JP3142892B2 - Manufacturing method of reaction sintered composite ceramics and manufacturing method of sliding member using it - Google Patents

Manufacturing method of reaction sintered composite ceramics and manufacturing method of sliding member using it

Info

Publication number
JP3142892B2
JP3142892B2 JP03114435A JP11443591A JP3142892B2 JP 3142892 B2 JP3142892 B2 JP 3142892B2 JP 03114435 A JP03114435 A JP 03114435A JP 11443591 A JP11443591 A JP 11443591A JP 3142892 B2 JP3142892 B2 JP 3142892B2
Authority
JP
Japan
Prior art keywords
metal
boron nitride
reaction
powder
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03114435A
Other languages
Japanese (ja)
Other versions
JPH04342471A (en
Inventor
義幸 安富
素之 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03114435A priority Critical patent/JP3142892B2/en
Publication of JPH04342471A publication Critical patent/JPH04342471A/en
Application granted granted Critical
Publication of JP3142892B2 publication Critical patent/JP3142892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は焼結体中に窒化ほう素を
分散した複合セラミックスに係り、特に反応焼結法によ
る複合セラミックスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite ceramic in which boron nitride is dispersed in a sintered body, and more particularly to a composite ceramic obtained by a reaction sintering method.

【0002】[0002]

【従来の技術】一般に、エンジンやタービンなどの構造
材料に適するエンジニアリングセラミックスとしては、
耐熱性に優れたSiCやSi34などが知られている。
2. Description of the Related Art Generally, engineering ceramics suitable for structural materials such as engines and turbines include:
SiC and Si 3 N 4 having excellent heat resistance are known.

【0003】しかし、実際の使用条件を考えた場合、耐
熱衝撃性、溶融金属に対する耐食性、機械加工性など不
十分な点も多い。これらを解決するために、加工特性、
耐食性が優れた窒化ほう素をSi34に混合,分散した
Si34が開発されている(窒化珪素セラミックス2、
197〜210頁、内田老鶴圃出版)。しかし、分散性
が悪い窒化ほう素を原料として用い、Si34に直接窒
化ほう素を混合することによりSi34−窒化ほう素焼
結体を作製するために、窒化ほう素の分散が必ずしも均
一でないと云う欠点がある。また、窒化ほう素の配合比
の増加と共に焼結体の気孔率が大きくなると云う問題点
が有る。
[0003] However, in consideration of actual use conditions, there are many insufficient points such as thermal shock resistance, corrosion resistance to molten metal, and machinability. To solve these, processing characteristics,
Si 3 N 4 in which boron nitride having excellent corrosion resistance is mixed and dispersed in Si 3 N 4 has been developed (silicon nitride ceramics 2,
197-210, Uchida Lao Tsuruho Publishing). However, using a dispersion is poor boron nitride as a raw material, Si 3 N 4 by mixing directly boron nitride to Si 3 N 4 - for making boron nitride sintered body, the dispersion of boron nitride There is a disadvantage that it is not always uniform. In addition, there is a problem that the porosity of the sintered body increases as the mixing ratio of boron nitride increases.

【0004】一方、本発明者は、Si粉末とSiCなど
の無機化合物粒子から成る成形体を窒素中で加熱し、反
応生成物であるSi34粒子および/またはウイスカで
SiCなどの粒子を結合する方法により、焼結時の寸法
変化率の小さい高強度のSi34結合セラミックスの製
造法を提案している(特開昭61−146754公
報)。この方法では、Si34粒子および/またはウイ
スカでSiCなどの無機化合物を結合する際に、該無機
化合物を変化させずにSi34で結合する。そのために
焼結後も該無機化合物の粒子形状が変化せず、Si34
が気相反応で生成して無機化合物粒子上に堆積するため
に焼結時の寸法変化率が0.1〜0.3%と小さくニアネ
ットシェイプ性に優れている。
On the other hand, the present inventor heated a molded body composed of Si powder and inorganic compound particles such as SiC in nitrogen to remove Si 3 N 4 particles as reaction products and / or particles such as SiC with whiskers. A method of manufacturing high strength Si 3 N 4 bonded ceramics having a small dimensional change rate during sintering by a bonding method has been proposed (JP-A-61-146754). In this method, when an inorganic compound such as SiC is bonded with Si 3 N 4 particles and / or whiskers, the inorganic compound is bonded with Si 3 N 4 without being changed. Therefore, even after sintering, the particle shape of the inorganic compound does not change, and Si 3 N 4
Is generated in the gas phase reaction and deposited on the inorganic compound particles, so that the dimensional change during sintering is as small as 0.1 to 0.3% and the near net shape is excellent.

【0005】[0005]

【発明が解決しようとする課題】しかし、前記の方法で
は成形体中に形成されている空隙は、金属Siから生成
したSi34でしか埋めることができない。従って、金
属Siの配合量に対し無機化合物の配合量が多くなる
と、Si34の生成量が少なくなり、どうしても多孔質
体になり、緻密化に限界があった。
However, in the above-mentioned method, the voids formed in the compact can be filled only with Si 3 N 4 generated from metallic Si. Therefore, when the compounding amount of the inorganic compound is larger than the compounding amount of metal Si, the amount of Si 3 N 4 generated is reduced, and the porous body is inevitably formed, and there is a limit in densification.

【0006】また、本発明者は、特開昭63−2529
73号公報に開示するように、導電性セラミックスの製
造において、同公報の実施例3に例示したように、Ti
2粉末80重量%とSi粉末20重量%との混合成形
体を、窒素中で加熱することにより、Si34反応結合
焼結体を作製した。しかしこれは加熱温度が1400℃
以下と低いために、TiB2粒子と窒素の反応率が低く
(20%未満)、生成される焼結体は気孔率が高く多孔
質体である。
The present inventor has disclosed in Japanese Patent Application Laid-Open No. 63-2529.
As disclosed in JP-A-73-73, in the production of conductive ceramics, as exemplified in Example 3 of the same publication, Ti
A mixed compact of 80% by weight of B 2 powder and 20% by weight of Si powder was heated in nitrogen to produce a Si 3 N 4 reaction-bonded sintered body. However, this is a heating temperature of 1400 ℃
Since the reaction rate is low, the reaction rate between TiB 2 particles and nitrogen is low (less than 20%), and the resulting sintered body has a high porosity and is a porous body.

【0007】本発明の目的は、緻密な複合セラミックス
を提供することにある。
An object of the present invention is to provide a dense composite ceramic.

【0008】本発明の他の目的は、金属粉末と金属ほう
化物の成形体からなる緻密な複合セラミックスを提供す
ることにある。
Another object of the present invention is to provide a dense composite ceramic comprising a compact of a metal powder and a metal boride.

【0009】更に本発明の他の目的は、上記の緻密な複
合セラミックスを用いた摺動部材を提供することにあ
る。
Still another object of the present invention is to provide a sliding member using the above-mentioned dense composite ceramics.

【0010】[0010]

【課題を解決するための手段】前記の課題を解決する本
発明の要旨は、 (1) 金属ほう化物の粒子および/またはウイスカー
が金属窒化物および窒化ほう素の粒子および/またはウ
イスカーで互いに結合されていることを特徴とする反応
焼結複合セラミックス。
The gist of the present invention for solving the above problems is as follows: (1) Metal boride particles and / or whiskers are bonded to each other by metal nitride and boron nitride particles and / or whiskers. A reaction-sintered composite ceramic characterized by being made.

【0011】(2) 金属ほう化物の粒子および/また
はウイスカーの表面層に金属窒化物および窒化ほう素が
形成されており、これらが金属窒化物および窒化ほう素
の粒子および/またはウイスカーで互いに結合されてい
ることを特徴とする反応焼結複合セラミックス。
(2) Metal nitride and boron nitride are formed on the surface layer of the metal boride particles and / or whiskers, and these are bonded to each other by the metal nitride and boron nitride particles and / or whiskers. A reaction-sintered composite ceramic characterized by being made.

【0012】前記において、前記金属窒化物および窒化
ほう素の粒子および/またはウイスカーは、ガラス相お
よび/または合金相に形成されている。そして、前記窒
化ほう素/前記金属ほう化物の容量比が0.2以上が好
ましい。
In the above, the metal nitride and boron nitride particles and / or whiskers are formed in a glass phase and / or an alloy phase. In addition, the volume ratio of the boron nitride to the metal boride is preferably 0.2 or more.

【0013】また、焼結体中の窒化ほう素の含有率が5
〜30容量%であり、最大気孔径30μm以下で該気孔
含有率が30容量%以下、好ましくは最大気孔径10μ
m以下で気孔含有率が5容量%以下がよい。また、 (3) 金属ほう化物(a)の粒子および/またはウイ
スカーと、金属粉末(b)から成る成形体を、窒化性ガ
ス雰囲気中で金属粉末(b)の融点より低温度で加熱し
て該金属粉末(b)の反応物である金属窒化物(c)を
生成する工程と、金属ほう化物(a)の窒素と反応する
温度で加熱して金属窒化物(d)および窒化ほう素
(e)を生成する工程とを含み、前記金属ほう化物が、
前記金属窒化物(d)および窒化ほう素(e)の粒子お
よび/またはウイスカーで互いに結合することを特徴と
する反応焼結複合セラミックスの製法にある。
Further, when the content of boron nitride in the sintered body is 5
30% by volume or less, and the pore content is 30% by volume or less, preferably a maximum pore size of 10 μm.
m or less and the pore content is preferably 5% by volume or less. And (3) heating a molded body composed of particles and / or whiskers of metal boride (a) and metal powder (b) at a temperature lower than the melting point of metal powder (b) in a nitriding gas atmosphere. Producing a metal nitride (c) which is a reaction product of the metal powder (b); and heating the metal nitride (d) and boron nitride (b) by heating at a temperature which reacts with nitrogen of the metal boride (a). e) producing the metal boride;
A method of producing a reaction-sintered composite ceramics, characterized in that the metal nitride (d) and the boron nitride (e) are bonded to each other by particles and / or whiskers.

【0014】前記金属ほう化物(a)と前記金属粉末
(b)との配合比が95:5から5:95(重量比)で
ある成形体を用いるのがよい。
It is preferable to use a molded body in which the mixing ratio of the metal boride (a) and the metal powder (b) is from 95: 5 to 5:95 (weight ratio).

【0015】前記金属ほう化物(a)はTi、Zr,
V,Al,Ta,Cr,Nb,Hf,Wの少なくとも1
種から選ばれた金属ほう化物であり、前記金属粉末
(b)はSi,Ti,Al,Crの少なくとも1種から
選ばれる。
The metal boride (a) is Ti, Zr,
At least one of V, Al, Ta, Cr, Nb, Hf, W
A metal boride selected from the species, and the metal powder (b) is selected from at least one of Si, Ti, Al, and Cr.

【0016】本発明の加熱処理法は、前記のように次の
2工程で行うのがよい。
The heat treatment method of the present invention is preferably performed in the following two steps as described above.

【0017】第1工程:金属粉末(b)の融点よりも低
温で窒化性ガス(窒素、アンモニアなど)雰囲気中で窒
化させ、 第2工程:その後金属ほう化物(a)が反応する温度
(1400℃〜2000℃)で加熱する、 と云う2工程で行うことにより、窒化ほう素が均一に分
散された反応焼結体を得ることができる。
First step: nitriding in a nitriding gas (nitrogen, ammonia, etc.) atmosphere at a temperature lower than the melting point of the metal powder (b). Second step: temperature (1400) at which the metal boride (a) reacts thereafter. C. to 2000.degree. C.) to obtain a reaction sintered body in which boron nitride is uniformly dispersed.

【0018】前記窒化ほう素/前記金属ほう化物の容量
比は0.2以上とするのが好ましい。0.2より小さいと
低気孔率化の効果が少なく、窒化ほう素の特徴である摺
動効果、伝熱効果が少なくなる。窒化ほう素が多すぎて
も焼結体の強度が低下する。従って、焼結後の焼結体中
の窒化ほう素の含有量で3〜40容量%、好ましくは5
〜20容量%である。
It is preferable that the volume ratio of the boron nitride / the metal boride is 0.2 or more. If it is smaller than 0.2, the effect of reducing the porosity is small, and the sliding effect and the heat transfer effect, which are characteristics of boron nitride, are reduced. If the amount of boron nitride is too large, the strength of the sintered body is reduced. Therefore, the content of boron nitride in the sintered body after sintering is 3 to 40% by volume, preferably 5% by volume.
-20% by volume.

【0019】本発明において、焼結助剤はIII属、IV
属、V属、VI属の金属、該金属の酸化物、窒化物、炭
化物、酸窒化物の一種以上を用いることができる。該焼
結助剤を用いることにより、気孔率5容量%以下の緻密
体を得ることもできる。
In the present invention, the sintering aid is a group III, IV
A metal belonging to the group, group V, or group VI, and at least one of oxides, nitrides, carbides, and oxynitrides of the metal can be used. By using the sintering aid, a dense body having a porosity of 5% by volume or less can be obtained.

【0020】金属ほう化物(a)TiB2と、金属粉末
(b)Siの組成比(a)/(b)を20/80から7
0/30(重量比)変化させて作製した焼結体の気孔率
を測定した結果、TiB2の配合比にかかわらず8〜1
4容量%と小さいことが分かった。比較のために金属炭
化物(SiC)と金属粉末Siを用いた場合の気孔率
は、SiCの増加に伴って気孔率が12容量%→30容
量%と増加し、多孔質体となった。これは、金属Siの
窒化物でのみ気孔(空隙)を埋めているためである。
The composition ratio (a) / (b) of the metal boride (a) TiB 2 and the metal powder (b) Si is from 20/80 to 7
0/30 (weight ratio) results of porosity of the sintered body produced by changing measured, regardless of the mixing ratio of TiB 2 8 to 1
It was found to be as small as 4% by volume. For comparison, the porosity in the case of using metal carbide (SiC) and metal powder Si increased from 12% by volume to 30% by volume with an increase in SiC, resulting in a porous body. This is because the pores (voids) are filled only with the nitride of metal Si.

【0021】本発明において、金属ほう化物(a)の平
均粒子径は100μm以下、好ましくは10μm以下と
するのがよい。金属ほう化物の粒径が大きいと反応速度
が遅く、金属窒化物の粒子が大きくなるためである。ま
た、金属粉末(b)の平均粒子径は5μm以下、好まし
くは1μm以下が低温での窒化速度を向上させるのに適
している。
In the present invention, the average particle size of the metal boride (a) is 100 μm or less, preferably 10 μm or less. This is because if the particle size of the metal boride is large, the reaction rate is low, and the particles of the metal nitride are large. Further, the average particle diameter of the metal powder (b) is 5 μm or less, preferably 1 μm or less, which is suitable for improving the nitriding rate at a low temperature.

【0022】本発明者らの検討によれば、金属粉末
(b)の窒化が終了しないうちにその融点以上に加熱す
ると、該金属が溶融して金属ほう化物(a)と合金を形
成し、収縮やクラック発生の原因となるので好ましくな
い。該金属の窒化が終了した後、金属ほう化物(a)が
窒素と反応する温度(1400℃〜2000℃)まで加
熱することにより、本発明の目的を達成することができ
る。さらに、前記焼結助剤を用いることにより、ガラス
相、合金相で結合が起り、より緻密な焼結体が得られ
る。
According to the study of the present inventors, if the metal powder (b) is heated to a temperature equal to or higher than its melting point before nitriding of the metal powder is completed, the metal is melted to form an alloy with the metal boride (a), It is not preferable because it causes shrinkage and cracks. After the nitriding of the metal is completed, the object of the present invention can be achieved by heating to a temperature (1400 ° C. to 2000 ° C.) at which the metal boride (a) reacts with nitrogen. Furthermore, by using the sintering aid, bonding occurs in the glass phase and the alloy phase, and a denser sintered body can be obtained.

【0023】本発明において、前記金属ほう化物および
金属粉末の表面の酸化膜と窒素が反応して、酸窒化物な
どが一部合成される場合があるが、焼結体の特性にはほ
とんど影響しない。
In the present invention, the oxide film on the surface of the metal boride and the metal powder may react with nitrogen to partially synthesize oxynitride and the like, but this has almost no effect on the characteristics of the sintered body. do not do.

【0024】前記窒化性ガス雰囲気は常圧,減圧(10
~5Torr)から加圧(2000気圧)下でもよい。従
って、特に加圧下でなくともよいのでホットプレスのよ
うな装置を必要条件としない。
The nitriding gas atmosphere is at normal pressure and reduced pressure (10
~ 5 Torr) to under pressure (2000 atm). Therefore, an apparatus such as a hot press is not required, since the apparatus does not need to be pressurized.

【0025】本発明において、焼結体の最大気孔径を3
0μm以下、好ましくは5μm以下がよい理由は、大き
い気孔径は破壊の起点となり易く、強度低下の要因とな
るためである。また、摺動部材として用いる場合は気孔
径が均一で、かつ、小さいものゝ方がよい。なお、該気
孔中に樹脂、粒子、油、固体潤滑剤、水、金属などを含
浸することも可能で、該物質を含浸することにより、よ
り低摩擦係数の摺動部材を得ることができる。
In the present invention, the maximum pore size of the sintered body is 3
The reason why the diameter is preferably 0 μm or less, preferably 5 μm or less is that a large pore diameter easily becomes a starting point of destruction and causes a decrease in strength. When used as a sliding member, it is preferable that the pore diameter is uniform and small. The pores can be impregnated with resin, particles, oil, solid lubricant, water, metal, and the like. By impregnating the substance, a sliding member having a lower coefficient of friction can be obtained.

【0026】本発明の焼結体の成形方法は、射出成形、
プレス成形、鋳込み成形、ラバープレス成形、押出し成
形、金型粉末成形など目的、形状、要求特性等に応じて
選択する。
The method for molding a sintered body according to the present invention comprises injection molding,
Press molding, casting, rubber press molding, extrusion molding, mold powder molding, etc. are selected according to the purpose, shape, required characteristics, and the like.

【0027】また、本発明の窒化ほう素分散セラミック
スと、別の無機化合物からなるセラミックスとの一体焼
結複合体を得ることも可能である。
It is also possible to obtain an integrally sintered composite of the boron nitride-dispersed ceramic of the present invention and a ceramic made of another inorganic compound.

【0028】[0028]

【作用】本発明の焼結体の気孔率が小さいのは以下の理
由による。
The porosity of the sintered body of the present invention is small for the following reason.

【0029】金属ほう化物(a)の粒子および/または
ウイスカーと金属粉末(b)を含む成形体を窒化性ガス
雰囲気中で加熱することにより、金属窒化物、窒化ほう
素が生成し、これらが該焼結体中で均一に分散し、互い
に結合され、かつ、成形体中の空隙をこれらが埋めて緻
密化されるためと考える。
By heating a compact containing metal boride (a) particles and / or whiskers and metal powder (b) in a nitriding gas atmosphere, metal nitride and boron nitride are formed. It is considered that they are uniformly dispersed in the sintered body, are bonded to each other, and are filled with the voids in the molded body to be densified.

【0030】[0030]

【実施例】以下に実施例を示し本発明を更に具体的に説
明する。
The present invention will be described more specifically with reference to the following examples.

【0031】〔実施例 1〕金属ほう化物(a)として
平均粒径10μmのTiB2粉末と金属粉末(b)とし
て平均粒径0.5μmのSi粉末とを混合したもの10
0重量部に、ワックス系バインダを7重量部添加し、混
練機で混練後、粉砕し成形用原料とした。次に金型を用
いて直径50mm×厚さ10mmの成形体を作製した。
該成形体のワックス分を加熱除去した後、窒素ガス中で
1100℃から1350℃まで4℃/hでSi粉末を窒
化処理後、1550℃で5時間加熱処理した。得られた
焼結体の窒化ほう素量と気孔率の関係を図1に示す。
Example 1 A mixture of TiB 2 powder having an average particle diameter of 10 μm as a metal boride (a) and Si powder having an average particle diameter of 0.5 μm as a metal powder (b) 10
7 parts by weight of a wax-based binder was added to 0 parts by weight, kneaded with a kneading machine, and pulverized to obtain a raw material for molding. Next, a molded body having a diameter of 50 mm and a thickness of 10 mm was produced using a mold.
After the wax content of the molded body was removed by heating, the Si powder was nitrided from 1100 ° C. to 1350 ° C. in nitrogen gas at 4 ° C./h, and then heat-treated at 1550 ° C. for 5 hours. FIG. 1 shows the relationship between the amount of boron nitride and the porosity of the obtained sintered body.

【0032】比較のために平均粒径5μmの窒化ほう素
粉末と平均粒径1μmのSi粉末を用いて同様に成形、
焼結して得られた焼結体の窒化ほう素量と気孔率の関係
を図1に示す。
For comparison, the same molding was performed using boron nitride powder having an average particle size of 5 μm and Si powder having an average particle size of 1 μm.
FIG. 1 shows the relationship between the amount of boron nitride and the porosity of the sintered body obtained by sintering.

【0033】図1より明らかなように、金属ほう化物
(a)としてTiB2を用いたものは、窒化ほう素の量
にかかわらず8〜12容量%と小さいが、比較のための
窒化ほう素を原料としたものは、窒化ほう素の増加と共
に気孔率が15→34容量%と増加し、多孔質体になっ
ていることが分かる。これは、Siの窒化物のみで空隙
を埋めるためにSi量が少なくなると、Si窒化物の量
も少なくなるためである。また、焼結体に窒化ほう素の
凝集部が見られ、混合が均一でない。
As can be seen from FIG. 1, the one using TiB 2 as the metal boride (a) is as small as 8 to 12% by volume regardless of the amount of boron nitride. As a result, the porosity increases from 15 to 34% by volume with the increase in boron nitride, and it can be seen that the material becomes porous. This is because when the amount of Si is reduced to fill the voids with only the nitride of Si, the amount of Si nitride is also reduced. In addition, aggregates of boron nitride are observed in the sintered body, and the mixing is not uniform.

【0034】上記のようにTiB2を用いて窒素と反応
させた場合は、TiB2粒子がTiNを生成すると共
に、この窒化反応で生じた遊離ほう素と雰囲気中の窒素
が反応して生成した窒化ほう素が成形体中の空隙を埋め
るために緻密化される。ここで、TiB2の量または窒
化率を制御することにより、窒化ほう素の生成量を変化
させることができる。また、本発明においては、窒化ほ
う素の生成は焼結体内での化学反応によって生ずるため
に凝集部がなく、均一分散される。
When TiB 2 is used to react with nitrogen as described above, TiB 2 particles form TiN, and free boron produced by this nitriding reaction reacts with nitrogen in the atmosphere. Boron nitride is densified to fill voids in the compact. Here, by controlling the amount of TiB 2 or the nitriding ratio, the amount of boron nitride generated can be changed. Further, in the present invention, since boron nitride is generated by a chemical reaction in the sintered body, there is no agglomerated portion and the boron nitride is uniformly dispersed.

【0035】本発明の複合セラミックスは、金属ほう化
物(a)と金属粉末(b)の配合比にかかわらず、気孔
が5μm以下と小さい。これに対して、前記比較例のも
のでは、気孔が窒化ほう素量の増加と共に30μm以上
と大きいことが分かった。
The composite ceramics of the present invention has pores as small as 5 μm or less regardless of the mixing ratio of the metal boride (a) and the metal powder (b). On the other hand, it was found that the pores of the comparative example were as large as 30 μm or more as the amount of boron nitride was increased.

【0036】本発明の複合セラミックスにおいて、金属
粉末(b)のSi粉末から生成した窒化物は、α、β型
の窒化けい素粒子およびウイスカーであった。また、得
られた複合セラミックスの焼結時の寸法変化率は、0.
4〜0.9%と膨張しているが、この値は他の常圧焼結
体の1/50から1/20であり、極めて精密焼結性に
優れている。
In the composite ceramics of the present invention, the nitride formed from the Si powder of the metal powder (b) was α, β type silicon nitride particles and whiskers. The dimensional change rate of the obtained composite ceramics during sintering was 0.1%.
Although it expands to 4 to 0.9%, this value is 1/50 to 1/20 of other normal pressure sintered bodies, and is extremely excellent in precision sinterability.

【0037】〔実施例 2〕実施例1のTiB2粒子に
代えて、ZrB2,VB2,ZrB12,TaB2,Cr
2B,CrB2,NbB2,HfB2を用い、同様にして成
形し、焼成加熱処理した結果、いずれも窒化けい素以外
に、金属窒化物、窒化ほう素が生成し、これらが気孔を
埋めていることが分かった。焼結体の気孔率は、いずれ
も7〜13容量%であり、気孔も5μm以下の反応焼結
複合セラミックスが得られた。
Example 2 Instead of the TiB 2 particles of Example 1, ZrB 2 , VB 2 , ZrB 12 , TaB 2 , Cr
2 B, using a CrB 2, NbB 2, HfB 2 , and molded in the same manner, the firing heat treatment result, either in addition to silicon nitride, metal nitrides, boron nitride is generated, fill the pores I knew it was. The porosity of each of the sintered bodies was 7 to 13% by volume, and a reaction sintered composite ceramic having a porosity of 5 μm or less was obtained.

【0038】〔実施例 3〕実施例1のTiB2粒子の
代りに、長さ50μm、アスペクト比50のCrB2
イスカを用いて同様に成形、焼結を行なった。その結
果、実施例1と同様に低気孔率で、窒化ほう素が均一分
散された反応焼結複合セラミックスが得られた。 〔実施例 4〕実施例1のSi粒子の代りに、Al、T
i、Crを用いて同様に成形、焼結を行なった。その結
果、実施例1と同様に低気孔率で、窒化ほう素が均一分
散された反応焼結複合セラミックスが得られた。
Example 3 The same molding and sintering were performed using CrB 2 whiskers having a length of 50 μm and an aspect ratio of 50 instead of the TiB 2 particles of Example 1. As a result, a reaction-sintered composite ceramic having low porosity and uniformly dispersed boron nitride was obtained as in Example 1. [Embodiment 4] Instead of Si particles of Embodiment 1, Al, T
Forming and sintering were similarly performed using i and Cr. As a result, a reaction-sintered composite ceramic having low porosity and uniformly dispersed boron nitride was obtained as in Example 1.

【0039】〔実施例 5〕金属ほう化物(a)として
平均粒径3μmのZrB2粉末と、金属粉末(b)とし
て平均粒径0.5μmのSi粉末の混合物ZrB2:Si
=20:80(重量比)100重量部にワックス系バイ
ンダを8重量部添加し、実施例1と同様にして直径50
mm×厚さ10mmの成形体を作製した。該成形体のワ
ックス分を除去した後、ZrB2粉末と窒素との反応率
を変化させるために温度を変えて加熱し、反応率0%か
ら100%の試料を作製した。但し、Si粉末はほゞ完
全に窒化けい素に変化させた。
[0039] Example 5 and ZrB 2 powder having an average particle diameter of 3μm as a metal boride (a), a mixture of Si powder having an average particle diameter of 0.5μm as the metal powder (b) ZrB 2: Si
= 20:80 (weight ratio) 8 parts by weight of a wax binder were added to 100 parts by weight, and the diameter was 50 in the same manner as in Example 1.
A molded article having a size of 10 mm x 10 mm was prepared. After removing the wax content of the molded body, the molded body was heated at different temperatures in order to change the reaction rate between the ZrB 2 powder and nitrogen, thereby preparing a sample having a reaction rate of 0% to 100%. However, the Si powder was almost completely changed to silicon nitride.

【0040】反応率0%から15%では気孔率はそれほ
ど低下しないが、反応率が20%以上では気孔率が大き
く低下した。この理由は、例えばZrB2粒子が窒素と
反応してZrNに変化する際に、最初焼結体が膨張する
ため気孔率の低下には効果がない。そして、反応率が2
0%以上になると膨張現象がなくなり、気孔率の低下に
対して効果が出てくるためである。
Although the porosity does not decrease so much when the conversion is 0% to 15%, the porosity decreases greatly when the conversion is 20% or more. The reason for this is that, for example, when the ZrB 2 particles react with nitrogen and change to ZrN, the sintered body expands first, so that it has no effect on decreasing the porosity. And the reaction rate is 2
If it is 0% or more, the expansion phenomenon disappears, and the effect of reducing the porosity is obtained.

【0041】本実施例のZrB2を窒素と反応させた場
合は、ZrB2粒子がZrNと窒化ほう素に変化して成
形体中の空隙を埋めるために緻密化される。
When the ZrB 2 of the present embodiment is reacted with nitrogen, the ZrB 2 particles are converted into ZrN and boron nitride and are densified to fill voids in the compact.

【0042】〔実施例 6〕金属ほう化物(a)として
平均粒径3μmのCrB2粉末と金属粉末(b)として
平均粒径0.5μmのSi粉末の混合物CrB2:Si=
20:80(重量比)100重量部に、焼結助剤として
23、Al23を各2重量部添加した混合粉末に、ポ
リビニルブチラールバインダを2重量部添加し、アルコ
ールと一緒に混合、乾燥し成形用原料とした。次に、金
型を用いて直径50mm×厚さ10mmの成形体を作製
した。成形体中のバインダ成分を除去した後、窒素ガス
中、1100℃から1350℃まで4℃/hでSi粉末
を窒化処理後、1550℃で5時間加熱処理し、さらに
1750℃で3時間処理した。
[0042] Example 6 a mixture of Si powder having an average particle diameter of 0.5 [mu] m CrB as 2 powder and metal powder (b) having an average particle size of 3μm as a metal boride (a) CrB 2: Si =
20:80 (weight ratio) 100 parts by weight of Y 2 O 3 and Al 2 O 3 as sintering aids were added in an amount of 2 parts by weight, and 2 parts by weight of polyvinyl butyral binder was added to the mixed powder. And dried to obtain a raw material for molding. Next, a molded body having a diameter of 50 mm and a thickness of 10 mm was produced using a mold. After removing the binder component in the compact, the Si powder was nitrided at 4 ° C./h from 1100 ° C. to 1350 ° C. in nitrogen gas, and then heat-treated at 1550 ° C. for 5 hours and further treated at 1750 ° C. for 3 hours. .

【0043】これにより、気孔率2%で、窒化ほう素が
均一に分散した窒化クロム/窒化けい素複合セラミック
スが得られた。
Thus, a chromium nitride / silicon nitride composite ceramic having a porosity of 2% and boron nitride uniformly dispersed was obtained.

【0044】〔実施例 7〕実施例1で得られたセラミ
ックス焼結体から成る摺動部材の摺動面を砥石で研摩
し、該表面の粗さを十点平均粗さで0.1μmとした。
Example 7 The sliding surface of the sliding member made of the ceramic sintered body obtained in Example 1 was polished with a grindstone, and the surface roughness was set to 0.1 μm as a ten-point average roughness. did.

【0045】該摺動部材を磁気ディスク装置に組み込み
試験を行った。試験条件は、ベアリングにSUS440
Cを用い、最大速度2.4m/s、周波数60Hzで磁
気ヘッドを109回往復運動させた。
The sliding member was assembled in a magnetic disk drive and tested. The test conditions were SUS440 for the bearing.
With C, maximum speed 2.4 m / s, the magnetic head at a frequency 60Hz is reciprocated 10 9 times.

【0046】上記試験後の摺動面は、十点平均粗さで
0.1μmであり摺動前と変化していないことを確認し
た。また、摺動部と未摺動部の段差も0.01μm以下
と小さいことが確認できた。この結果から本実施例の摺
動部材は耐摩耗性に優れており、アクチュエータに適し
ていることが分かった。
The sliding surface after the test had a ten-point average roughness of 0.1 μm, and it was confirmed that the roughness was not changed from that before the sliding. It was also confirmed that the step between the sliding portion and the non-sliding portion was as small as 0.01 μm or less. From this result, it was found that the sliding member of this example had excellent wear resistance and was suitable for an actuator.

【0047】〔実施例 8〕実施例1で得られたセラミ
ックス焼結体にグリセリンを含浸し、水道用のバルブ摺
動部材に適用した。熱水100℃と冷水10℃の循環を
繰返しながらバルブを開閉する試験を行なった。その結
果、該バルブ摺動部材にはクラック発生もなく、摩耗量
も極めて僅かで測定不能な程度であり、耐久性に優れた
バルブ摺動材が得られることが分かった。
Example 8 The ceramic sintered body obtained in Example 1 was impregnated with glycerin and applied to a valve sliding member for tap water. A test was conducted in which the valve was opened and closed while repeating circulation of hot water 100 ° C. and cold water 10 ° C. As a result, it was found that there was no crack in the valve sliding member, the amount of wear was extremely small and the measurement was not possible, and a valve sliding material excellent in durability was obtained.

【0048】〔実施例 9〕実施例6で得られたセラミ
ックス焼結体の摺動面を砥石で研摩し、十点平均粗さで
0.1μmとした。これをオートクレーブ中で粘度40
0センチポアズのフッ素油を含浸した。評価は、前記実
施例7の磁気ディスク装置に組込み、同様な条件で試験
した。試験後の摺動面は十点平均粗さで0.1μmであ
り、摺動前と変化がないことを確認した。また、摺動部
と未摺動部の段差は0.01μm以下である。摺動試験
後の摺動面のフッ素オイルは、気孔中に含浸、付着して
いることが分かった。
Example 9 The sliding surface of the ceramic sintered body obtained in Example 6 was polished with a grindstone to have a ten-point average roughness of 0.1 μm. This is placed in an autoclave with a viscosity of 40.
It was impregnated with 0 centipoise of fluoro oil. The evaluation was performed by assembling the magnetic disk device of Example 7 under the same conditions. The sliding surface after the test had a ten-point average roughness of 0.1 μm, and it was confirmed that there was no change from before sliding. The step between the sliding portion and the non-sliding portion is 0.01 μm or less. It was found that the fluorine oil on the sliding surface after the sliding test was impregnated and adhered to the pores.

【0049】〔実施例 10〕実施例1で得られたTi
2配合比60重量%のセラミックス焼結体を自動車用
交流発電機の集電環および集電子に用いて特性を調べ
た。試験条件は、3万rpm、電流密度70A/cm2
である。その結果、本発明品は損耗もなく、すり面の状
態も良好で集電部材に適していることが分かった。
Example 10 The Ti obtained in Example 1
The characteristics were examined using a ceramic sintered body having a B 2 compounding ratio of 60% by weight as a current collector ring and a current collector of an automotive alternator. The test conditions were 30,000 rpm, current density 70 A / cm 2.
It is. As a result, it was found that the product of the present invention had no wear, had a good condition of the sliding surface, and was suitable for a current collecting member.

【0050】〔実施例 11〕金属ほう化物(a)とし
て平均粒径3μmのZrB2粉末と金属粉末(b)とし
て平均粒径0.5μmのSi粉末の混合物ZrB2:Si
=20:80(重量比)100重量部に、平均粒径0.
5μmのTiC粉末を5〜40重量部、ワックス系バイ
ンダを8重量部を添加し、実施例1と同様にして直径5
0mm×厚さ10mmの成形体を作製した。成形体のワ
ックス成分を除去した後、窒素ガス中1100℃から1
350℃まで4℃/hでSi粉末を窒化処理後、155
0℃で5時間加熱処理した。
[0050] Example 11 a mixture of Si powder having an average particle diameter of 0.5 [mu] m ZrB as 2 powder and metal powder (b) having an average particle size of 3μm as a metal boride (a) ZrB 2: Si
= 20: 80 (weight ratio): 100 parts by weight, average particle size:
5 to 40 parts by weight of a 5 μm TiC powder and 8 parts by weight of a wax-based binder were added.
A molded body having a size of 0 mm and a thickness of 10 mm was produced. After removing the wax component of the molded product, the temperature was reduced from 1100 ° C to 1 ° C in nitrogen gas.
After nitriding the Si powder at 4 ° C / h up to 350 ° C,
Heat treatment was performed at 0 ° C. for 5 hours.

【0051】本実施例では、ZrB2粒子がZrNおよ
び窒化ほう素に変化し、TiC粒子が遊離カーボン,T
iNおよびSiCに変化し、これらのSi窒化物以外で
成形体中の空隙を埋めるために、気孔率7容量%以下の
緻密体が得られた。焼結体中には、潤滑効果をもたらす
窒化ほう素と遊離カーボンが分散していた。
In this embodiment, ZrB 2 particles are changed into ZrN and boron nitride, and TiC particles are converted into free carbon, T
It was changed to iN and SiC, and a dense body having a porosity of 7% by volume or less was obtained in order to fill voids in the molded body with other than these Si nitrides. Boron nitride and free carbon which provide a lubricating effect were dispersed in the sintered body.

【0052】前記実施例より、本発明の反応焼結複合セ
ラミックスはメカニカルシール、フローティングシー
ル、軸受、磁気ヘッドスライダー、歯車、集電部材、往
復運動機構部品等の摺動部材に適していることが分か
る。
From the above examples, it can be seen that the reaction sintered composite ceramics of the present invention is suitable for sliding members such as mechanical seals, floating seals, bearings, magnetic head sliders, gears, current collecting members, and reciprocating mechanism parts. I understand.

【0053】[0053]

【発明の効果】本発明の窒化ほう素が均一に分散した反
応焼結複合セラミックスは、従来の反応焼結法では得ら
れなかった低気孔率の緻密な焼結体が得られる。該焼結
体は、摺動部材として優れた摺動特性を有している。ま
た、エンジン、タービンなどの構造用部材をはじめ航
空、宇宙、海洋などの分野へのセラミックスの利用範囲
を拡大するものである。
The reaction sintered composite ceramics of the present invention in which boron nitride is uniformly dispersed can provide a dense sintered body having a low porosity, which cannot be obtained by a conventional reaction sintering method. The sintered body has excellent sliding characteristics as a sliding member. In addition, the scope of use of ceramics in fields such as aviation, space, and marine as well as structural members such as engines and turbines is expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼結体中の窒化ほう素量と気孔率の関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the amount of boron nitride in a sintered body and the porosity.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−185864(JP,A) 特開 昭64−5976(JP,A) 特開 昭63−277576(JP,A) 特開 平1−226767(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/58 - 35/65 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-185864 (JP, A) JP-A-64-5976 (JP, A) JP-A-63-277576 (JP, A) 226767 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/58-35/65

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属ほう化物の粒子またはウイスカー
と、金属粉末とを含む成形体を、窒化性ガス雰囲気中で
前記金属粉末の融点より低温度で加熱した後、 前記成形体を窒化性ガス雰囲気中で記金属ほう化物と
窒素とが反応する温度で加熱することを特徴とする反応
焼結複合セラミックスの製法。
[Claim 1] grain frame other metal boride whiskers
And a compact containing metal powder in a nitriding gas atmosphere.
After heating at lower temperatures than the melting point of the metal powder, a pre-Symbol metal boride said molded body in a nitriding gas atmosphere
A method for producing a reaction-sintered composite ceramics , characterized by heating at a temperature at which nitrogen reacts .
【請求項2】 前記金属ほう化物はTi、Zr,V,T
a,Cr,NbまたはHfの窒化物である請求項1に
載の反応焼結複合セラミックスの製法
2. A pre-Kikin genus borides is Ti, Zr, V, T
The method for producing a reaction-sintered composite ceramic according to claim 1, which is a nitride of a, Cr, Nb or Hf .
【請求項3】 前記金属窒化物は、Si,Ti,Alま
たはCrの窒化物である請求項1に記載の反応焼結複合
セラミックスの製法
3. The method according to claim 1, wherein the metal nitride is Si, Ti, Al or the like.
Other method of reaction sintering composite ceramic according to Motomeko 1 is a nitride of Cr.
【請求項4】 金属ほう化物の粒子またはウイスカー
と、金属粉末とを含む成形体を、窒化性ガス雰囲気中で
前記金属粉末の融点より低温度で加熱した後、 前記成形体を窒化性ガス雰囲気中で前記金属ほう化物と
窒素とが反応する温度で加熱することにより形成した
応焼結複合セラミックスを用いることを特徴とする摺動
部材の製法
4. A metal boride particle or whisker.
And a compact containing metal powder in a nitriding gas atmosphere.
After heating at a temperature lower than the melting point of the metal powder, the molded body and the metal boride in a nitriding gas atmosphere
A method for manufacturing a sliding member , characterized by using a reaction sintered composite ceramic formed by heating at a temperature at which nitrogen reacts .
JP03114435A 1991-05-20 1991-05-20 Manufacturing method of reaction sintered composite ceramics and manufacturing method of sliding member using it Expired - Fee Related JP3142892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03114435A JP3142892B2 (en) 1991-05-20 1991-05-20 Manufacturing method of reaction sintered composite ceramics and manufacturing method of sliding member using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03114435A JP3142892B2 (en) 1991-05-20 1991-05-20 Manufacturing method of reaction sintered composite ceramics and manufacturing method of sliding member using it

Publications (2)

Publication Number Publication Date
JPH04342471A JPH04342471A (en) 1992-11-27
JP3142892B2 true JP3142892B2 (en) 2001-03-07

Family

ID=14637656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03114435A Expired - Fee Related JP3142892B2 (en) 1991-05-20 1991-05-20 Manufacturing method of reaction sintered composite ceramics and manufacturing method of sliding member using it

Country Status (1)

Country Link
JP (1) JP3142892B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359921B1 (en) 1999-08-30 2002-03-19 Fuji Photo Film Co., Ltd. Semiconductor laser element having resonator surface coated with oxygen gettering layer and high thermal conductivity layer
RU2676230C1 (en) * 2018-02-19 2018-12-26 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Semiconducting lasers manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195538A (en) * 2021-12-24 2022-03-18 中国科学院上海硅酸盐研究所 Preparation method of compact hexagonal boron nitride ceramic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359921B1 (en) 1999-08-30 2002-03-19 Fuji Photo Film Co., Ltd. Semiconductor laser element having resonator surface coated with oxygen gettering layer and high thermal conductivity layer
RU2676230C1 (en) * 2018-02-19 2018-12-26 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Semiconducting lasers manufacturing method

Also Published As

Publication number Publication date
JPH04342471A (en) 1992-11-27

Similar Documents

Publication Publication Date Title
JP3483035B2 (en) Silicon carbide reinforced silicon carbide composite material
US5378417A (en) Process for producing ceramic compositions
JP4744704B2 (en) Method for manufacturing wear-resistant member
EP1561737B1 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
JPH054948B2 (en)
CA2145161A1 (en) Method for making a ceramic metal composite
JP3142892B2 (en) Manufacturing method of reaction sintered composite ceramics and manufacturing method of sliding member using it
JP5362758B2 (en) Wear resistant parts
JPH0157075B2 (en)
JPS5919903B2 (en) Hot press manufacturing method of SiC sintered body
JPH0822782B2 (en) Method for producing fiber-reinforced ceramics
JP3810183B2 (en) Silicon nitride sintered body
JP3810806B2 (en) Sintered silicon nitride ceramics
US20030114294A1 (en) Process for the production of ceramic bearing components and resulting product
JPH0987029A (en) Silicon carbide-based composite material and wear-resistant sliding part using the material
JPH04342466A (en) Reacted sintered composite ceramic, its production and sliding member using the same
JPH1143372A (en) Silicon nitride-based ceramic and its production
JP2512942B2 (en) Manufacturing method of tough ceramic material for gas turbine
JP3153518B2 (en) Silicon carbide carbon composite ceramics
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JPH04130056A (en) Reaction sintering composite ceramics having low porosity and its production
JP2738596B2 (en) Ceramic composite sintered body and its manufacturing method
JP2514107B2 (en) Tarbot Charlotter
JPH06287062A (en) Reinforced sic-based ceramic member
Schöppl et al. Polymer precursor ceramics and their applications

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees