disulfide, lulu, selenium disulfide, barium hydroxide, and iron chloride.
ヨウ化銀、タルク、ホウ砂、カオリン、酸化鉛。Silver iodide, talc, borax, kaolin, lead oxide.
バーミュライト、パラフィンワックス、ステアリン酸、
Fe−Mnリン酸鉛などの少なくとも一種以上の固体潤
滑剤が混合されている潤滑剤を使用することもできる。Vermulite, paraffin wax, stearic acid,
It is also possible to use a lubricant mixed with at least one solid lubricant such as Fe-Mn lead phosphate.
なぜなら、油単位であると高温状態で長期間の使用中に
油切れ状態になる可能性があるが、油と固体潤滑剤の混
合物であるとその心配がなく信頼性、耐久性に優れるか
らである。This is because when using an oil unit, there is a possibility of running out of oil during long-term use under high temperature conditions, but a mixture of oil and solid lubricant eliminates this concern and is superior in reliability and durability. be.
本発明において、気孔率5から30%の多孔質導電性セ
ラミックス中に潤滑剤を含浸させて使用すると極めて優
れた耐摩耗性部材が得られる。但し、気孔率が30%を
越えると、摩耗量が急激に多くなることを確認している
。また、逆に気孔率が5%より少ないと摩耗量がやはり
多くなることを確認している。この理由は、適当な気孔
量を有することにより、この気孔が保油効果をもたらし
。In the present invention, when a porous conductive ceramic having a porosity of 5 to 30% is impregnated with a lubricant, an extremely excellent wear-resistant member can be obtained. However, it has been confirmed that when the porosity exceeds 30%, the amount of wear increases rapidly. Moreover, it has been confirmed that, conversely, when the porosity is less than 5%, the amount of wear increases. The reason for this is that by having an appropriate amount of pores, the pores provide an oil retaining effect.
油膜を形成するため潤滑効果によりかじりが発生せず、
耐摩耗性に優れるためである。気孔率が30%より多く
なると、粒子間の機械的強度が低下するために摩耗量が
多くなる。したがって本発明において、気孔率5〜30
%の気孔を持つセラミックスとすることにより、耐摩耗
性かつ導電性に優れた摺動部材が得られる。Since an oil film is formed, galling does not occur due to the lubrication effect,
This is because it has excellent wear resistance. When the porosity exceeds 30%, the amount of wear increases because the mechanical strength between particles decreases. Therefore, in the present invention, the porosity is 5 to 30.
% of pores, a sliding member with excellent wear resistance and conductivity can be obtained.
本発明では、摺動部材に多孔質の反応焼結導電性セラミ
ックスを用いることにより、耐摩耗性を大幅に向上でき
ると共に導電性を付与できる。このため各種機構部品の
、シール、軸受、ベーン。In the present invention, by using porous reactive sintered conductive ceramics for the sliding member, wear resistance can be significantly improved and conductivity can be imparted. For this reason, various mechanical parts such as seals, bearings, and vanes.
シリンダ、クランクシャフト、アクチュエータ。cylinder, crankshaft, actuator.
ガイドレール、歯車に使用でき、機器の品質の向上、高
速運転化が可能である。It can be used for guide rails and gears, allowing for improved equipment quality and faster operation.
実施例1
平均粒径4μmの金属Ti粉末に成形用バインダとして
ポリエチレン系ワックス、゛合成ワックス。Example 1 Polyethylene wax and synthetic wax were used as a molding binder on Ti metal powder with an average particle size of 4 μm.
ステアリン酸などの有機バインダを4重量部添加し加圧
ニーダで160℃、5時間混練した6そして、混練物を
破砕した後、供試原料とした。これらの原料をメカニカ
ルプレスを用いて150℃。4 parts by weight of an organic binder such as stearic acid was added and kneaded in a pressure kneader at 160° C. for 5 hours.6 Then, the kneaded product was crushed and used as a test material. These raw materials were heated to 150°C using a mechanical press.
1000kg/aJの条件でシリンダーの形状をした金
型で成形した。この成形はアルゴン雰囲気中3’C/h
の昇温速度で500℃まで加熱し、成形バインダを除去
した後、窒素雰囲気中600℃から1300℃まで段階
的に長時間かけて加熱し、W1気抵抗率4 X 10−
’Ω備のシリンダーを得た。焼結時寸法変化率は1.5
%であった。同様に軸受を作製した。上記の各部材の気
孔にフッ素オイルを含浸した。It was molded in a cylinder-shaped mold under conditions of 1000 kg/aJ. This molding was performed at 3'C/h in an argon atmosphere.
After heating to 500°C at a temperature increase rate of
'Obtained a cylinder of Bei. Dimensional change rate during sintering is 1.5
%Met. A bearing was manufactured in the same manner. The pores of each of the above members were impregnated with fluorine oil.
そして、実機の1)Pロータリー圧縮機に組み込み、回
転数12000 rpm *吐出圧力30kgf/d、
吸込圧力5 kg f /aJで連続1000時間運転
の実機試験を行った。試験終了後、圧縮機を分解し、各
部材の摩耗量を測定した。比較のために軸受鋼を同様に
試験した。Then, it is installed in the actual 1) P rotary compressor, with a rotation speed of 12,000 rpm *discharge pressure of 30 kgf/d,
An actual machine test was conducted for 1000 hours of continuous operation at a suction pressure of 5 kgf/aJ. After the test was completed, the compressor was disassembled and the amount of wear on each member was measured. Bearing steel was similarly tested for comparison.
その結果を、第1表に示す、これにより、従来材に比較
して本発明品は耐摩耗性に優れていることが確認できた
。The results are shown in Table 1, which confirms that the product of the present invention has superior wear resistance compared to conventional materials.
上記部の代わりに固体潤滑剤、フッ素樹脂、グリースな
どを含浸しても同様な効果が得られることを確認してい
る。It has been confirmed that similar effects can be obtained by impregnating solid lubricants, fluororesin, grease, etc. in place of the above parts.
実施例2
平均粒径7μmの金属Cr粉末80重量部と平均粒径1
6μmのSiC粉末20重量部をメタノールと一緒にボ
ットミルで混合、乾燥した後、ポリエチレン系ワックス
を9重量部添加して、150℃で加圧ニーダを用いて5
時間混練した。そして混合物を粉砕し、150℃、10
0100O/aJ(7)条件でガイドレール形状に成形
した。−成形体のワックス分を除去した後、窒素ガス中
1340’Cまで段階的に長時間かけて加熱処理し、5
iaNa結合SiCセラミックスを得た。この時の成形
体から焼結体への寸法変化率は0.12%と小さく寸法
精度に優れたものが得られた。焼結体の気孔率は18%
、気孔径20μm以下、電気抵抗率3×101Ω0であ
った。Example 2 80 parts by weight of metal Cr powder with an average particle size of 7 μm and an average particle size of 1
After mixing 20 parts by weight of 6 μm SiC powder with methanol in a bot mill and drying it, 9 parts by weight of polyethylene wax was added, and the mixture was mixed at 150°C using a pressure kneader.
Kneaded for hours. Then, the mixture was ground, heated at 150°C for 10
It was molded into a guide rail shape under conditions of 0100O/aJ (7). - After removing the wax content of the molded product, it is heat-treated stepwise to 1340'C in nitrogen gas over a long period of time.
An iaNa bonded SiC ceramic was obtained. At this time, the dimensional change rate from the molded body to the sintered body was as small as 0.12%, and a product with excellent dimensional accuracy was obtained. The porosity of the sintered body is 18%
, the pore diameter was 20 μm or less, and the electrical resistivity was 3×10 1 Ω0.
第1表
摺動面を砥石で研摩し、摺動面の面粗さは十点平均粗さ
で0.1μmとした。そして、オートクレーブにより粘
度400センチポアズのフッ素オイルを含浸した評価は
゛、磁気ディスク装置に組み込み試験をおこなった。ベ
アリングには、5US440Cを用いた。試験条件は、
最大速度1.4m/S、周波数60Hzで磁気ヘッドを
10%回往復運動させた。試験後の摺動面の面粗さは十
点平均粗さで0.1μmであり、摺動前と変化しないこ
とが確認できた。また摺動部と未摺動部の段差は0.0
1μm以下と小さいことが確認できた。The sliding surface of the first surface was ground with a grindstone, and the surface roughness of the sliding surface was set to 0.1 μm as a ten-point average roughness. In order to evaluate the impregnation of fluorine oil with a viscosity of 400 centipoise in an autoclave, a test was conducted by incorporating it into a magnetic disk device. 5US440C was used for the bearing. The test conditions are
The magnetic head was reciprocated 10% of the time at a maximum speed of 1.4 m/s and a frequency of 60 Hz. The surface roughness of the sliding surface after the test was 0.1 μm in ten-point average roughness, and it was confirmed that it did not change from before sliding. Also, the difference in level between the sliding part and the non-sliding part is 0.0.
It was confirmed that the diameter was as small as 1 μm or less.
これより、本発明品は潤滑剤の保持性に優れているため
に耐摩耗性に優れており、アクチュエータに適している
ことが判った。From this, it was found that the product of the present invention has excellent lubricant retention and therefore has excellent wear resistance and is suitable for actuators.
実施例3〜10
実施例2と同様にして、Ilj、形バインダ量を変えて
外径30m、内径20 rm 、厚さ10mmの成形体
を成形、焼結して得られた気孔率の異なる焼結体につい
て、A Q zo sを相手材に松原式摩耗試験機によ
り試験した結果を第2表に示す。Examples 3 to 10 In the same manner as in Example 2, molded bodies with an outer diameter of 30 m, an inner diameter of 20 rm, and a thickness of 10 mm were molded and sintered by changing Ilj and the amount of shape binder. Table 2 shows the results of a test using a Matsubara abrasion tester using A Q zos as a mating material.
摺動条件は、面圧10kgf/ad、すべり速度1m/
secである。気孔中にはフッ素樹脂を含浸している。The sliding conditions were a surface pressure of 10 kgf/ad and a sliding speed of 1 m/m.
sec. The pores are impregnated with fluororesin.
これより、気孔率が30%を超えると摩耗量が急激に増
加し1本発明品が摺動特性に優れていることが判る。From this, it can be seen that when the porosity exceeds 30%, the amount of wear increases rapidly, and the product of the present invention has excellent sliding properties.
実施例11
Ti粉末50wt%とTiN粉末50wt%から製造さ
れるTiN結合TiNセラミックス(熱膨張係数7.2
2 X 10−’℃″″l、気孔率25%。Example 11 TiN bonded TiN ceramics manufactured from 50 wt% Ti powder and 50 wt% TiN powder (thermal expansion coefficient 7.2
2 x 10-'℃''''l, porosity 25%.
密度4.1 g/al、電気抵抗率4 X 10−’Ω
0)により印字ヘッド軸受作製した。そして、従来の工
具鋼軸受や気孔率1%の緻密質5iaN4を用いた場合
との耐摩耗性(印字回数:109回)の比較を行った。Density 4.1 g/al, electrical resistivity 4 x 10-'Ω
A print head bearing was manufactured using 0). The wear resistance (printing number: 109 times) was compared with a conventional tool steel bearing and a case using dense 5iaN4 with a porosity of 1%.
ワイヤーにはタングステンを使用した。Tungsten was used for the wire.
耐摩耗試験をした結果、タングステンワイヤー及び軸受
の印字回数10”回復の摩耗量が1μm以下と極めて耐
摩耗性に優れていることが判った。As a result of a wear resistance test, it was found that the tungsten wire and bearing had extremely excellent wear resistance, with the amount of wear after recovery of 10" printing being less than 1 μm.
それに対して、工具鋼軸受や気孔率1%の緻密質5is
Naは摩耗量が10μm以上と大きいことが判った0本
発明品は、気孔部に含浸された油が潤滑効果をもたらす
ため摩耗が生じず良好であった。In contrast, tool steel bearings and dense 5is bearings with a porosity of 1%
It was found that Na had a large wear amount of 10 μm or more.The product of the present invention was good because no wear occurred because the oil impregnated in the pores provided a lubricating effect.
これにより信頼性を大きく向上させることができた。油
の代わりに固体潤滑剤、フッ素樹脂、グリースを含浸し
ても同様な効果が得られる。This greatly improved reliability. A similar effect can be obtained by impregnating with solid lubricant, fluororesin, or grease instead of oil.
(発明の効果) 本発明の多孔質導電性セラミックスにより軸受。(Effect of the invention) A bearing made of the porous conductive ceramic of the present invention.
ベーン、シリンダ、クランクシャフト、ガイドレールを
構成することにより、従来に無い耐摩耗性。By configuring the vane, cylinder, crankshaft, and guide rail, it has unprecedented wear resistance.
Claims (1)
電性のある金属窒化物が互いに化学的に結合した気孔率
5〜30%の導電性反応焼結セラミックスで構成してな
ることを特徴とする多孔質導電性セラミックス摺動部品
。 2、Ti、Zr、V、Nb、Ta、Cr、Ce、Co、
Mn、Hf、W、Mo、Fe、Al、Si、Pr、Nd
、Sm、Eu、Gd、Tb、Dy、Ho、Yb、Lu、
Th、Co、Niの少なくとも一種以上の金属窒化物が
互いに化学的に結合し、Si窒化物の含有量は50vo
l%以下、気孔率5〜30%の導電性反応焼結セラミッ
クスで構成してなることを特徴とする多孔質導電性セラ
ミックス摺動部品。 3、周期表III族からVIII族に属する導電性の金属窒化
物、特にTi、Zr、V、Nb、Ta、Cr、Ce、C
o、Mn、Hf、W、Mo、Fe、Al、Si、Pr、
Nd、Sm、Eu、Gd、Tb、Dy、Ho、Yb、L
u、Th、Co、Niの少なくとも一種以上の金属粉末
からなる成形体を窒化性ガス雰囲気中で加熱して、主と
して金属粉末から生成した窒化物で互いに化学的に結合
した気孔率5〜30%の焼結体で、該成形体中のSiの
含有量は、焼結体中の窒化物換算で、50vol%以下
である導電性反応焼結セラミックスで構成してなること
を特徴とする多孔質導電性セラミックス摺動部品。 4、Ti、Zr、V、Nb、Ta、Cr、Ce、Co、
Mn、Hf、W、Mo、Fe、Pr、Nd、Sm、Eu
、Gd、Tb、Dy、Ho、Yb、Lu、Th、Co、
Niの少なくとも一種以上の金属窒化物と、炭化物、窒
化物、酸窒化物、酸化物、ケイ化物、ホウ化物のうち少
なくとも一種からなる無機化合物が互いに化学的に結合
した反応焼結体からなる導電性セラミックスで構成して
なることを特徴とする多孔質導電性セラミックス摺動部
品。 5、前記焼結体は電気抵抗率が10^−^3Ωcm以下
であることを特徴とする請求項1〜4のいずれかに記載
の多孔質導電性セラミックス摺動部品。 6、請求項1〜4のいずれかに記載の焼結体は、多孔質
のセラミックス内に固体潤滑剤、油、グリース、樹脂の
少なくとも一つが含浸されていることを特徴とする多孔
質導電性セラミックス摺動部品。 7、請求項1〜6のいずれかに記載の多孔質導電性セラ
ミックス摺動部品で構成してなることを特徴とするシー
ル、軸受、ベーン、シリンダ、クランクシャフト、アク
チュエータ、ガイドレール、歯車。[Claims] 1. Consisting of conductive reactive sintered ceramics with a porosity of 5 to 30%, in which conductive metal nitrides containing metal elements belonging to groups III to VIII of the periodic table are chemically bonded to each other. A porous conductive ceramic sliding part characterized by: 2, Ti, Zr, V, Nb, Ta, Cr, Ce, Co,
Mn, Hf, W, Mo, Fe, Al, Si, Pr, Nd
, Sm, Eu, Gd, Tb, Dy, Ho, Yb, Lu,
At least one metal nitride of Th, Co, and Ni is chemically bonded to each other, and the content of Si nitride is 50 vol.
A porous conductive ceramic sliding component, characterized in that it is made of a conductive reactive sintered ceramic having a porosity of 1% or less and a porosity of 5 to 30%. 3. Conductive metal nitrides belonging to groups III to VIII of the periodic table, especially Ti, Zr, V, Nb, Ta, Cr, Ce, C
o, Mn, Hf, W, Mo, Fe, Al, Si, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, L
A molded body made of metal powder of at least one of u, Th, Co, and Ni is heated in a nitriding gas atmosphere to create a porosity of 5 to 30%, which is chemically bonded to each other by nitrides mainly generated from the metal powder. A porous sintered body comprising a conductive reactive sintered ceramic in which the content of Si in the molded body is 50 vol% or less in terms of nitride in the sintered body. Conductive ceramic sliding parts. 4, Ti, Zr, V, Nb, Ta, Cr, Ce, Co,
Mn, Hf, W, Mo, Fe, Pr, Nd, Sm, Eu
, Gd, Tb, Dy, Ho, Yb, Lu, Th, Co,
A conductive material made of a reaction sintered body in which at least one metal nitride of Ni and an inorganic compound consisting of at least one of carbides, nitrides, oxynitrides, oxides, silicides, and borides are chemically bonded to each other. A porous conductive ceramic sliding part characterized by being made of conductive ceramic. 5. The porous conductive ceramic sliding component according to any one of claims 1 to 4, wherein the sintered body has an electrical resistivity of 10^-^3 Ωcm or less. 6. The sintered body according to any one of claims 1 to 4 is a porous conductive body characterized in that the porous ceramic is impregnated with at least one of a solid lubricant, oil, grease, and resin. Ceramic sliding parts. 7. A seal, a bearing, a vane, a cylinder, a crankshaft, an actuator, a guide rail, and a gear, each comprising a porous conductive ceramic sliding component according to any one of claims 1 to 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20679289A JPH0375281A (en) | 1989-08-11 | 1989-08-11 | Porous electroconductive ceramics sliding material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20679289A JPH0375281A (en) | 1989-08-11 | 1989-08-11 | Porous electroconductive ceramics sliding material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0375281A true JPH0375281A (en) | 1991-03-29 |
Family
ID=16529174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20679289A Pending JPH0375281A (en) | 1989-08-11 | 1989-08-11 | Porous electroconductive ceramics sliding material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0375281A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7196028B2 (en) | 2004-05-28 | 2007-03-27 | Kyocera Corporation | Sliding device, fluid dynamic pressure bearing, and motor using the same |
CN104086214A (en) * | 2014-06-26 | 2014-10-08 | 胡敏刚 | Preparation method of foamed ceramic heat-preserving material |
-
1989
- 1989-08-11 JP JP20679289A patent/JPH0375281A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7196028B2 (en) | 2004-05-28 | 2007-03-27 | Kyocera Corporation | Sliding device, fluid dynamic pressure bearing, and motor using the same |
CN104086214A (en) * | 2014-06-26 | 2014-10-08 | 胡敏刚 | Preparation method of foamed ceramic heat-preserving material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4925490A (en) | Mechanical seal using pore-dispersed material, and pore-dispersed cemented carbide and method for manufacturing same | |
EP0520520B1 (en) | Ceramic composite and process for production thereof | |
EP1873429B1 (en) | Mechanical seal device, sliding part, and method of producing the sliding part | |
US5538649A (en) | Carbon composite mateiral for tribological applications | |
WO2008060639A2 (en) | Biphasic nanoporous vitreous carbon material and method of making the same | |
EP0404571B1 (en) | Sliding member | |
EP3647390A1 (en) | Sintered friction material and production method for sintered friction material | |
JPH0375281A (en) | Porous electroconductive ceramics sliding material | |
JPS6345694B2 (en) | ||
JPH0550475B2 (en) | ||
JP4002406B2 (en) | Slider and mechanical seal | |
US20030114294A1 (en) | Process for the production of ceramic bearing components and resulting product | |
JPH04293998A (en) | Sliding member | |
JP2004035993A (en) | Metal-impregnated carbon sliding material | |
JP2543093B2 (en) | Sliding parts for seals | |
JP3142892B2 (en) | Manufacturing method of reaction sintered composite ceramics and manufacturing method of sliding member using it | |
JP2005336364A (en) | Self-lubricating composite material and method for producing the same | |
JP2836866B2 (en) | Ceramic-SiC-molybdenum disulfide-based composite material and its sliding parts | |
JPS61281086A (en) | Sliding material | |
JPH03109279A (en) | Porous ceramic bearing | |
JPH10267104A (en) | Seal for ball screw | |
JPH01320254A (en) | Ceramic-carbon based composite material and its production | |
JP2002323141A (en) | Sliding part and manufacturing method therefor | |
JPH09273635A (en) | Mechanical seal | |
JPH04130057A (en) | Wear resistant composite material and its production |