JPH06287062A - Reinforced sic-based ceramic member - Google Patents

Reinforced sic-based ceramic member

Info

Publication number
JPH06287062A
JPH06287062A JP5073363A JP7336393A JPH06287062A JP H06287062 A JPH06287062 A JP H06287062A JP 5073363 A JP5073363 A JP 5073363A JP 7336393 A JP7336393 A JP 7336393A JP H06287062 A JPH06287062 A JP H06287062A
Authority
JP
Japan
Prior art keywords
sic
layer
ceramic member
reinforced
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5073363A
Other languages
Japanese (ja)
Inventor
Masahiro Asayama
雅弘 浅山
Tsuneji Kameda
常治 亀田
Akiko Suyama
章子 須山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5073363A priority Critical patent/JPH06287062A/en
Publication of JPH06287062A publication Critical patent/JPH06287062A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Ceramic Products (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To provide a reinforced SiC-based ceramic member maintaining high mechanical strength, improved in reliability and reduced in production cost. CONSTITUTION:The reinforced ceramic member with SiC as matrix is made up of (A) a reinforcing layer 1 with the SiC matrix incorporated with at least one kind of reinforcing material selected from long fibers, short fibers and whiskers, which is served only for a practical work surface such as a sliding surface, stress concentrating surface and a thermal action- or chemical action- affecting surface, etc., and a layer, close to such surface and (B) the rest consisting of a conventional SiC sintered compact layer 2 (monolithic SiC layer).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強化 SiC基セラミック
ス部材に関する。
FIELD OF THE INVENTION The present invention relates to a reinforced SiC-based ceramic member.

【0002】[0002]

【従来の技術】例えば、 SiC、Si3 N 4 、サイアロン等
の非酸化物系セラミックス材料は、耐熱性、強度、耐摩
耗性等に優れ、また軽量である等という金属等の従来材
料にない各種特性を有することから、構造・機械部品用
材料等への応用が進められている。ただし、セラミック
ス材料は、本質的に引張応力に弱く、破壊が一気に進行
する、いわゆる脆性という欠点を有している。
2. Description of the Related Art For example, non-oxide ceramic materials such as SiC, Si 3 N 4 and sialon are excellent in heat resistance, strength, wear resistance, etc., and they are light in weight. Because of its various properties, its application to materials for structures and mechanical parts is being promoted. However, a ceramic material is inherently weak in tensile stress and has a defect of so-called brittleness in which fracture progresses at once.

【0003】このようなことから、セラミックス部品の
信頼性をより向上させるために、セラミックス材料の高
靭性化や破壊エネルギーを高めることが強く求められて
いる。そこで、上述したような各種のセラミックス材料
をマトリックスとし、このマトリックス内にセラミック
ス長繊維やウィスカー等を添加、配合した、繊維強化セ
ラミックス部材の研究が進められている。
From these reasons, in order to further improve the reliability of ceramic parts, there is a strong demand for higher toughness and higher fracture energy of ceramic materials. Therefore, research has been conducted on fiber-reinforced ceramic members in which various ceramic materials as described above are used as a matrix, and long ceramic fibers and whiskers are added and mixed in the matrix.

【0004】例えば、 SiCの高硬度で耐摩耗性に優れ、
かつ耐熱性、耐酸化性、耐アルカリ性等に優れるという
特徴を活かして、摺動部材やタービン翼、あるいは反応
管や過酷な条件下で使用されるセンサボックス等に SiC
を利用するために、 SiCマトリックス内に、セラミック
ス繊維やセラミックスウィスカー等の強化素材を添加、
配合し、破壊靭性値や破壊エネルギーの増大を図った繊
維強化 SiC基セラミックスの実用化が検討されている。
For example, SiC has high hardness and excellent wear resistance,
In addition, taking advantage of its excellent heat resistance, oxidation resistance and alkali resistance, SiC can be used for sliding members, turbine blades, reaction tubes and sensor boxes used under severe conditions.
In order to utilize, strengthening materials such as ceramic fibers and ceramic whiskers are added to the SiC matrix.
Practical application of fiber-reinforced SiC-based ceramics, which has been added to increase fracture toughness and fracture energy, is under study.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述したよ
うな従来の繊維強化 SiC基セラミックス部材は、 SiCマ
トリックス内にほぼ均一に強化素材を導入しており、例
えばクラックの進展をセラミックス部材内部のどこかで
止めることによって、破壊エネルギーを高めるものであ
る。しかしながら、 SiCマトリックス内に導入された強
化素材は、それ自体がクラック発生の起点となる可能性
を秘めていると共に、複合強化セラミックス部材の強度
値自体はモノリシックの SiC焼結体より低下するおそれ
があるほか、強化素材そのものは高価であるため、全体
に均一に強化素材を分散させると、製造コストの大幅な
増大を招くという問題があった。
By the way, in the conventional fiber-reinforced SiC-based ceramic member as described above, the reinforcing material is introduced almost uniformly in the SiC matrix. By stopping at, the destruction energy is increased. However, the strengthening material introduced into the SiC matrix has the potential to become the starting point of crack generation, and the strength value of the composite strengthening ceramics member itself may be lower than that of the monolithic SiC sintered body. In addition, since the reinforcing material itself is expensive, there is a problem that if the reinforcing material is dispersed uniformly throughout the manufacturing cost, the manufacturing cost will be significantly increased.

【0006】このようなことから、強化素材による高信
頼性化を図った上で、セラミックス部材全体としての強
度値の低下を抑制すると共に、低コスト化を図った、摺
動部材、タービン翼、過酷な条件下で使用される部材等
として使用可能な SiCをマトリックスとする強化セラミ
ックス部材が強く求められている。
From the above, the sliding member, the turbine blade, the cost reduction and the reduction of the strength value of the ceramic member as a whole while the reliability of the reinforcing material is increased. There is a strong demand for a reinforced ceramics member with a SiC matrix that can be used as a member used under severe conditions.

【0007】本発明は、このような課題に対処するため
になされたもので、高強度を維持した上で、信頼性を高
めると共に、製造コストの低減を図った強化 SiC基セラ
ミックス部材を提供することを目的としている。
The present invention has been made in order to solve such a problem, and provides a reinforced SiC-based ceramics member which maintains high strength, enhances reliability, and reduces manufacturing cost. Is intended.

【0008】[0008]

【課題を解決するための手段と作用】本発明の強化 SiC
基セラミックス部材は、 SiCをマトリックスとするセラ
ミックス部材であって、摺動面、応力集中面、熱的作用
が加わる面、化学的作用が加わる面等の実仕事面および
その近傍層の SiCマトリックス内のみに、長繊維、短繊
維およびウィスカーから選ばれる少なくとも 1種の強化
素材を含有させたことを特徴している。
[Means and Actions for Solving the Problems] Reinforced SiC of the present invention
The base ceramic member is a ceramic member that uses SiC as a matrix and is used in the SiC matrix of the actual work surface such as a sliding surface, a stress concentration surface, a surface to which a thermal action is applied, a surface to which a chemical action is applied, and a layer in the vicinity thereof. It is characterized by containing at least one reinforcing material selected from long fibers, short fibers and whiskers.

【0009】すなわち、本発明の強化 SiC基セラミック
ス部材においては、摺動面、応力集中面、熱的作用が加
わる面、化学的作用が加わる面等の実際に過酷な条件に
さらされる表面(実仕事面)、およびその近傍層のみ
を、 SiCマトリックス内に強化素材を含有させて強化し
た強化層としており、それ以外の部分は通常の SiC焼結
体層(モノリシック SiC層)としている。本発明の強化
SiC基セラミックス部材は、強化層とモノリシック SiC
層との複合部材であると言える。このような強化SiC基
複合部材においては、上述したような実仕事面は、 SiC
マトリックス内に強化素材を含有させた強化層によって
高靭性化や高破壊エネルギー化、すなわち高信頼性化が
達成され、かつセラミックス部材(複合部材)全体の強
度はモノリシック SiC層が担うため、強度低下を抑制す
ることが可能となる。また、強化素材の配合量は、強化
層の厚さに応じて減量することができるため、製造コス
トの低減を図ることが可能となる。
That is, in the reinforced SiC-based ceramic member of the present invention, the surfaces that are actually exposed to severe conditions such as sliding surfaces, stress concentration surfaces, surfaces to which thermal action is applied, and surfaces to which chemical action is applied (actually, Only the work surface) and its neighboring layers are reinforced layers with the reinforcing material contained in the SiC matrix, and the other portions are ordinary SiC sintered body layers (monolithic SiC layers). Strengthening the present invention
SiC-based ceramic members consist of a reinforcing layer and monolithic SiC.
It can be said that it is a composite member with layers. In such a reinforced SiC-based composite member, the actual work surface as described above is
Strengthening layer containing a strengthening material in the matrix achieves higher toughness and higher fracture energy, that is, higher reliability, and the monolithic SiC layer bears the strength of the entire ceramic member (composite member). Can be suppressed. Further, the amount of the reinforcing material blended can be reduced according to the thickness of the reinforcing layer, so that the manufacturing cost can be reduced.

【0010】上記強化層に用いる強化素材は、長繊維、
短繊維およびウィスカーから選ばれる少なくとも 1種の
繊維状物質であればよく、特にその材質等に限定される
ものではないが、高強度等を有することから、炭化ケイ
素繊維、窒化ケイ素繊維、炭素繊維、炭化ケイ素ウィス
カー、窒化ケイ素ウィスカー、アルミナウィスカー等を
用いることが好ましい。また、強化素材の形状も、特に
限定されるものではなく、要求特性に応じて選択すれば
よい。このような強化素材の配合量は、強化素材の材質
や形状によっても異なるが、複合した部分の全体積に対
して20〜50体積% の範囲とすることが好ましい。
The reinforcing material used for the reinforcing layer is long fiber,
At least one kind of fibrous substance selected from short fibers and whiskers may be used, and the material is not particularly limited, but since it has high strength and the like, silicon carbide fiber, silicon nitride fiber, carbon fiber It is preferable to use silicon carbide whiskers, silicon nitride whiskers, alumina whiskers and the like. Further, the shape of the reinforcing material is not particularly limited and may be selected according to the required characteristics. The compounding amount of such a reinforcing material varies depending on the material and shape of the reinforcing material, but it is preferably in the range of 20 to 50% by volume with respect to the total volume of the composite portion.

【0011】上記したような強化層の厚さは、強化素材
の形状や配合量、全体の厚さ等によっても異なるが、全
体の厚さの 1/3以下とすることが好ましい。強化層の厚
さがあまり厚くなると、すなわち全体の厚さの 1/3を超
えると、セラミックス複合部材としての強度低下が大き
くなり、強化層とモノリシック SiC層とを複合した効果
を十分に得ることができなくなる。なお、製造コストの
点からも、強化層の厚さは全体の厚さの 1/3以下とする
ことが好ましい。
The thickness of the reinforcing layer as described above is preferably 1/3 or less of the total thickness, although it depends on the shape and amount of the reinforcing material, the total thickness and the like. If the thickness of the reinforcing layer becomes too thick, that is, if it exceeds 1/3 of the total thickness, the strength of the ceramic composite member will be greatly reduced, and the combined effect of the reinforcing layer and the monolithic SiC layer will be sufficient. Can not be. From the viewpoint of manufacturing cost, the thickness of the reinforcing layer is preferably 1/3 or less of the total thickness.

【0012】例えば、本発明のようなセラミックス複合
部材の機械的強度、例えば引張り強度σは、強化層の引
張り強度をσf 、モノリシック SiC層の引張り強度をσ
m 、強化層の体積をVf 、モノリシック SiC層の体積を
m とすると、
For example, the mechanical strength of the ceramic composite member according to the present invention, for example, the tensile strength σ, is the tensile strength of the reinforcing layer is σ f , and the tensile strength of the monolithic SiC layer is σ.
Let m be the volume of the reinforcing layer be V f , and the volume of the monolithic SiC layer be V m ,

【数1】 で表される。よって、セラミックス複合部材への要求強
度や、強化層とモノリシック SiC層の強度を考慮して、
強化層の厚さは全体の厚さの 1/3以下が好ましい範囲と
なる。
[Equation 1] It is represented by. Therefore, considering the strength required for the ceramic composite member and the strength of the reinforcing layer and the monolithic SiC layer,
The thickness of the reinforcing layer is preferably 1/3 or less of the total thickness.

【0013】また、全体の厚さにもよるが、強化層の厚
さをあまり薄くしすぎると、実仕事面における高信頼性
化を十分に実現することができなくなるため、強化層の
厚さは全体の厚さの 1/5以上とすることが好ましい。
Although it depends on the total thickness, if the thickness of the reinforcing layer is too thin, it is not possible to sufficiently achieve high reliability in actual work. Is preferably not less than 1/5 of the total thickness.

【0014】本発明の強化 SiC基セラミックス部材は、
例えば以下のようにして作製する。まず、強化層形成用
の原料粉末と、モノリシック SiC層形成用の原料粉末を
用意する。すなわち、 SiC粉末にホウ素+炭素系やアル
ミナ系の焼結助剤を適量加え、十分に混合する。強化層
形成用の原料粉末は、上記 SiC原料粉末に強化素材を所
望の比率で混合する。これら原料粉末を所望の厚さ比率
となるように、順に成形型に充填する。この際、強化層
となる成形体部分については、強化素材で予め予備成形
体等を作製し、この予備成形体を成形型内に配置して、
その上で SiC原料粉末を充填するようにしてもよい。ま
た、成形体の作製方法としては、スリップキャスト法、
プレス成形法等、各種公知の成形法を適用することがで
きる。この後、例えばホットプレスによって、マトリッ
クスとなる SiCを焼結させる。なお、焼結方法として
は、常圧焼結、雰囲気加圧焼結、熱間静水圧焼結法(H
IP)等を適用することも可能である。
The reinforced SiC-based ceramic member of the present invention is
For example, it is manufactured as follows. First, the raw material powder for forming the reinforcing layer and the raw material powder for forming the monolithic SiC layer are prepared. That is, an appropriate amount of boron + carbon-based or alumina-based sintering aid is added to SiC powder and mixed sufficiently. The raw material powder for forming the reinforcing layer is obtained by mixing the above SiC raw material powder with the reinforcing material in a desired ratio. These raw material powders are sequentially filled in a molding die so as to have a desired thickness ratio. At this time, for the molded body portion to be the reinforcing layer, a pre-molded body or the like is prepared in advance from the reinforcing material, and the pre-molded body is placed in the molding die.
Then, the SiC raw material powder may be filled. Further, as a method for producing a molded body, a slip casting method,
Various known molding methods such as a press molding method can be applied. After that, the matrix SiC is sintered by, for example, hot pressing. The sintering methods include atmospheric pressure sintering, atmospheric pressure sintering, hot isostatic pressing (H
It is also possible to apply IP) or the like.

【0015】本発明の強化 SiC基セラミックス部材は、
例えば摺動部材、タービン部材、反応管形成部材、過酷
な条件下で使用されるセンサボックス形成部材等、摺動
面、応力集中面、熱的作用が加わる面、化学的作用が加
わる面等の実仕事面がある面に限定され、かつその面の
高信頼性化を図る必要がある部材に好適である。
The reinforced SiC-based ceramic member of the present invention is
For example, sliding member, turbine member, reaction tube forming member, sensor box forming member used under severe conditions, sliding surface, stress concentration surface, surface to which thermal action is applied, surface to which chemical action is applied, etc. It is suitable for a member that is limited to a surface having an actual work surface and that needs to have high reliability.

【0016】[0016]

【実施例】以下、本発明を実施例によって説明する。EXAMPLES The present invention will be described below with reference to examples.

【0017】実施例1 まず、平均粒径が 0.5μm の SiC粉末に、焼結助剤とし
てカーボンを 2重量%とホウ素を 1重量% 加え、分散媒
としてエタノールを用いて、ボールミル中で24時間混合
した後、これを乾燥してモノリシック SiC層用の原料粉
末とした。
Example 1 First, 2% by weight of carbon and 1% by weight of boron as a sintering aid were added to SiC powder having an average particle size of 0.5 μm, and ethanol was used as a dispersion medium for 24 hours in a ball mill. After mixing, this was dried to obtain raw material powder for the monolithic SiC layer.

【0018】一方、強化素材として、 SiCウイスカー
(平均長さ=150μm,平均径=2μm)を用意し、上記モノリ
シック SiC層用原料粉末と同様に調合したスラリー中
に、上記SiCウイスカーを30体積% となるように配合
し、さらにボールミル中で 2時間混合した後、これを乾
燥して強化層用の原料粉末とした。
On the other hand, SiC whiskers (average length = 150 μm, average diameter = 2 μm) were prepared as a reinforcing material, and 30% by volume of the above SiC whiskers was added to a slurry prepared in the same manner as the raw material powder for the monolithic SiC layer. After mixing for 2 hours in a ball mill, this was dried to obtain a raw material powder for the reinforcing layer.

【0019】次に、ホットプレス用のカーボンモールド
内に、モノリシック SiC層用原料粉末を充填し、さらに
その上に強化層用原料粉末を充填した。充填量は、焼結
後の強化層の厚さが全体の厚さの 1/3以下、具体的には
強化層の体積比率が 30%となるように調製した。
Next, the raw material powder for the monolithic SiC layer was filled in the carbon mold for hot pressing, and the raw material powder for the reinforcing layer was further filled on it. The filling amount was adjusted so that the thickness of the reinforcing layer after sintering was 1/3 or less of the total thickness, specifically, the volume ratio of the reinforcing layer was 30%.

【0020】この後、上記原料粉末の充填物を、400kg/
cm2 の圧力の下で、1900℃でホットプレスして、 100×
100×10mmの SiC基複合焼結体を得た。この SiC基複合
焼結体を後述する特性評価に供した。
After this, the above-mentioned raw material powder filling is set to 400 kg /
Hot press at 1900 ℃ under pressure of cm 2 , 100 ×
A 100 × 10 mm SiC-based composite sintered body was obtained. This SiC-based composite sintered body was subjected to the characteristic evaluation described later.

【0021】比較例1 焼結後の強化層の体積比率が 40%となるように、モノリ
シック SiC層用原料粉末と強化層用原料粉末の充填量を
調製する以外は、上記実施例1と同様にして、SiC基複
合焼結体を作製し、後述する特性評価に供した。
Comparative Example 1 The same as Example 1 except that the filling amounts of the raw material powder for the monolithic SiC layer and the raw material powder for the reinforcing layer were adjusted so that the volume ratio of the strengthening layer after sintering was 40%. Then, a SiC-based composite sintered body was produced and subjected to the characteristic evaluation described later.

【0022】実施例2 実施例1における SiCウィスカーに代えて、強化素材と
して SiC短繊維(平均長さ=3mm,平均径= 15μm)を用い
る以外は、上記実施例1と同一条件で、 SiC基複合焼結
体を作製し、後述する特性評価に供した。
Example 2 Under the same conditions as in Example 1 except that SiC short fibers (average length = 3 mm, average diameter = 15 μm) were used as the reinforcing material in place of the SiC whiskers in Example 1, the SiC-based material was used. A composite sintered body was produced and subjected to the characteristic evaluation described later.

【0023】比較例2 焼結後の強化層の体積比率が 40%となるように、モノリ
シック SiC層用原料粉末と強化層用原料粉末の充填量を
調製する以外は、上記実施例2と同様にして、SiC基複
合焼結体を作製し、後述する特性評価に供した。
Comparative Example 2 The same as Example 2 except that the filling amounts of the monolithic SiC layer raw material powder and the reinforcing layer raw material powder were adjusted so that the volume ratio of the sintered reinforcing layer was 40%. Then, a SiC-based composite sintered body was produced and subjected to the characteristic evaluation described later.

【0024】実施例3 実施例1と同様に作製したモノリシック SiC層用原料粉
末を、ホットプレス用のカーボンモールド内に充填し、
その上に強化素材として SiC長繊維(平均長さ=40mm,平
均径= 15μm)を配置した。次いで、 SiC長繊維の上から
同一の原料粉末を充填した。 SiC長繊維を配置する時期
は、実施例1と同様に、強化層の体積比率が 30%となる
ように調製した。この後、実施例1と同一条件でホット
プレスを行って、 SiC基複合焼結体を作製し、後述する
特性評価に供した。
Example 3 A monolithic SiC layer raw material powder produced in the same manner as in Example 1 was filled in a carbon mold for hot pressing,
On top of that, SiC long fibers (average length = 40 mm, average diameter = 15 μm) were placed as a reinforcing material. Then, the same raw material powder was filled from above the SiC long fibers. The time for disposing the SiC long fibers was adjusted so that the volume ratio of the reinforcing layer was 30%, as in Example 1. Then, hot pressing was performed under the same conditions as in Example 1 to produce a SiC-based composite sintered body, and the SiC-based composite sintered body was subjected to the characteristic evaluation described below.

【0025】比較例3 焼結後の強化層の体積比率が 40%となるように、モノリ
シック SiC層用原料粉末の充填量を調製する以外は、上
記実施例3と同様にして、 SiC基複合焼結体を作製し、
後述する特性評価に供した。
Comparative Example 3 A SiC-based composite was prepared in the same manner as in Example 3 except that the filling amount of the raw material powder for the monolithic SiC layer was adjusted so that the volume ratio of the strengthened layer after sintering was 40%. Create a sintered body,
It provided for the characteristic evaluation mentioned later.

【0026】上記した実施例1〜3および比較例1〜3
で得た各 SiC基複合焼結体の特性を以下のようにして評
価した。まず、各 SiC基複合焼結体の全体としての密度
を求めた。また、各複合焼結体からφ8mm × 100mmの引
張り試験片を切り出し、それぞれ引張り強度を測定し
た。これらの結果を表1にまとめて示す。
Examples 1 to 3 and Comparative Examples 1 to 3 described above
The characteristics of each of the SiC-based composite sintered bodies obtained in step 1 were evaluated as follows. First, the overall density of each SiC-based composite sintered body was obtained. Further, a tensile test piece of φ8 mm × 100 mm was cut out from each composite sintered body, and the tensile strength was measured. These results are summarized in Table 1.

【0027】[0027]

【表1】 表1から明らかなように、各実施例による SiC基複合焼
結体は、比較例によるSiC基複合焼結体に比べて、良好
な強度が得られていることが分かる。
[Table 1] As is clear from Table 1, the SiC-based composite sintered bodies according to the respective examples have better strength than the SiC-based composite sintered bodies according to the comparative examples.

【0028】また、実施例1の SiC基複合焼結体と比較
例1の SiC基複合焼結体をそれぞれ用いて、摺動特性、
耐酸化特性をピンオンディスク法、1400℃×100hの酸化
試験から評価したところ、ほぼ同等の効果が得られた。
Further, using the SiC-based composite sintered body of Example 1 and the SiC-based composite sintered body of Comparative Example 1, respectively, sliding characteristics,
When the oxidation resistance was evaluated by a pin-on-disk method and an oxidation test at 1400 ℃ for 100h, almost the same effect was obtained.

【0029】上記実施例1と同様にして、図1に示すよ
うに、燃焼面側を SiCウイスカーを複合した強化層1と
し、それ以外をモノリシック SiC層2とした燃焼器3を
作製したところ、良好な特性を示した。
In the same manner as in Example 1 above, as shown in FIG. 1, a combustor 3 having a reinforcing layer 1 composed of SiC whiskers on the combustion surface side and a monolithic SiC layer 2 other than the combustor 3 was prepared. It showed good characteristics.

【0030】このように、本発明による強化Si基セラミ
ックス複合部材は、摺動面、応力集中面、熱的作用が加
わる面、化学的作用が加わる面等の実仕事面の高信頼性
化を図った上で、部材としての強度低下を抑制すること
ができる。よって、摺動部材、タービン部材、反応管形
成部材、過酷な条件下で使用されるセンサボックス形成
部材等に好適な、高強度で信頼性に優れた SiC基セラミ
ックス部材を提供することができる。
As described above, the reinforced Si-based ceramic composite member according to the present invention is required to have high reliability in the actual work surface such as the sliding surface, the stress concentration surface, the surface to which the thermal action is applied, and the surface to which the chemical action is applied. The strength of the member can be prevented from lowering after being designed. Therefore, it is possible to provide a SiC-based ceramic member having high strength and excellent reliability, which is suitable for a sliding member, a turbine member, a reaction tube forming member, a sensor box forming member used under severe conditions, and the like.

【0031】[0031]

【発明の効果】以上説明したように、本発明の強化 SiC
基セラミックス部材によれば、高強度を維持した上で、
信頼性を高めることができると共に、製造コストの低減
を図ることが可能となる。よって、高強度で、信頼性に
優れ、摺動部材や高温部材等として好適な SiC基セラミ
ックス部材を安価に提供することが可能となる。
As described above, the reinforced SiC of the present invention is
According to the base ceramic member, while maintaining high strength,
The reliability can be enhanced and the manufacturing cost can be reduced. Therefore, it is possible to inexpensively provide a SiC-based ceramic member having high strength, excellent reliability, and suitable as a sliding member, a high temperature member, or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の強化 SiC基セラミックス部材を用い
て作製した燃焼器の概略構成を示す斜視図である。
FIG. 1 is a perspective view showing a schematic configuration of a combustor manufactured using a reinforced SiC-based ceramic member of the present invention.

【符号の説明】[Explanation of symbols]

1……強化層 2……モノリシック SiC層 3……燃焼器 1 ... Reinforcement layer 2 ... Monolithic SiC layer 3 ... Combustor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 SiCをマトリックスとするセラミックス
部材であって、摺動面、応力集中面、熱的作用が加わる
面、化学的作用が加わる面等の実仕事面およびその近傍
層の SiCマトリックス内のみに、長繊維、短繊維および
ウィスカーから選ばれる少なくとも 1種の強化素材を含
有させたことを特徴とする強化 SiC基セラミックス部
材。
1. A ceramic member having SiC as a matrix, which is an actual work surface such as a sliding surface, a stress concentration surface, a surface to which a thermal action is applied, a surface to which a chemical action is applied, and the SiC matrix of a layer in the vicinity thereof. A reinforced SiC-based ceramic member characterized by containing at least one reinforcing material selected from long fibers, short fibers, and whiskers.
【請求項2】 請求項1記載の強化 SiC基セラミックス
部材において、 前記強化素材を含有させた層の厚さは、全体の厚さの 1
/3以下であることを特徴とする強化 SiC基セラミックス
部材。
2. The reinforced SiC-based ceramic member according to claim 1, wherein the layer containing the reinforcing material has a thickness of 1% of the total thickness.
A reinforced SiC-based ceramic member characterized by being less than / 3.
JP5073363A 1993-03-31 1993-03-31 Reinforced sic-based ceramic member Withdrawn JPH06287062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5073363A JPH06287062A (en) 1993-03-31 1993-03-31 Reinforced sic-based ceramic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5073363A JPH06287062A (en) 1993-03-31 1993-03-31 Reinforced sic-based ceramic member

Publications (1)

Publication Number Publication Date
JPH06287062A true JPH06287062A (en) 1994-10-11

Family

ID=13516024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5073363A Withdrawn JPH06287062A (en) 1993-03-31 1993-03-31 Reinforced sic-based ceramic member

Country Status (1)

Country Link
JP (1) JPH06287062A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508670A (en) * 2000-08-28 2004-03-18 モトローラ・インコーポレイテッド Fuel processor with integrated fuel cell utilizing ceramic technology
CN109564786A (en) * 2016-08-08 2019-04-02 通用原子公司 Engineering SIC-SIC composite material and entirety SIC layer structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508670A (en) * 2000-08-28 2004-03-18 モトローラ・インコーポレイテッド Fuel processor with integrated fuel cell utilizing ceramic technology
CN109564786A (en) * 2016-08-08 2019-04-02 通用原子公司 Engineering SIC-SIC composite material and entirety SIC layer structure
JP2019531246A (en) * 2016-08-08 2019-10-31 ゼネラル・アトミックスGeneral Atomics Designed SiC-SiC composite and monolithic SIC layer structure
EP3497703A4 (en) * 2016-08-08 2020-05-27 General Atomics Engineered sic-sic composite and monolithic sic layered structures
JP2021165225A (en) * 2016-08-08 2021-10-14 ゼネラル・アトミックスGeneral Atomics Engineered sic-sic composite and monolithic sic layered structure

Similar Documents

Publication Publication Date Title
JP4014254B2 (en) Si concentration step-variable Si-SiC material, Si concentration step change-type SiC fiber reinforced Si-SiC composite material, and production method thereof
SATO et al. Fabrication of silicon nitride based composites by impregnation with perhydropolysilazane
US20060269683A1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
EP1284251B1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
US5464583A (en) Method for manufacturing whisker preforms and composites
Kim et al. Nicalon-fibre-reinforced silicon-carbide composites via polymer solution infiltration and chemical vapour infiltration
JPH0157075B2 (en)
US5077242A (en) Fiber-reinforced ceramic green body and method of producing same
JPH0822782B2 (en) Method for producing fiber-reinforced ceramics
Semen et al. Structural ceramics derived from a preceramic polymer
JPH06287062A (en) Reinforced sic-based ceramic member
JPH06340475A (en) Fiber reinforced ceramic composite material and its production
EP0351113B1 (en) Fiber-reinforced and particle-dispersion reinforced mullite composite material and method of producing the same
JPH06287070A (en) Composite reinforced ceramics
JPH10167831A (en) Sic fiber reinforced si-sic composite material and its production
JPH06287061A (en) Sic-based composite ceramic and its production
JPH0687657A (en) Silicon carbide based inorganic fiber reinforced ceramic composite material
JP3142892B2 (en) Manufacturing method of reaction sintered composite ceramics and manufacturing method of sliding member using it
JP3941455B2 (en) Bonding method for high heat resistant inorganic fiber bonded ceramics
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JP2001181046A (en) Inorganic fiber bound ceramics, method for producing the same and high-surface accuracy member using the same
JP3001128B2 (en) Carbon-based composite fiber reinforced ceramic composite
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
JP4427914B2 (en) Interlayer direction reinforced inorganic fiber-bonded ceramics and method for producing the same
JPH07115927B2 (en) SiC-based ceramics and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704