JPH0550475B2 - - Google Patents

Info

Publication number
JPH0550475B2
JPH0550475B2 JP61109682A JP10968286A JPH0550475B2 JP H0550475 B2 JPH0550475 B2 JP H0550475B2 JP 61109682 A JP61109682 A JP 61109682A JP 10968286 A JP10968286 A JP 10968286A JP H0550475 B2 JPH0550475 B2 JP H0550475B2
Authority
JP
Japan
Prior art keywords
sliding
solid lubricant
powder
disulfide
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61109682A
Other languages
Japanese (ja)
Other versions
JPS62270481A (en
Inventor
Yoshuki Yasutomi
Kosuke Nakamura
Seiji Watabiki
Hidenori Kita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10968286A priority Critical patent/JPS62270481A/en
Publication of JPS62270481A publication Critical patent/JPS62270481A/en
Publication of JPH0550475B2 publication Critical patent/JPH0550475B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、摺動材用セラミツクスに係るもので
あり、特に耐摩耗性及び耐熱衝撃性に優れた摺動
材用セラミツクスに関する。 〔従来の技術〕 機械が動く時には必ず摺動がついてまわる。摺
動部の摩擦と摩耗を減らせれば、それだけ省エネ
ルギ、長寿命につながる。 摺動部の潤滑には一般に油が使われる。油は大
きな粘性を持つため、摺動面の間に相対速度があ
ると油膜が形成され、摩耗が生じない。しかも油
潤滑には冷却作用もある。摩擦と摩耗の低減にの
み着目すれば油は理想的な潤滑剤である。 しかし、油潤滑は油の流路や油だめを必要と
し、それだけ機械を大型で複雑にし、コスト高に
なる。油やグリースは蒸発するし、劣化するので
メンテナンスを必要とする。また、油の蒸発は特
に真空中の高温下で激しい。その上、蒸発した油
は周囲の機器を汚染する。 機械は小型、軽量化、低コスト、メンテナンス
フリーを求めている。こうした期待にこたえるの
が固体潤滑である。 無給油で高温まで使用可能な摺動材料として
は、従来から黒鉛材料が知られている。黒鉛材料
は、耐薬品性に優れかつ自己潤滑性があるため、
無給油で高温まで使用できるものの、気孔率が大
きく機械的強度に劣るのが大きな欠点となつてお
り、樹脂入り黒鉛材や窒化ホウ素は摩擦係数が小
さいものの耐摩耗性が極めて低く、機械的強度も
小さいために寿命が短く頻繁に摺動部材を取替え
る必要があつた。 また、金属母材中に黒鉛、二硫化モリブデンな
どを均一に分散させた固体潤滑剤分散型焼結金属
なども用いられているが、素地が金属なので耐薬
品性、耐食性に劣り高温では耐摩耗性に劣るなど
の欠点がある。 一方、近年セラミツクス製の摺動部材が提供さ
れているが、一般のセラミツクスの摩擦係数は
0.5以上あり、場合によつては1を越えることも
ありセラミツク摺動部材を用いる装置に大きな制
約を与えることになる。 エンジニアリングセラミツクスと称され、代表
的なものとしては炭化ケイ素、窒化ケイ素、アル
ミナ、及びジルコニアが知られているが、摺動材
として実際に使用するには以下の要求特性を満た
さなければならない。(参考文献:工業材料、第
31巻第12号、第140頁) (1) 硬度が高く、耐摩耗性及び耐焼付き性が優れ
ていること (2) 摺動相手材との相性がよいこと(摩擦係数が
低く、相手材の摩耗も小さいこと) (3) 耐食性が優れていること (4) 強度、靱性及び耐熱衝撃性が高いこと (5) 摺動面間の良好な潤滑状態を維持するため
に、応力や熱による摺動面の変形が小さいこと
(すなわち、ヤング率が高く、熱膨張係数が小
さいこと) (6) 熱伝導度が高いこと(耐熱衝撃性を高め、摩
擦熱の蓄熱を防ぐことによつて摩擦係数の上昇
と摺動面の熱変形を抑制する) (7) 比重が小さいこと(遠心応力を軽減する) これらの要求特性に対する既存材料の適性をみ
ると、金属質材料は耐焼付き性に問題がある。ア
ルミナセラミツクス単独は、耐熱衝撃性に弱く、
熱膨張係数が大きいので熱による摺動面の変形が
生じる。ジルコニア単独もアルミナと同様に、耐
熱衝撃性に弱く熱膨張係数が大きい。窒化ケイ素
単独は、硬さと熱伝導度が低い。炭化ケイ素単独
は、硬く、熱伝導度も優れているが耐熱衝撃性が
劣る、などの問題点があり、耐摩耗、耐蝕性を兼
備し、かつ耐熱衝撃性の一段と向上した摺動材が
要求されている。 〔発明が解決しようとする問題点〕 上記従来技術は、耐摩耗性、耐熱衝撃性の点に
ついて配慮がされておらず、相手材との摩耗が大
きく、急激な温度変化が原因となつた割れを生じ
るという問題があつた。 本発明の目的は、無給油で高温でも使用できる
耐摩耗性、特に相手材の摩耗を小さくし、かつ耐
熱衝撃性に優れた摺動材用セラミツクスを提供す
ることにある。 〔問題点を解決するための手段〕 本発明を概説すれば、本発明は摺動材用セラミ
ツクスに関する発明であつて、気孔形状200μm以
下の窒化ケイ素と炭化ケイ素の複合セラミツクス
に、固体潤滑剤が1〜40体積部存在していること
を特徴とする。 本発明においては、セラミツクス摺動材を、特
に窒化ケイ素と炭化ケイ素を主体とする焼結体と
する。その理由は、耐摩耗性、硬さ、熱伝導度に
優れた炭化ケイ素を熱膨張係数の小さい窒化ケイ
素で結合することにより、窒化ケイ素と炭化ケイ
素の両方の特徴を兼ね備えた摺動材が得られるか
らである。また、炭化ケイ素と窒化ケイ素により
複合化することによつて従来にない優れた耐熱衝
撃特性が得ることができるからである。 本発明において、焼結体の気孔中に固体潤滑剤
を存在させる方法としては、該固体潤滑剤をセラ
ミツク原料と一緒に混合、成形、焼結する方法、
及び該固体潤滑剤を焼結体中に加圧下含浸させる
方法などが挙げられ、均一に分散させることがで
きる。 本発明において、原料と一緒に固体潤滑剤を添
加する場合には、セラミツクス焼結体中の固体潤
滑剤の量を1〜40体積部とする。その理由は、1
体積部より少ないとその効果がほとんどなく、他
方40体積部より多いと効果はあるが、セラミツク
ス焼結体が多孔質となり強度が小さくなるので好
ましくないからである。 本発明において、固体潤滑剤を焼結体中に含浸
させる場合には、固体潤滑剤を、セラミツク焼結
体の少なくとも表面層0.5mmの深さの部分で1〜
40体積部とするのが好ましい。その理由は、1体
積部より少ないとその効果がほとんどなく、他方
40体積部より多いと含浸が困難であるからであ
る。 また、固体潤滑剤は、表面層に少なくとも0.5
mm含浸されていれば、固体潤滑剤が摺動面に出て
きて摺動面の摩擦係数を下げることが可能である
ので、0.5mm以上なら可能な限り含浸させてもよ
い。 更にまた、含浸させる場合には、焼結体の1つ
の気孔の大きさを200μm以下、気孔量を1〜47体
積部とするのが好ましい。その理由は、気孔の大
きさを200μmより大きくすると焼結体にクラツク
が発生する量が増大すること、また気孔の大きさ
が200μmあれば、含浸するのに充分であるからで
ある。そして、気孔量を47体積部より多くする
と、機械的強度が低すぎて摺動材として不適当で
あるからである。 本発明において、固体潤滑剤としては特にグラ
フアイト、二硫化モリブデン、二硫化チタン、二
硫化タングステン、窒化ホウ素、フツ素樹脂、二
硫化テルル、二硫化セレン、水酸化バリウム、塩
化鉛、雲母、ヨウ化銀、タルク、ホウ砂、カオリ
ン、酸化鉛、酸化亜鉛、バーミキユライト、Fe
−Mn−リン酸塩、ポリエチレングリコール、パ
ラフインワツクス、ステアリン酸化合物など摩擦
を下げる効果を持つものが好ましい。 本発明において、成形方法は常法でよく、金型
成形、ラバープレス成形、射出成形、鋳込成形、
押出成形、ホツト・アイソスタチツクプレス成形
及びホツトプレス成形法などを、形状と要求特性
に応じて、適宜選択すればよい。 また、成形体の焼結方法も常法でよく、要求特
性に応じて、反応焼結、常圧焼結、再二次焼結、
ホツトプレスなどにより行えばよい。 本発明によれば、窒化ケイ素、炭化ケイ素、ア
ルミナ又はジルコニア単独の場合に比較して、摩
擦係数を1桁小さく、摩耗量も1桁小さくするこ
とができる。また耐熱衝撃特性も倍に向上するこ
とができ、それにより、従来にない耐摩耗性、耐
熱衝撃特性を有する優れた摺動材が得られる。 〔実施例〕 以下、本発明を実施例、比較例、及び参考例に
より更に具体的に説明するが、本発明はこれら実
施例に限定されない。 実施例 1 平均粒径1μmの金属Si粉末60gと平均粒径
16μmの炭化ケイ素粉末40gの混合物に成形助剤
としてポリビニルアルコール20%溶液を100c.c.添
加し、ポツトミルで24時間混合し、次に室温で乾
燥させ供試原料とした。この原料をメカニカルプ
レスを用いて成形圧力100〜1000Kgf/cm2で、外
径30mm、内径20mm、厚さ30mmのものを成形した。
これを窒素中1100〜1400℃まで段階的に長時間か
けて焼結した。 このリング形状の焼結体中にオートクレーブを
用いて各種固体潤滑剤を含浸し、摺動面を研摩し
た後、下記の条件で乾式摺動試験を行つた。その
結果を第1表に示す。 摺動条件 試験機 メカニカルシールタイプ〔リング オ
ン リング(Ring on Ring)〕方式 潤滑方法 無潤滑 摺動速度 2m/秒 面 圧 1.5Kg/cm2 時 間 100時間
[Industrial Application Field] The present invention relates to ceramics for sliding materials, and particularly to ceramics for sliding materials that have excellent wear resistance and thermal shock resistance. [Conventional technology] When a machine moves, there is always sliding movement. Reducing friction and wear on sliding parts will lead to energy savings and longer life. Oil is generally used to lubricate sliding parts. Since oil has a high viscosity, if there is relative speed between the sliding surfaces, an oil film will be formed and no wear will occur. Furthermore, oil lubrication also has a cooling effect. Oil is an ideal lubricant when focusing only on reducing friction and wear. However, oil lubrication requires an oil flow path and an oil sump, which makes the machine larger and more complicated, leading to higher costs. Oil and grease evaporate and deteriorate, requiring maintenance. Also, oil evaporates rapidly, especially at high temperatures in a vacuum. Moreover, the evaporated oil contaminates surrounding equipment. Machines are required to be small, lightweight, low cost, and maintenance-free. Solid lubrication meets these expectations. Graphite materials have been known as sliding materials that can be used up to high temperatures without lubrication. Graphite material has excellent chemical resistance and self-lubricating properties, so
Although it can be used up to high temperatures without lubrication, its major disadvantage is that it has a large porosity and poor mechanical strength.Although resin-filled graphite materials and boron nitride have a small coefficient of friction, they have extremely low wear resistance and poor mechanical strength. Because of their small size, their lifespans were short and the sliding members had to be replaced frequently. In addition, solid lubricant-dispersed sintered metals, which have graphite, molybdenum disulfide, etc. uniformly dispersed in the metal base material, are also used, but because the base material is metal, they have poor chemical resistance and corrosion resistance, and are resistant to wear at high temperatures. It has disadvantages such as being inferior in sex. On the other hand, sliding members made of ceramics have been provided in recent years, but the coefficient of friction of general ceramics is
The value is 0.5 or more, and in some cases it may exceed 1, which places great restrictions on devices using ceramic sliding members. They are called engineering ceramics, and silicon carbide, silicon nitride, alumina, and zirconia are known as typical examples, but they must satisfy the following required characteristics in order to be actually used as sliding materials. (References: Industrial Materials, Vol.
(Volume 31, No. 12, Page 140) (1) High hardness, excellent wear resistance and seizure resistance (2) Good compatibility with sliding mating material (low coefficient of friction, (3) Excellent corrosion resistance (4) High strength, toughness, and thermal shock resistance (5) In order to maintain good lubrication between sliding surfaces, Small deformation of the sliding surface (that is, high Young's modulus and low coefficient of thermal expansion) (6) High thermal conductivity (high thermal shock resistance and prevention of frictional heat accumulation (7) Low specific gravity (reducing centrifugal stress) Looking at the suitability of existing materials for these required properties, metallic materials have problems with seizure resistance. There is. Alumina ceramics alone has poor thermal shock resistance.
Since the coefficient of thermal expansion is large, the sliding surface is deformed due to heat. Like alumina, zirconia alone has poor thermal shock resistance and a large coefficient of thermal expansion. Silicon nitride alone has low hardness and low thermal conductivity. Silicon carbide alone has problems such as being hard and having excellent thermal conductivity, but poor thermal shock resistance.There is a need for a sliding material that has both abrasion resistance and corrosion resistance, as well as further improved thermal shock resistance. has been done. [Problems to be solved by the invention] The above-mentioned conventional technology does not give consideration to wear resistance and thermal shock resistance, causes large wear with the mating material, and is susceptible to cracking caused by rapid temperature changes. There was a problem that it caused An object of the present invention is to provide ceramics for sliding materials that can be used without oil and at high temperatures, have wear resistance, particularly reduce wear on mating materials, and have excellent thermal shock resistance. [Means for Solving the Problems] To summarize the present invention, the present invention relates to ceramics for sliding materials, and is a composite ceramic of silicon nitride and silicon carbide with a pore size of 200 μm or less, in which a solid lubricant is applied. It is characterized by being present in an amount of 1 to 40 parts by volume. In the present invention, the ceramic sliding material is a sintered body mainly composed of silicon nitride and silicon carbide. The reason for this is that by combining silicon carbide, which has excellent wear resistance, hardness, and thermal conductivity, with silicon nitride, which has a small coefficient of thermal expansion, a sliding material that has the characteristics of both silicon nitride and silicon carbide can be obtained. This is because it will be done. Further, by combining silicon carbide and silicon nitride, it is possible to obtain unprecedented thermal shock resistance. In the present invention, the method of making the solid lubricant exist in the pores of the sintered body includes a method of mixing the solid lubricant together with the ceramic raw material, molding, and sintering;
and a method in which the solid lubricant is impregnated into a sintered body under pressure, and the solid lubricant can be uniformly dispersed. In the present invention, when a solid lubricant is added together with the raw materials, the amount of the solid lubricant in the ceramic sintered body is 1 to 40 parts by volume. The reason is 1.
This is because if the amount is less than 40 parts by volume, there is almost no effect, whereas if it is more than 40 parts by volume, there is an effect, but the ceramic sintered body becomes porous and has low strength, which is not preferable. In the present invention, when the solid lubricant is impregnated into the sintered body, the solid lubricant is added to the ceramic sintered body at a depth of at least 0.5 mm in the surface layer of the ceramic sintered body.
Preferably, the amount is 40 parts by volume. The reason is that if the amount is less than 1 part by volume, there is almost no effect;
This is because impregnation is difficult if the amount exceeds 40 parts by volume. Also, the solid lubricant should have a surface layer of at least 0.5
If it is impregnated with 0.5 mm or more, the solid lubricant will come out onto the sliding surface and lower the friction coefficient of the sliding surface, so it may be impregnated as much as possible if it is 0.5 mm or more. Furthermore, in the case of impregnation, it is preferable that the size of one pore in the sintered body is 200 μm or less, and the amount of pores is 1 to 47 parts by volume. The reason for this is that if the pore size is made larger than 200 μm, the amount of cracks generated in the sintered body will increase, and if the pore size is 200 μm, it is sufficient for impregnation. If the amount of pores is greater than 47 parts by volume, the mechanical strength will be too low, making it unsuitable for use as a sliding material. In the present invention, solid lubricants include graphite, molybdenum disulfide, titanium disulfide, tungsten disulfide, boron nitride, fluorine resin, tellurium disulfide, selenium disulfide, barium hydroxide, lead chloride, mica, iodine, etc. Silver oxide, talc, borax, kaolin, lead oxide, zinc oxide, vermiculite, Fe
-Mn-phosphates, polyethylene glycol, paraffin wax, stearic acid compounds, and other materials that have the effect of reducing friction are preferred. In the present invention, the molding method may be any conventional method, such as mold molding, rubber press molding, injection molding, cast molding,
Extrusion molding, hot isostatic press molding, hot press molding, etc. may be appropriately selected depending on the shape and required characteristics. In addition, the sintering method for the compact may be any conventional method, and depending on the required properties, reaction sintering, normal pressure sintering, secondary sintering,
This may be done using a hot press or the like. According to the present invention, the friction coefficient can be reduced by one order of magnitude and the amount of wear can be reduced by one order of magnitude compared to the case of silicon nitride, silicon carbide, alumina, or zirconia alone. Furthermore, the thermal shock resistance can be doubled, thereby providing an excellent sliding material with unprecedented wear resistance and thermal shock resistance. [Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, Comparative Examples, and Reference Examples, but the present invention is not limited to these Examples. Example 1 60 g of metal Si powder with an average particle size of 1 μm and an average particle size of
100 c.c. of 20% polyvinyl alcohol solution was added as a molding aid to a mixture of 40 g of 16 μm silicon carbide powder, mixed in a pot mill for 24 hours, and then dried at room temperature to obtain a test material. This raw material was molded using a mechanical press at a molding pressure of 100 to 1000 Kgf/cm 2 into a product having an outer diameter of 30 mm, an inner diameter of 20 mm, and a thickness of 30 mm.
This was sintered stepwise at 1100-1400°C over a long period of time in nitrogen. This ring-shaped sintered body was impregnated with various solid lubricants using an autoclave, and the sliding surface was polished, and then a dry sliding test was conducted under the following conditions. The results are shown in Table 1. Sliding conditions Test machine Mechanical seal type [Ring on Ring] method Lubrication method No lubrication Sliding speed 2m/sec Surface pressure 1.5Kg/cm 2 hours 100 hours

【表】【table】

【表】 これより、固体潤滑剤を添加していない番号1
に比較して固体潤滑剤を添加したものは動摩擦係
数が小さく、摩耗量も少ないことが分る。 また、固体潤滑剤を含浸した焼結体を破断して
分析した結果、焼結体表面から最大深さ10mmまで
均一に固体潤滑剤が分散していることが分つた。 実施例 2 実施例1で得られた本発明品について熱衝撃試
験を行つた結果を第2表に示す。熱衝撃試験は、
試料を各温度で20分保持後約20℃の水中に試料を
浸漬して試料にクラツクが発生しているか否か確
認し、各試料にクラツクが発生しないで耐え得る
最高の温度を示した。
[Table] From this, number 1 without solid lubricant added
It can be seen that the coefficient of dynamic friction and the amount of wear are smaller in the case where a solid lubricant is added compared to the above. Furthermore, as a result of breaking and analyzing a sintered body impregnated with a solid lubricant, it was found that the solid lubricant was uniformly dispersed from the surface of the sintered body to a maximum depth of 10 mm. Example 2 Table 2 shows the results of a thermal shock test conducted on the product of the present invention obtained in Example 1. The thermal shock test is
After holding the sample at each temperature for 20 minutes, the sample was immersed in water at approximately 20°C to check whether or not cracks had occurred in the sample, and the highest temperature that each sample could withstand without cracking was determined.

【表】 また比較材料について同様の条件でテストした
結果を第3表に示す。 この結果からSi3N4−SiCは耐熱衝撃性が極め
て優れていることが分る。
[Table] Table 3 also shows the results of tests on comparative materials under similar conditions. This result shows that Si 3 N 4 -SiC has extremely excellent thermal shock resistance.

【表】 実施例 3 実施例1と同様にして下記の条件で湿式摺動試
験を行つた。その結果を第4表番号1〜8に示
す。 摺動条件 試験機 メカニカルシールタイプ(リング オ
ン リング方式) 潤滑方法 油潤滑(マシン油) 摺動速度 100m/分 面 圧 5Kg/cm2 時 間 100時間 また比較材料についても同様の条件でテストし
た結果を番号9に示す。 これより、本発明品は従来品に比べて動摩擦係
数や摩耗量が極めて小さいことが分る。
[Table] Example 3 A wet sliding test was conducted in the same manner as in Example 1 under the following conditions. The results are shown in Table 4, numbers 1 to 8. Sliding conditions Test machine Mechanical seal type (ring-on-ring method) Lubrication method Oil lubrication (machine oil) Sliding speed 100m/min Surface pressure 5Kg/cm 2 hours 100 hours Results of tests on comparative materials under similar conditions is shown in number 9. This shows that the product of the present invention has an extremely small dynamic friction coefficient and wear amount compared to the conventional product.

【表】 実施例 4 実施例1と同様にして得られた焼結体にグラフ
アイトの添加量を変えて下記の条件で湿式摺動試
験を行つた。その結果を第5表に示す。 摺動条件 試験機 メカニカルシールタイプ(リング オ
ン リング方式) 潤滑方法 油潤滑(マシン油) 摺動速度 10m/秒 面 圧 5Kg/cm2 時 間 100時間
[Table] Example 4 A sintered body obtained in the same manner as in Example 1 was subjected to a wet sliding test under the following conditions while varying the amount of graphite added. The results are shown in Table 5. Sliding conditions Test machine Mechanical seal type (ring-on-ring method) Lubrication method Oil lubrication (machine oil) Sliding speed 10m/sec Surface pressure 5Kg/cm 2 hours 100 hours

【表】 これより、固体潤滑剤を添加していないと摩擦
係数が大きく、摩耗量も大きいことが分る。また
添加量を40体積%より多くすると、機械的強度が
小さくなり、摩耗量が多くなることが分る。 実施例 5 平均粒径1μmの窒化ケイ素粉末60gと平均粒径
2μmの炭化ケイ素粉末40gに酸化マグネシウム5
g、酸化イツトリウム5gを配合し、ポリビニル
ブチラール20%溶液を100c.c.添加しポツトミルで
24時間混合し、次に室温で乾燥させ供試原料とし
た。この原料をカーボンモールドに充てんし、窒
素ガス中300Kg/cm2、1600℃から1900℃の温度で
焼結した。この焼結体をリング形状に加工し、実
施例1と同様にして固体潤滑剤を含浸し、下記の
条件で湿式摺動試験を行つた。その結果を第6表
に示す。 摺動条件 試験機 メカニカルシールタイプ(リング オ
ン リング方式) 潤滑方法 油潤滑(マシン油) 面 圧 5Kg/cm2 時 間 100時間
[Table] From this table, it can be seen that the coefficient of friction is large and the amount of wear is large when no solid lubricant is added. It is also seen that when the amount added is greater than 40% by volume, the mechanical strength decreases and the amount of wear increases. Example 5 60 g of silicon nitride powder with an average particle size of 1 μm and an average particle size
40g of 2μm silicon carbide powder and 5g of magnesium oxide
Blend 5 g of yttrium oxide, add 100 c.c. of 20% polyvinyl butyral solution, and mix in a pot mill.
The mixture was mixed for 24 hours and then dried at room temperature to provide a test material. This raw material was filled into a carbon mold and sintered at 300 kg/cm 2 in nitrogen gas at a temperature of 1600°C to 1900°C. This sintered body was processed into a ring shape, impregnated with a solid lubricant in the same manner as in Example 1, and subjected to a wet sliding test under the following conditions. The results are shown in Table 6. Sliding conditions Test machine Mechanical seal type (ring-on-ring method) Lubrication method Oil lubrication (machine oil) Surface pressure 5Kg/cm 2 hours 100 hours

【表】 実施例 6 平均粒径1μmの金属Si粉末60重量部、平均粒径
16μmのSiC粉末40重量部にグラフアイト粉末を
1〜50重量部添加した混合物に成形助剤としてポ
リエチレン系ワツクスを9重量部添加し150℃で
加熱混練した。この原料をメカニカルプレスを用
いて成形温度160℃、圧力1000Kgf/cm2でφ30×
φ20×10mmの成形体を作つた。これを25℃/時で
500℃まで加熱後、窒素雰囲気中1100〜1400℃ま
で段階的に長時間かけて焼結した。この焼結体の
摺動面を研摩した後、下記の条件で湿式摺動試験
を行つた。その結果を第7表に示す。 摺動条件 試験機 メカニカルシールタイプ(リング オ
ン リング方式) 潤滑方法 油潤滑(マシン油) 摺動速度 10m/秒 面 圧 5Kgf/cm2 時 間 100時間
[Table] Example 6 60 parts by weight of metal Si powder with an average particle size of 1 μm, average particle size
To a mixture of 40 parts by weight of 16 μm SiC powder and 1 to 50 parts by weight of graphite powder was added 9 parts by weight of polyethylene wax as a molding aid, and the mixture was heated and kneaded at 150°C. This raw material was molded using a mechanical press at a temperature of 160℃ and a pressure of 1000Kgf/cm 2 to form a φ30×
A molded body of φ20×10mm was made. This at 25℃/hour
After heating to 500°C, sintering was performed in stages from 1100 to 1400°C over a long period of time in a nitrogen atmosphere. After polishing the sliding surface of this sintered body, a wet sliding test was conducted under the following conditions. The results are shown in Table 7. Sliding conditions Test machine Mechanical seal type (ring-on-ring method) Lubrication method Oil lubrication (machine oil) Sliding speed 10m/sec Surface pressure 5Kgf/cm 2 hours 100 hours

【表】【table】

【表】 これより、固体潤滑剤の添加量が1体積%より
小さいと摩擦係数が大きくなるとともに摩耗量も
大きくなつていることが分る。また添加量が40体
積%を超えると摩擦係数は変らないが摩耗量が急
激に大きくなつていることが分る。したがつて、
固体潤滑剤は1〜40体積%であることが好まし
い。 実施例7 (参考例) 平均粒径1μmのSiC粉末100gに焼結助剤とし
てBeOを2重量%添加したものをホツトプレス
を用いて200Kgf/cm2、1800〜2000℃の条件で焼
結し、外径φ30mm、内径φ20mm、厚さ10mmに加工
した後、オートクレーブを用いて固体潤滑剤を含
浸させ、摺動面を研摩した後、下記の条件で湿式
摺動試験を行つた。その結果を第8表に示す。 摺動条件 試験機 メカニカルシールタイプ(リング オ
ン リング方式) 潤滑方法 油潤滑(マシン油) 摺動速度 2m/秒 面 圧 5Kgf/cm2 時 間 100時間
[Table] From this table, it can be seen that when the amount of solid lubricant added is less than 1% by volume, the coefficient of friction increases and the amount of wear increases. Furthermore, it can be seen that when the amount added exceeds 40% by volume, the friction coefficient does not change, but the amount of wear increases rapidly. Therefore,
The solid lubricant is preferably 1 to 40% by volume. Example 7 (Reference example) 100 g of SiC powder with an average particle size of 1 μm and 2% by weight of BeO added as a sintering aid were sintered using a hot press at 200 Kgf/cm 2 at 1800 to 2000°C. After processing it into an outer diameter of 30 mm, an inner diameter of 20 mm, and a thickness of 10 mm, it was impregnated with a solid lubricant using an autoclave and the sliding surface was polished, followed by a wet sliding test under the following conditions. The results are shown in Table 8. Sliding conditions Test machine Mechanical seal type (ring-on-ring method) Lubrication method Oil lubrication (machine oil) Sliding speed 2m/sec Surface pressure 5Kgf/cm 2 hours 100 hours

【表】【table】

【表】 この結果から、固体潤滑剤を含浸したものは耐
摩耗性に優れていることが分つた。実施例8
(参考例) 平均粒径0.8μmのSi3N4粉末に、平均粒径2μm
のY2O3粉末、Al2O3粉末を各5重量%添加しポツ
トミルで24時間湿式混合した後、乾燥しメカニカ
ルプレスを用いて1000Kgf/cm2の圧力でφ50mmに
成形した。これを1600〜1800℃の温度範囲で窒素
中4時間焼結した。得られた焼結体を外径30mm、
内径20mm、厚さ10mmに加工し、摺動面を研摩した
後、オークレープを用いて固体潤滑剤を含浸さ
せ、下記の条件で湿式摺動試験を行つた。その結
果を第9表に示す。 摺動条件 試験機 リング オン リング方式 潤滑方法 油潤滑(マシン油) 摺動速度 2m/秒 面 圧 5Kgf/cm2 時 間 100時間
[Table] From the results, it was found that those impregnated with a solid lubricant had excellent wear resistance. Example 8
(Reference example) Si 3 N 4 powder with an average particle size of 0.8 μm and an average particle size of 2 μm
5% by weight each of Y 2 O 3 powder and Al 2 O 3 powder were added, wet mixed in a pot mill for 24 hours, dried, and molded into a diameter of 50 mm using a mechanical press at a pressure of 1000 Kgf/cm 2 . This was sintered in nitrogen for 4 hours at a temperature range of 1600-1800°C. The obtained sintered body has an outer diameter of 30 mm,
After processing the material to have an inner diameter of 20 mm and a thickness of 10 mm and polishing the sliding surface, it was impregnated with solid lubricant using oak crepe, and a wet sliding test was conducted under the following conditions. The results are shown in Table 9. Sliding conditions Test machine Ring-on-ring method Lubrication method Oil lubrication (machine oil) Sliding speed 2m/sec Surface pressure 5Kgf/cm 2 hours 100 hours

【表】【table】

【表】 実施例9 (参考例) 平均粒径0.9μmのZrO2粉末に、平均粒径2μmの
Y2O3粉末、MgO粉末、CaO粉末を各3モル%添
加し、ポツトミルで24時間湿式混合した後、乾燥
し供試原料とした。これをメカニカルプレスを用
いて1000Kgf/cm2の圧力でφ50mmに成形した。そ
してこの成形体を1400〜1650℃の温度範囲で4時
間焼結した。得られた焼結体を外径30mm、内径20
mm、厚さ10mmに加工し、摺動面を研摩した後、オ
ークレープを用いて固体潤滑剤を含浸させ、実施
例3と同様の条件で湿式摺動試験を行つた。その
結果を第10表に示す。 この結果から、固体潤滑剤を添加したものは耐
摩耗性に優れていることが分る。
[Table] Example 9 (Reference example) ZrO 2 powder with an average particle size of 0.9 μm was added to ZrO2 powder with an average particle size of 2 μm.
Y 2 O 3 powder, MgO powder, and CaO powder were added in an amount of 3 mol % each, wet-mixed in a pot mill for 24 hours, and then dried to obtain a test material. This was molded into a diameter of 50 mm using a mechanical press at a pressure of 1000 Kgf/cm 2 . This molded body was then sintered at a temperature range of 1400 to 1650°C for 4 hours. The obtained sintered body has an outer diameter of 30 mm and an inner diameter of 20 mm.
After processing to a thickness of 10 mm and polishing the sliding surface, oak crepe was used to impregnate a solid lubricant, and a wet sliding test was conducted under the same conditions as in Example 3. The results are shown in Table 10. From this result, it can be seen that those to which a solid lubricant was added have excellent wear resistance.

【表】【table】

【表】 実施例10 (参考例) 平均粒径1μmのSiC粉末100gと平均粒径2μmの
ZrB2粉末100gの混合粉末を湿式混合した後、乾
燥させ供試原料とした。この原料をホツトプレス
を用いて、窒素中300Kgf/cm2、1600〜2000℃の
温度範囲で2時間焼結した。得られた焼結体を外
径φ30mm、内径φ20mm、厚さ10mmに加工、研摩し
た後、オートクレーブを用いて固体潤滑剤を含浸
させ、下記の条件で湿式摺動試験を行つた。 試験機 メカニカルシールタイプ(リング オ
ン リング方式) 潤滑方法 油潤滑(マシン油) 摺動速度 2m/秒 面 圧 5Kgf/cm2 時 間 100時間 その結果を第11表に示す。 これより、ZrB2−SiC系は耐摩耗性に優れてお
り、導電性摺動材として利用することができる。
[Table] Example 10 (Reference example) 100 g of SiC powder with an average particle size of 1 μm and an average particle size of 2 μm
A mixed powder of 100 g of ZrB 2 powder was wet-mixed and then dried to obtain a test material. This raw material was sintered using a hot press in nitrogen at 300 kgf/cm 2 at a temperature of 1600 to 2000° C. for 2 hours. After processing and polishing the obtained sintered body into an outer diameter of 30 mm, an inner diameter of 20 mm, and a thickness of 10 mm, it was impregnated with a solid lubricant using an autoclave, and a wet sliding test was conducted under the following conditions. Test machine Mechanical seal type (ring-on-ring method) Lubrication method Oil lubrication (machine oil) Sliding speed 2m/sec Surface pressure 5Kgf/cm 2 hours 100 hours The results are shown in Table 11. From this, the ZrB 2 -SiC system has excellent wear resistance and can be used as a conductive sliding material.

【表】【table】

【表】 実施例11 (参考例) 平均粒径1μmの金属Si粉末60重量部と平均粒径
2μmのSi−Al−O−N粉末40重量部に固体潤滑
剤(二硫化モリブデン)を1〜50重量部添加した
混合粉末、平均粒径1μmの金属Si粉末60重量部と
平均粒径0.9μmのAl2O3粉末40重量部に固体潤滑
剤(窒化ホウ素)を1〜50重量部添加した混合粉
末の2種類について実施例6と同様に混合、成
形、焼結を行つた。得られた焼結体の摺動面を研
摩した後、下記の条件で湿式摺動試験を行つた。
その結果を第12表に示す。 摺動条件 試験機 メカニカルシールタイプ(リング オ
ン リング方式) 潤滑方法 油潤滑(マシン油) 摺動速度 10m/秒 面 圧 5Kgf/cm2 時 間 100時間
[Table] Example 11 (Reference example) 60 parts by weight of metal Si powder with an average particle size of 1 μm and the average particle size
A mixed powder consisting of 40 parts by weight of 2 μm Si-Al-O-N powder and 1 to 50 parts by weight of a solid lubricant (molybdenum disulfide), 60 parts by weight of metallic Si powder with an average particle size of 1 μm and an average particle size of 0.9 μm. Mixing, molding, and sintering were carried out in the same manner as in Example 6 for two kinds of mixed powders prepared by adding 1 to 50 parts by weight of a solid lubricant (boron nitride) to 40 parts by weight of Al 2 O 3 powder. After polishing the sliding surface of the obtained sintered body, a wet sliding test was conducted under the following conditions.
The results are shown in Table 12. Sliding conditions Test machine Mechanical seal type (ring-on-ring method) Lubrication method Oil lubrication (machine oil) Sliding speed 10m/sec Surface pressure 5Kgf/cm 2 hours 100 hours

【表】【table】

【表】 これより固体潤滑剤の添加量が1体積%より小
さいと摩擦係数が大きくなると共に摩耗量を大き
くなつていることが分る。また添加量が40体積%
を超えると摩擦係数は変らないが摩耗量が急激に
大きくなつていることが分る。したがつて固体潤
滑剤は1〜40体積%であることが好ましい。 実施例 12 実施例1で得られた本発明品について、気孔の
大きさと耐摩耗性について調べた結果を第13表に
示す。 摺動条件 試験機 メカニカルシールタイプ(リング オ
ン リング方式) 潤滑方法 無潤滑 摺動速度 2m/秒 面 圧 1.5Kgf/cm2 時 間 100時間
[Table] From this table, it can be seen that when the amount of solid lubricant added is less than 1% by volume, the coefficient of friction increases and the amount of wear increases. Also, the amount added is 40% by volume.
It can be seen that when the value exceeds , the friction coefficient does not change, but the amount of wear increases rapidly. Therefore, the solid lubricant preferably accounts for 1 to 40% by volume. Example 12 Table 13 shows the results of examining the pore size and abrasion resistance of the product of the present invention obtained in Example 1. Sliding conditions Test machine Mechanical seal type (ring-on-ring method) Lubrication method No lubrication Sliding speed 2m/sec Surface pressure 1.5Kgf/cm 2 hours 100 hours

【表】 この結果から、気孔径が大きくなると共に摩耗
量が増加しており、200μmより大きくなると急激
に増加している。したがつて、焼結体中の気孔径
は200μm以下であるのが好ましい。また気孔率が
50体積%になると摩耗量が増加していることが分
る。 実施例 13 歯車の材料には一般に鋼が用いられるが、鋼歯
車は通常潤滑しなければならない。無潤滑で使用
できるプラスチツク歯車は鋼歯車に比べて機械的
強度が劣り、また耐熱性や耐摩耗性の面において
も欠点がある。 そこで、無潤滑で使用できると共に、耐熱性、
機械的強度に優れている種々の条件を備えた歯車
材料として本発明のセラミツク部材が適当であ
る。 平均粒径1μmの金属Si70gと平均粒径16μmの
SiC30gの混合物をポリビニルブチラールと一緒
にポツトミルで24時間混合、乾燥し供試原料とし
た。この原料をメカニカルプレスを用いて成形圧
力1000Kgf/cm2でφ200mm、厚さ10mmのものを成
形した。これを窒素中1400℃まで段階的に長時間
かけて焼結した。 得られた焼結体は、総形歯切り法、ラツピング
を行い第14表に示す歯車を作製し、そしてオート
クレープを用いて固体潤滑剤を含浸した。
[Table] The results show that the amount of wear increases as the pore size increases, and increases rapidly when the pore size becomes larger than 200 μm. Therefore, the pore diameter in the sintered body is preferably 200 μm or less. Also, the porosity
It can be seen that the amount of wear increases when it reaches 50% by volume. Example 13 Steel is commonly used as the material for gears, and steel gears usually must be lubricated. Plastic gears, which can be used without lubrication, have lower mechanical strength than steel gears, and also have drawbacks in terms of heat resistance and wear resistance. Therefore, it can be used without lubrication, and has heat resistance and
The ceramic member of the present invention is suitable as a gear material having various requirements for excellent mechanical strength. 70g of metal Si with an average particle size of 1μm and an average particle size of 16μm
A mixture of 30 g of SiC was mixed with polyvinyl butyral in a pot mill for 24 hours and dried to obtain a test material. This raw material was molded into a product having a diameter of 200 mm and a thickness of 10 mm using a mechanical press at a molding pressure of 1000 Kgf/cm 2 . This was sintered stepwise to 1400°C over a long period of time in nitrogen. The obtained sintered body was subjected to a profile gear cutting method and wrapping to produce gears shown in Table 14, and then impregnated with a solid lubricant using an autoclave.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、摩擦係
数が小さくなり相手材の摩耗を小さくすることが
できると共に、耐熱衝撃特性が大幅に向上する。 これにより耐摩耗性、耐熱衝撃特性、機械的強
度、耐食性を有する優れた摺動材が得られ、一般
用メカニカルシールリング、ケミカル用シールリ
ング、プランジヤ、軸受、サンドブラストノズ
ル、タペツト等種々の摺動材として応用可能であ
る。
As explained above, according to the present invention, the coefficient of friction is reduced, the wear of the mating material can be reduced, and the thermal shock resistance is significantly improved. As a result, a sliding material with excellent wear resistance, thermal shock resistance, mechanical strength, and corrosion resistance can be obtained, and is used in various sliding parts such as general mechanical seal rings, chemical seal rings, plungers, bearings, sandblasting nozzles, and tappets. It can be applied as a material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は総回転数と歯車の摩耗重量との関係を
示すグラフ、第2図は本発明品を適用した溶接チ
ツプカバーの断面図である。 1……チツプカバー、2……チツプ、3……溶
接ワイヤ。
FIG. 1 is a graph showing the relationship between the total number of revolutions and the wear weight of gears, and FIG. 2 is a sectional view of a welding tip cover to which the product of the present invention is applied. 1... Chip cover, 2... Chip, 3... Welding wire.

Claims (1)

【特許請求の範囲】 1 気孔形状200μm以下の窒化ケイ素と炭化ケイ
素の複合セラミツクスに、固体潤滑剤が1〜40体
積部存在していることを特徴とする摺動材用セラ
ミツクス。 2 該固体潤滑剤が、グラフアイト、二硫化モリ
ブデン、二硫化チタン、二硫化タングステン、窒
化ホウ素、フツ素樹脂、二硫化テルル、二硫化セ
レン、水酸化バリウム、塩化鉛、雲母、ヨウ化
銀、タルク、ホウ砂、カオリン、酸化鉛、バーミ
キユライト、Fe−Mn−リン酸鉛、ポリエチレン
グリコール、パラフインワツクス及びステアリン
酸化合物よりなる群から選択した少なくとも1種
のものである特許請求の範囲第1項記載の摺動材
用セラミツクス。 3 該窒化ケイ素と炭化ケイ素の複合セラミツク
スが、金属Si粉末と炭化ケイ素粉末からなる成形
体を窒化して得られる焼結体である特許請求の範
囲第1項記載の摺動材用セラミツクス。 4 該窒化ケイ素と炭化ケイ素の複合セラミツク
スの気孔量は1〜47体積部である特許請求の範囲
第1項記載の摺動材用セラミツクス。
[Scope of Claims] 1. Ceramics for sliding materials, characterized in that 1 to 40 parts by volume of a solid lubricant are present in a composite ceramic of silicon nitride and silicon carbide with a pore size of 200 μm or less. 2 The solid lubricant is graphite, molybdenum disulfide, titanium disulfide, tungsten disulfide, boron nitride, fluororesin, tellurium disulfide, selenium disulfide, barium hydroxide, lead chloride, mica, silver iodide, Claim No. 1, which is at least one selected from the group consisting of talc, borax, kaolin, lead oxide, vermiculite, Fe-Mn-lead phosphate, polyethylene glycol, paraffin wax, and stearic acid compound. Ceramics for sliding materials according to item 1. 3. The ceramic for sliding materials according to claim 1, wherein the composite ceramic of silicon nitride and silicon carbide is a sintered body obtained by nitriding a compact made of metal Si powder and silicon carbide powder. 4. The ceramic for a sliding material according to claim 1, wherein the composite ceramic of silicon nitride and silicon carbide has a pore content of 1 to 47 parts by volume.
JP10968286A 1986-05-15 1986-05-15 Ceramics for sliding material Granted JPS62270481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10968286A JPS62270481A (en) 1986-05-15 1986-05-15 Ceramics for sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10968286A JPS62270481A (en) 1986-05-15 1986-05-15 Ceramics for sliding material

Publications (2)

Publication Number Publication Date
JPS62270481A JPS62270481A (en) 1987-11-24
JPH0550475B2 true JPH0550475B2 (en) 1993-07-29

Family

ID=14516511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10968286A Granted JPS62270481A (en) 1986-05-15 1986-05-15 Ceramics for sliding material

Country Status (1)

Country Link
JP (1) JPS62270481A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282178A (en) * 1987-05-13 1988-11-18 Mitsubishi Heavy Ind Ltd Production of porous ceramics body
DE68918473T2 (en) * 1988-03-04 1995-02-09 Hitachi Ltd Functional ceramic molded body and process for its production.
JPH0218369A (en) * 1988-07-07 1990-01-22 Eagle Ind Co Ltd Sliding material
JPH0255273A (en) * 1988-08-18 1990-02-23 Showa Denko Kk Silicon carbide sintered form for mechanical seal and mechanical seal using same
JPH03271181A (en) * 1990-03-20 1991-12-03 Isuzu Ceramics Kenkyusho:Kk Production of composite ceramic
FR2668145B1 (en) * 1990-10-17 1993-01-22 Ceramiques Composites SINTERED BODY IN SILICON CARBIDE, PARTICULARLY FOR MECHANICAL SEALING AND SEALING COMPRISING SUCH A SINTERED BODY.
EP0497345B1 (en) * 1991-01-31 1997-12-17 Kyocera Corporation Composite ceramic sintered material, process for producing the same, and slider member using the same
US5395807A (en) * 1992-07-08 1995-03-07 The Carborundum Company Process for making silicon carbide with controlled porosity

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118080A (en) * 1981-01-13 1982-07-22 Citizen Watch Co Ltd Solid lubricant bearing
JPS6027670A (en) * 1983-07-21 1985-02-12 三井造船株式会社 Antiabrasive and lubricant ceramic member and manufacture
JPS6031799A (en) * 1983-08-02 1985-02-18 松下電器産業株式会社 Steam iron
JPS60235767A (en) * 1984-05-09 1985-11-22 イビデン株式会社 Sliding member and manufacture
JPS61314A (en) * 1984-06-14 1986-01-06 ト−ソ−株式会社 Curtain motor controller
JPS61197483A (en) * 1985-02-27 1986-09-01 株式会社リケン Ceramic sliding member
JPS61251586A (en) * 1985-04-30 1986-11-08 イビデン株式会社 Sliding material of ceramic composite body
JPS61281087A (en) * 1985-05-31 1986-12-11 イビデン株式会社 Sliding material
JPS6291481A (en) * 1985-02-04 1987-04-25 イビデン株式会社 Oxide composite body with high size precision and slide properties
JPS62132785A (en) * 1985-12-05 1987-06-16 イビデン株式会社 Precision standard part consisting of ceramic composite body
JPS62194024A (en) * 1986-02-18 1987-08-26 Ebara Res Co Ltd Sliding member

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118080A (en) * 1981-01-13 1982-07-22 Citizen Watch Co Ltd Solid lubricant bearing
JPS6027670A (en) * 1983-07-21 1985-02-12 三井造船株式会社 Antiabrasive and lubricant ceramic member and manufacture
JPS6031799A (en) * 1983-08-02 1985-02-18 松下電器産業株式会社 Steam iron
JPS60235767A (en) * 1984-05-09 1985-11-22 イビデン株式会社 Sliding member and manufacture
JPS61314A (en) * 1984-06-14 1986-01-06 ト−ソ−株式会社 Curtain motor controller
JPS6291481A (en) * 1985-02-04 1987-04-25 イビデン株式会社 Oxide composite body with high size precision and slide properties
JPS61197483A (en) * 1985-02-27 1986-09-01 株式会社リケン Ceramic sliding member
JPS61251586A (en) * 1985-04-30 1986-11-08 イビデン株式会社 Sliding material of ceramic composite body
JPS61281087A (en) * 1985-05-31 1986-12-11 イビデン株式会社 Sliding material
JPS62132785A (en) * 1985-12-05 1987-06-16 イビデン株式会社 Precision standard part consisting of ceramic composite body
JPS62194024A (en) * 1986-02-18 1987-08-26 Ebara Res Co Ltd Sliding member

Also Published As

Publication number Publication date
JPS62270481A (en) 1987-11-24

Similar Documents

Publication Publication Date Title
US4997192A (en) Mechanical seal using pore-dispersed material, and pore-dispersed cemented carbide and method for manufacturing same
US4626365A (en) Polytetrafluorethylene-containing coating composition for sliding parts
US6338906B1 (en) Metal-infiltrated ceramic seal
WO2012067378A2 (en) Sliding bearing having improved lubrication characteristics
JP3549239B2 (en) Rolling bearing
JPH0550475B2 (en)
JP2000170768A (en) Sliding member
JP2000136827A (en) Manufacture of slide member and slide member
JP2665773B2 (en) Manufacturing method of sliding material
JP4002406B2 (en) Slider and mechanical seal
JPS6237517A (en) Sliding member
JPH04293998A (en) Sliding member
JP3773080B2 (en) Rolling bearing
JP2004339587A (en) Self-lubricating hard material
JPH1045462A (en) Water-lubricative ceramic sintered compact
JP2002265271A (en) Sliding body, production method therefor and mechanical seal
JP2756653B2 (en) Silicon nitride based sintered body for sliding member and method of manufacturing the same
JP2543093B2 (en) Sliding parts for seals
JP2744856B2 (en) Titanium boride composite silicon carbide sintered body for mechanical seal and mechanical seal
JPH0469118B2 (en)
JPH0930858A (en) Ceramic sintered compact excellent in sliding property and corrosion resistance
JP2836866B2 (en) Ceramic-SiC-molybdenum disulfide-based composite material and its sliding parts
JPH0375281A (en) Porous electroconductive ceramics sliding material
JP2001020003A (en) Sliding material
JPH0612130B2 (en) Roller bearing cage for high temperature