JPH0373613B2 - - Google Patents

Info

Publication number
JPH0373613B2
JPH0373613B2 JP60179176A JP17917685A JPH0373613B2 JP H0373613 B2 JPH0373613 B2 JP H0373613B2 JP 60179176 A JP60179176 A JP 60179176A JP 17917685 A JP17917685 A JP 17917685A JP H0373613 B2 JPH0373613 B2 JP H0373613B2
Authority
JP
Japan
Prior art keywords
lead frame
alloy
copper
alloys
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60179176A
Other languages
Japanese (ja)
Other versions
JPS6240335A (en
Inventor
Naoyuki Kanehara
Tetsuo Kohata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP17917685A priority Critical patent/JPS6240335A/en
Publication of JPS6240335A publication Critical patent/JPS6240335A/en
Publication of JPH0373613B2 publication Critical patent/JPH0373613B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、半導体集積回路などに使用されるリ
ードフレーム材として好適な銅合金に関する。 〔従来の技術〕 半導体集積回路などに使用されるリードフレー
ム材としては、コバール合金(Fe−29Ni−
16Co)や42合金(Fe−42Ni)などのFe系の含Ni
合金或いは無酸素銅、Sn入り銅、りん青銅、Fe
入り銅などの銅合金などが良く知られている。 他方、近年の半導体技術の進歩や高集積回路化
に伴つて各種の特性をもつリードフレーム材が要
求されるようになつてきた。例えばセラミツクス
パツケージされるSiチツプ等は通常Ag−Cu共晶
ろうでリードフレームにろう接されるが、この時
にリードフレームは700〜800℃の高温に加熱さ
れ、または低融点ガラスで封止されるときにも
400〜500℃に再加熱される。プラスチツクパツケ
ージされるSiチツプ等は、ダンボンデングにより
リードフレームに固定されるがこの時350℃前後
で作業が行われ、ワイヤーボンデング時には300
〜350℃に数十秒の加熱工程を経てからプラスチ
ツク封止される。したがつて、このような種々の
加熱工程を経る間にリードフレーム材は強度の低
下に伴う変形が起きてはならない。また、高集積
化したICやパワートランジスタ等は熱を多量に
発生するので、そのリードフレーム材にも熱放散
性が要求される。特にリードフレーム材は熱発生
初期における放熱に大きく寄与するので熱伝導度
に優れることが必要となる。更に、パツケージの
小型化に伴つてリードフレームの内部端子、外部
端子の幅が小さくなり、このため端子強度の低下
が生じてくるのでリードフレーム材自身が更に高
い強度を有することが必要とされる。 このような諸要求を満たすべく種々のリードフ
レーム材が開発されているが、低価格でこの要求
を満たすには銅基合金が適する。 リードフレーム材という特殊な用途を別にすれ
ば、析出強化型のCu−Tiの2元合金および固溶
強化型のCu−Niの2元合金が周知である。しか
し、これらの公知合金は両者とも電気抵抗が大き
く、熱放散性や電気伝導性の面からリードフレー
ム材に対しては良好な材料とは言えない。さらに
Cu−Niの2元合金の場合は十分な強度を得るた
めには数%のNiの添加が必要であるからコスト
面からも不利である。 Cu−Ni−Tiの3元合金も知られており、この
合金の場合は、銅中にNiとTiとの化合物を析出
させることによつて、Cu−Ti2元合金やCu−Ni2
元合金よりも熱放散性や電気伝導性を良好にする
ことができる。 〔発明が解決しようとする問題点〕 前述のように、Cu−Ni−Tiの3元合金は周知
であるが、この系の合金はCu中にNiとTiが固溶
または一部析出している状態で加工することが難
しく、今だ現実のリードフレーム材としては製品
化されていない。リードフレーム材を製造するに
は、溶解、鋳造を経て圧延加工されるのが普通で
あるが、このような通常のリードフレーム材製造
法によつてこの系の合金をリードフレーム材に適
する厚さまで加工しようとすると特に冷間加工に
おいてサイド割れが発生し、歩留りが非常に悪く
なる。 本発明の目的は基本的にはこのCu−Ni−Tiの
3元合金の加工性の問題を解決しながら、最近に
要求される厳しい諸特性を兼備したリードフレー
ム材を得ることである。 〔問題点を解決する手段〕 本発明は、前記の目的を達成するリードフレー
ム材用銅合金として、重量%で、Ni;0.1〜4.0
%、Ti;0.05〜3.0%、P;0.05超〜0.5%、残部
がCuおよび不可避的不純物からなる銅合金を提
供するものである。 Cu中におけるNi、Ti、Pの含有量をこのよう
に限定することによつて既述の目的が効果的に達
成されることは後述の実施例によつて実証するが
その概要を説明すると次のとおりである。 NiおよびTiの下限について; 本発明合金は銅中にNiとTiの化合物を析出さ
せることによつて強度の向上および耐熱性の向上
を図つている。Niが0.1重量%未満でTiが0.05%
未満では強度の向上が認められず、また耐熱性が
劣化する。したがつて、Niを0.1重量%以上、Ti
を0.05重量%以上として含有させることが必要で
ある。 NiおよびTiの上限について; NiおよびTiは、銅中に固溶している状態では
熱間加工性並びに冷間加工性を悪化させる。した
がつて、これらの元素が多量に含有されている
と、リードフレーム材製品にまで加工するさいに
サイド割れなどの欠陥が発生して歩留いが低下し
生産性を低下させる。本発明合金はPを適量添加
してこの加工性を向上させた点に特徴があるが、
これによつて、Niは4.0%まで、Tiは3.0%まで含
有してもサイド割れ等の欠陥は発生し難くなる。
この加工性の問題を解決したうえでこの量まで許
容することによつて前述のように強度の向上と耐
熱性の向上が達成できる。 P含有量について; Pは本発明のリードフレーム材用銅合金におい
て特徴的な元素である。本発明者らはNi;0.1〜
4.0%およびTi;0.05〜3.0%を含有させた銅合金
にPを0.05超〜0.5%の範囲で含有させるとリー
ドフレーム材に要求される強度などの特性を低下
させずに加工性が著しく向上することを見出し
た。P含有量が0.05重量%以下ではこの加工性の
向上効果があまり見られない。しかし、0.5重量
%を超えてPを含有させるとCu−P化合物を形
成し、特にNiおよびTiの含有量が低域において
電気伝導度の低下や耐熱特性を低下させる。した
がつてP含有量は0.05超〜0.5重量%の範囲が適
当である。そのさい、本発明で規定するNiおよ
びTiの含有量範囲において高Niおよび高Tiとす
る場合には、これに応じてPも0.5重量%以下の
範囲内で多めに含有させるのがよい。 〔実施例〕 高周波真空溶解炉を用いて無酸素銅を黒鉛るつ
ぼ中で10-3torrの減圧下で溶解し、Cu−30Ni%
母合金、Cu−25Ti%母合金およびCu−15%P母
合金を種々の量で添加し、黒鉛鋳型に鋳込んで厚
さ40mm×幅40mm×長さ160mmの鋳塊を得た。これ
らの銅合金の化学成分値を第1表に示した。 各鋳塊の表面を面削後、厚さ20mm×幅40mm×長
さ40mmのケークを切り出し、900℃×1時間の均
質化焼鈍を行い、酸化を防ぐために水冷した。酸
化スケールを除去したあと、冷間圧延→600℃×
1時間の焼鈍→空冷→酸化スケール除去の工程を
繰り返して厚さ0.5mmの板とした。最終焼鈍後の
加工率は50%である。 このようにして得た各板から引張試験片、導電
率測定試料、耐熱特性試料、はんだ付け試料を採
出した。そして、引張試験をJIS−Z2241に基づ
いて2トン引張試験機によつて行い、導電率は
JIS−Z0505に基づいて4端子法で測定した。耐
熱特性は30分加熱後の硬度が初期硬度の80%に達
した温度を調べ、これを軟化温度として評価し
た。はんだ付け試験は230℃のSn40%−Pb60%の
はんだ浴に浸漬後、はんだ付け部の表面観察を行
つて評価した。これらの試験結果を第1表に総括
して示した。 また、加工性を評価するために、前記同様の方
法によつて厚さ20mm×幅40mm×長さ40mmのケーク
を各々の合金について得たあと、これを900℃×
1時間の均質化焼鈍して水冷し、表面を清浄にし
てから圧下率を一定にして冷間圧延を施した。 そして、冷間圧延中に50%の圧下率に達する前
にケークのサイドに割れが生じた合金には記号×
を、70%の圧下率に達する前にケークのサイドに
割れが生じた合金には記号△を、また、70%の圧
下率を越えてもサイド割れが発生しなかつたもの
を記号○で表し、これらを第1表に併記した。
[Industrial Application Field] The present invention relates to a copper alloy suitable as a lead frame material used in semiconductor integrated circuits and the like. [Prior art] Kovar alloy (Fe-29Ni-
Fe-based Ni-containing materials such as 16Co) and 42 alloy (Fe-42Ni)
Alloy or oxygen-free copper, copper with Sn, phosphor bronze, Fe
Copper alloys such as copper alloys are well known. On the other hand, with the recent progress in semiconductor technology and the trend towards highly integrated circuits, lead frame materials with various characteristics have become required. For example, Si chips to be packaged in ceramics are usually soldered to a lead frame using Ag-Cu eutectic solder, but at this time the lead frame is heated to a high temperature of 700-800°C or sealed with low-melting glass. Sometimes
Reheated to 400-500℃. Si chips, etc. that will be packaged in plastic are fixed to lead frames by Dan bonding, but at this time work is done at around 350 degrees Celsius, and wire bonding is done at temperatures of 300 degrees Celsius.
After going through a heating process of several tens of seconds to ~350°C, it is sealed in plastic. Therefore, the lead frame material must not be deformed due to a decrease in strength during these various heating steps. Furthermore, since highly integrated ICs, power transistors, etc. generate large amounts of heat, their lead frame materials are also required to have heat dissipation properties. In particular, the lead frame material greatly contributes to heat dissipation in the initial stage of heat generation, so it is necessary to have excellent thermal conductivity. Furthermore, as the package size becomes smaller, the width of the internal and external terminals of the lead frame becomes smaller, resulting in a decrease in terminal strength, so the lead frame material itself needs to have even higher strength. . Various lead frame materials have been developed to meet these requirements, and copper-based alloys are suitable for meeting these requirements at low cost. Apart from the special use of lead frame materials, precipitation-strengthened Cu-Ti binary alloys and solution-strengthened Cu-Ni binary alloys are well known. However, both of these known alloys have high electrical resistance and cannot be said to be good materials for lead frame materials in terms of heat dissipation and electrical conductivity. moreover
In the case of a Cu-Ni binary alloy, it is necessary to add several percent of Ni in order to obtain sufficient strength, which is also disadvantageous from a cost standpoint. A ternary alloy of Cu-Ni-Ti is also known, and in the case of this alloy, by precipitating a compound of Ni and Ti in copper, it is possible to create a binary Cu-Ti alloy or a Cu-Ni2 alloy.
It can provide better heat dissipation and electrical conductivity than the original alloy. [Problems to be solved by the invention] As mentioned above, the Cu-Ni-Ti ternary alloy is well known, but this type of alloy has Ni and Ti dissolved in Cu or partially precipitated. It is difficult to process it in the existing state, and it has not yet been commercialized as an actual lead frame material. In order to manufacture lead frame materials, it is common to melt, cast, and then roll, and this type of alloy can be processed to a thickness suitable for lead frame materials using the normal manufacturing method for lead frame materials. When processing is attempted, side cracks occur, especially during cold working, resulting in a very poor yield. The purpose of the present invention is basically to solve the problem of workability of the Cu-Ni-Ti ternary alloy and to obtain a lead frame material that has various strict properties required in recent years. [Means for Solving the Problems] The present invention provides a copper alloy for lead frame materials that achieves the above-mentioned object, and provides Ni; 0.1 to 4.0% by weight.
%, Ti: 0.05 to 3.0%, P: more than 0.05 to 0.5%, and the balance is Cu and inevitable impurities. The following examples will demonstrate that the aforementioned objectives can be effectively achieved by limiting the content of Ni, Ti, and P in Cu in this manner. It is as follows. Regarding the lower limits of Ni and Ti: The alloy of the present invention aims to improve strength and heat resistance by precipitating a compound of Ni and Ti in copper. Ni less than 0.1% by weight and Ti 0.05%
If it is less than that, no improvement in strength will be observed and heat resistance will deteriorate. Therefore, Ni is 0.1% by weight or more, Ti
It is necessary to contain 0.05% by weight or more. Regarding the upper limits of Ni and Ti: Ni and Ti deteriorate hot workability and cold workability when they are dissolved in copper. Therefore, if these elements are contained in large amounts, defects such as side cracks will occur during processing into lead frame material products, resulting in a decrease in yield and productivity. The alloy of the present invention is characterized by the addition of an appropriate amount of P to improve its workability.
This makes it difficult for defects such as side cracks to occur even if Ni is contained up to 4.0% and Ti is contained up to 3.0%.
By allowing this amount after solving this workability problem, improved strength and heat resistance can be achieved as described above. Regarding P content; P is a characteristic element in the copper alloy for lead frame material of the present invention. The present inventors Ni; 0.1~
By adding P in the range of more than 0.05 to 0.5% to a copper alloy containing 4.0% and Ti: 0.05 to 3.0%, workability is significantly improved without reducing properties such as strength required for lead frame materials. I found out what to do. When the P content is 0.05% by weight or less, this effect of improving processability is not seen much. However, when P is contained in an amount exceeding 0.5% by weight, a Cu--P compound is formed, and the electrical conductivity and heat resistance properties are lowered, especially in the low content range of Ni and Ti. Therefore, the P content is suitably in the range of more than 0.05 to 0.5% by weight. At this time, when high Ni and high Ti are used within the content range of Ni and Ti specified in the present invention, it is preferable to contain a large amount of P within the range of 0.5% by weight or less. [Example] Using a high frequency vacuum melting furnace, oxygen-free copper was melted in a graphite crucible under a reduced pressure of 10 -3 torr, and Cu-30Ni%
A master alloy, a Cu-25Ti% master alloy and a Cu-15% P master alloy were added in various amounts and cast into a graphite mold to obtain an ingot with a thickness of 40 mm x width of 40 mm x length of 160 mm. The chemical composition values of these copper alloys are shown in Table 1. After face-shaving the surface of each ingot, a cake with a thickness of 20 mm x width of 40 mm x length of 40 mm was cut out, homogenized annealed at 900°C for 1 hour, and cooled with water to prevent oxidation. After removing oxide scale, cold rolling → 600℃×
The process of annealing for 1 hour → air cooling → oxide scale removal was repeated to obtain a plate with a thickness of 0.5 mm. The processing rate after final annealing is 50%. A tensile test piece, a conductivity measurement sample, a heat resistance characteristic sample, and a soldering sample were taken from each plate thus obtained. Then, a tensile test was conducted using a 2-ton tensile testing machine based on JIS-Z2241, and the electrical conductivity was
Measurement was performed using the 4-terminal method based on JIS-Z0505. The heat resistance properties were determined by measuring the temperature at which the hardness reached 80% of the initial hardness after heating for 30 minutes, and evaluating this as the softening temperature. The soldering test was evaluated by observing the surface of the soldered part after immersing it in a 230°C 40% Sn-60% Pb solder bath. These test results are summarized in Table 1. In addition, in order to evaluate the workability, cakes with a thickness of 20 mm x width of 40 mm x length of 40 mm were obtained for each alloy by the same method as described above, and then cakes were heated at 900°C
After homogenization annealing for 1 hour, cooling with water, and cleaning the surface, cold rolling was performed at a constant rolling reduction. Alloys with cracks on the side of the cake before reaching 50% reduction during cold rolling are marked with an
The symbol △ indicates alloys in which cracks occurred on the side of the cake before reaching a rolling reduction of 70%, and the symbol ○ indicates alloys in which side cracks did not occur even after exceeding a rolling reduction of 70%. , these are also listed in Table 1.

〔作用効果〕[Effect]

第1表から次のことが明らかである。 (a) No.1とNo.7を比較すると明らかなように、
Ni−Ti−Cu系の合金に適量のPを添加すると
加工性が向上する。そしてこの適量のP添加に
よつてはリードフレーム材に要求される諸特性
に殆ど差異はない。 (b) No.10に見られるように、Pを0.50%を超えて
添加すると、電気伝導度や軟化温度が特に低く
なる。従つてPの添加量の上限は0.50%以下と
する必要がある。 (c) NiとTiを本発明で規定するよりも多く含む
No.8やNo.9の合金は、P添加による加工性向上
を達成することが困難になり且つ電気伝導度お
よび軟化温度が低くなる。 (d) Ni、TiやPを含まないNo.11やNo.12、或いは
含んでも本発明で規定する範囲より低いNo.13で
は強度と軟化温度が低い。 (e) これに対し、Ni、Ti、Pを本発明で規定す
る範囲で含有する本発明合金No.1〜6は、強
度、電気伝導度、軟化温度が高く、リードフレ
ーム材に要求される諸特性を満足することがで
きる。そして加工性がいずれも良好である。
From Table 1, the following is clear. (a) As is clear from comparing No. 1 and No. 7,
Adding an appropriate amount of P to a Ni-Ti-Cu alloy improves workability. By adding this appropriate amount of P, there is almost no difference in the properties required of the lead frame material. (b) As seen in No. 10, when P is added in excess of 0.50%, the electrical conductivity and softening temperature become particularly low. Therefore, the upper limit of the amount of P added must be 0.50% or less. (c) Contains more Ni and Ti than specified in the present invention
In alloys No. 8 and No. 9, it is difficult to improve workability by adding P, and the electrical conductivity and softening temperature are low. (d) No. 11 and No. 12, which do not contain Ni, Ti, or P, or No. 13, which contains Ni, Ti, and P but which are lower than the range defined by the present invention, have low strength and softening temperature. (e) In contrast, the alloys No. 1 to 6 of the present invention containing Ni, Ti, and P within the range specified by the present invention have high strength, electrical conductivity, and softening temperature, and are required for lead frame materials. Various characteristics can be satisfied. Both have good workability.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%において、Ni;0.1〜4.0%、Ti;0.05
〜3.0%、P;0.05超〜0.5%、残部がCuおよび不
可避的不純物からなるリードフレーム材用銅合
金。
1 In weight%, Ni: 0.1-4.0%, Ti: 0.05
Copper alloy for lead frame material consisting of ~3.0%, P; more than 0.05~0.5%, and the balance being Cu and unavoidable impurities.
JP17917685A 1985-08-14 1985-08-14 Copper alloy for lead frame material Granted JPS6240335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17917685A JPS6240335A (en) 1985-08-14 1985-08-14 Copper alloy for lead frame material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17917685A JPS6240335A (en) 1985-08-14 1985-08-14 Copper alloy for lead frame material

Publications (2)

Publication Number Publication Date
JPS6240335A JPS6240335A (en) 1987-02-21
JPH0373613B2 true JPH0373613B2 (en) 1991-11-22

Family

ID=16061265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17917685A Granted JPS6240335A (en) 1985-08-14 1985-08-14 Copper alloy for lead frame material

Country Status (1)

Country Link
JP (1) JPS6240335A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109338149B (en) * 2018-11-27 2020-09-04 北京北冶功能材料有限公司 High-strength titanium-copper alloy bar suitable for conductive elastic component and preparation method thereof
CN112359246B (en) * 2020-11-16 2021-11-09 福州大学 Cu-Ti-P-Ni-Er copper alloy material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184655A (en) * 1984-03-02 1985-09-20 Hitachi Metals Ltd High-strength copper alloy having high electric conductivity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184655A (en) * 1984-03-02 1985-09-20 Hitachi Metals Ltd High-strength copper alloy having high electric conductivity

Also Published As

Publication number Publication date
JPS6240335A (en) 1987-02-21

Similar Documents

Publication Publication Date Title
KR870001504B1 (en) Copper alloy
JP2670670B2 (en) High strength and high conductivity copper alloy
JPS6250425A (en) Copper alloy for electronic appliance
JPS60245754A (en) High strength copper alloy having high electric conductivity
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPS6314056B2 (en)
JPH01272733A (en) Lead frame material made of cu alloy for semiconductor device
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH02277735A (en) Copper alloy for lead frame
JPH1197609A (en) Copper alloy for lead frame superior in oxide film adhesion and manufacture thereof
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same
JPH0373613B2 (en)
JPS6250426A (en) Copper alloy for electronic appliance
JPS6046340A (en) Copper alloy for lead frame
JPS594493B2 (en) Copper alloy for lead material of semiconductor equipment
JPS6250428A (en) Copper alloy for electronic appliance
JP2733117B2 (en) Copper alloy for electronic parts and method for producing the same
JPS58147140A (en) Lead wire of semiconductor device
JPS5853700B2 (en) Copper alloy for lead material of semiconductor equipment
JPH01165733A (en) High strength and high electric conductive copper alloy
JPH0118978B2 (en)
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPH0253502B2 (en)
JPS6157379B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term