JPH0370975A - Cooling structure for electronic part - Google Patents

Cooling structure for electronic part

Info

Publication number
JPH0370975A
JPH0370975A JP20587289A JP20587289A JPH0370975A JP H0370975 A JPH0370975 A JP H0370975A JP 20587289 A JP20587289 A JP 20587289A JP 20587289 A JP20587289 A JP 20587289A JP H0370975 A JPH0370975 A JP H0370975A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
cooling
lsi
evaporating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20587289A
Other languages
Japanese (ja)
Inventor
Kyoichi Asakawa
浅川 恭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Computertechno Ltd
Original Assignee
NEC Computertechno Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Computertechno Ltd filed Critical NEC Computertechno Ltd
Priority to JP20587289A priority Critical patent/JPH0370975A/en
Publication of JPH0370975A publication Critical patent/JPH0370975A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit the cooling of electronic parts with a simple structure without using cooling water by a method wherein inert and insulating refrigerant is employed in a cooling cycle and the electronic parts are stored in an evaporating unit while heat from the electronic parts is absorbed directly by the refrigerant in the evaporating unit. CONSTITUTION:Refrigerant 6, inert and having insulating property, is employed in a cooling cycle. The land of a board 9, on which an electronic part or an LSI 10 is mounted, is connected to an evaporating unit 5 so as to be contacted closely with the unit 5 by bonding or the like so that the LSI 10 is exposed to the refrigerant 6 in the evaporating unit 5. The refrigerant 6, whose pressure and temperature are increased, discharges heat in a heat discharging unit 3 and passes through an expansion valve 8, then, is evaporated in the evaporating unit 5 whereby the temperature of the same becomes low. The refrigerant 6, whose temperature is reduced, deprives heat from the LSI 10 in the evaporating unit 5 and enters into a compressor 2 again. In this case, the LSI 10 can absorb the heat directly; therefore, secondary refrigerant or cooling water, cold plate or the like is not necessary to be used and heat exchanging efficiency may be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被冷却体としての電子部品を冷却する電子部
品の冷却構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling structure for electronic components that cools electronic components as objects to be cooled.

[従来の技術] 従来、この種の電子部品の冷却構造は、第2図に示すよ
うに、電子装置21と冷却装置22とを別に設けである
。冷却装置22は、圧縮機28゜ファン41によって冷
却される凝縮器29.膨張弁30及び熱交換器31を配
管32によって接続した冷却サイクルを備え、配管32
内には1次冷媒33が充填されている。熱交換器31は
、冷却サイクルによって低温となった1次冷媒33と電
子装置21にポンプ35によって送られる2次冷媒であ
る冷却水27との間の熱交換を行う。即ち、冷却された
冷却水27は、電子装置21内の配管25へ送給され被
冷却体23に密着しているコールドプレート24の熱を
奪い取ることにより被冷却体23を冷却し、ホース26
を通って冷却装置22に戻り、熱交換器31により再び
1次冷媒33と熱交換される。又、ファン41.ポンプ
35、圧縮機28は、制御部34によって運転を制御さ
れる。即ち、冷却装置22の能力制御は、制御部34に
よってファン41の風量調整による凝縮器29の効率の
制御、圧縮機28のホラ1〜ガス又は、インバータによ
る制御によって行なわれる。
[Prior Art] Conventionally, in this type of cooling structure for electronic components, as shown in FIG. 2, an electronic device 21 and a cooling device 22 are provided separately. The cooling device 22 includes a compressor 28 and a condenser 29 that is cooled by a fan 41 . A cooling cycle is provided in which an expansion valve 30 and a heat exchanger 31 are connected by a pipe 32.
A primary refrigerant 33 is filled inside. The heat exchanger 31 performs heat exchange between the primary refrigerant 33, which has become low temperature through the cooling cycle, and the cooling water 27, which is a secondary refrigerant, and is sent to the electronic device 21 by the pump 35. That is, the cooled cooling water 27 is sent to the piping 25 inside the electronic device 21 and cools the object 23 by removing the heat from the cold plate 24 that is in close contact with the object 23 to be cooled.
It returns to the cooling device 22 through the heat exchanger 31 and exchanges heat with the primary refrigerant 33 again. Also, fan 41. The operation of the pump 35 and the compressor 28 is controlled by the control unit 34. That is, the capacity of the cooling device 22 is controlled by the control unit 34 by controlling the efficiency of the condenser 29 by adjusting the air volume of the fan 41, and by controlling the compressor 28 by controlling the compressor 28 by the gas or inverter.

電子装置21内の被冷却体23において、第3図に示す
ように、電子部品としてのLSI40からコールドプレ
ート24への熱伝導は、LS I 40.LS Iケー
ス36→フィルム膜38→伝熱ペース)〜37→コール
ドブレーl〜24→冷却水27の順に行なわれる。
In the object to be cooled 23 in the electronic device 21, as shown in FIG. The steps are performed in the following order: LSI case 36→film 38→heat transfer paste 37→cold brake 1˜24→cooling water 27.

[発明が解決しようとする課題] 然しながら、上述した従来の電子部品の冷却構造にあっ
ては、2次冷媒に冷却水27を用いているため、冷却水
27の水質の管理や電子装置21内における結露防止の
ために冷媒の温度を極端に低くすることが不可能になっ
ており、そのため、伝熱ペースト37等によるLSIと
冷媒との間の低熱抵抗化が必要となりjPI造が複雑に
なっているという欠点がある。
[Problems to be Solved by the Invention] However, in the conventional cooling structure for electronic components described above, since the cooling water 27 is used as a secondary coolant, it is difficult to manage the water quality of the cooling water 27 and to control the inside of the electronic device 21. It is now impossible to lower the temperature of the refrigerant to an extremely low level in order to prevent condensation, and as a result, it is necessary to lower the thermal resistance between the LSI and the refrigerant using heat transfer paste 37, etc., making the jPI structure more complicated. It has the disadvantage of being

そこで、本発明の課題は、冷却水を用いることなく、し
かも、構造を簡単にして電子部品の冷却を行なうことが
できるようにする点にある。
Therefore, an object of the present invention is to make it possible to cool electronic components without using cooling water and with a simplified structure.

[課題を解決するための手段] このような課題を解決するための本発明の技術的手段は
、冷媒の圧縮を行なう圧縮機と、圧縮された冷媒の排熱
を行なう排熱部と、排熱された冷媒を膨張させる膨張弁
と、膨張された冷媒によって吸熱する冷媒の蒸発部とか
ら冷却サイクルを構成するとともに、冷却サイクルに不
活性かつ絶縁性の冷媒を用い、蒸発部内に電子部品を収
納し、蒸発部内の冷媒で直接電子部品からの吸熱を行な
う上うにした電子部品の冷却構造にある。
[Means for Solving the Problems] The technical means of the present invention for solving these problems consists of a compressor that compresses refrigerant, a heat exhaust section that exhausts heat from the compressed refrigerant, and a The cooling cycle consists of an expansion valve that expands heated refrigerant and a refrigerant evaporation section that absorbs heat by the expanded refrigerant.In addition, an inert and insulating refrigerant is used in the cooling cycle, and electronic components are installed in the evaporation section. This is a cooling structure for electronic components in which heat is directly absorbed from the electronic components using the refrigerant in the evaporator.

[実施例] 以下、添付図面に基づいて本発明の実施例に係る電子部
品の冷却構造について説明する。
[Example] Hereinafter, a cooling structure for an electronic component according to an example of the present invention will be described based on the accompanying drawings.

第1図に示すように、実施例に係る冷却vI造は、冷却
サイクルを備えている。この冷却サイクルは、冷媒6の
圧縮を行なう圧!I機2と、圧縮された冷媒6の排熱を
行なう排熱部3と、排熱された冷媒6を膨張させる膨張
弁8と、膨張された冷媒6によって吸熱する冷媒の蒸発
部5とから構成され、各要素は配管4で接続されている
。また、上記排熱部3は、ファン13の回転により排熱
されるようになっている。更に、上記圧縮機2及びファ
ン13は制御部12により制御される。即ち、制御部1
2は、ファン13の風量調整による排熱部3の効率制御
、圧縮機2のインバータ制御を行なうものである。そし
て、上記の冷却サイクルは、電子装置1に一体に組込ま
れている。
As shown in FIG. 1, the cooling VI structure according to the embodiment includes a cooling cycle. In this cooling cycle, the pressure at which the refrigerant 6 is compressed! From the I machine 2, a heat exhaust section 3 that exhausts heat from the compressed refrigerant 6, an expansion valve 8 that expands the exhausted refrigerant 6, and a refrigerant evaporation section 5 that absorbs heat by the expanded refrigerant 6. Each element is connected by piping 4. Further, the heat exhaust section 3 is configured to exhaust heat by rotation of the fan 13. Furthermore, the compressor 2 and fan 13 are controlled by a control section 12. That is, the control section 1
2 controls the efficiency of the heat exhaust section 3 by adjusting the air volume of the fan 13 and controls the compressor 2 with an inverter. The above cooling cycle is integrated into the electronic device 1.

また、冷却サイクルにおいて、冷媒6としては不活性で
絶縁性のあるものが用いられる。
Furthermore, in the cooling cycle, an inert and insulating refrigerant is used as the refrigerant 6.

更に、電子装置1において、電子部品としてのLSIl
0は、蒸発部5内に収納されている。この収納手段は、
LSIl0が蒸発部5内の冷媒6に晒されるように、L
SIl0が搭載された基板9の搭載面を蒸発部5に接着
等により密閉接続しである。
Furthermore, in the electronic device 1, an LSI as an electronic component is used.
0 is housed in the evaporator 5. This storage means
L so that the LSI10 is exposed to the refrigerant 6 in the evaporator 5.
The mounting surface of the substrate 9 on which the SI10 is mounted is hermetically connected to the evaporator 5 by adhesive or the like.

従って、この実施例に係る冷却JI4造によれば、高圧
、高温となった冷媒6は、排熱部3において排熱し、膨
張弁8を通り蒸発部5において気化し低温となる。低温
となった冷媒6は、蒸発部5内の被冷却体であるLSl
loより熱を奪い再−び圧縮機2に入る。この場合、冷
媒6は、LS I 10から直接吸熱できるので、従来
のように、2次冷媒としての冷却水や、コールドブレー
ト等の部材を用いなくても良く、それだけ熱交換効率が
良いものとなっている。また、蒸発部5においては、L
SIl0の搭載される基板9が接着等により密閉接続さ
れているので、冷媒6が外に漏れることがなく、確実に
LSIl0から吸熱が行なわれる。
Therefore, according to the cooling JI4 construction according to this embodiment, the high pressure and high temperature refrigerant 6 exhausts heat in the heat exhaust section 3, passes through the expansion valve 8, evaporates in the evaporation section 5, and becomes low temperature. The refrigerant 6 that has become low temperature is transferred to LSL, which is the object to be cooled in the evaporator 5.
It absorbs heat from lo and enters the compressor 2 again. In this case, the refrigerant 6 can absorb heat directly from the LSI 10, so there is no need to use cooling water as a secondary refrigerant or components such as cold plates as in the past, and the heat exchange efficiency is improved accordingly. It has become. In addition, in the evaporation section 5, L
Since the substrate 9 on which the SI10 is mounted is hermetically connected by adhesive or the like, the coolant 6 does not leak outside, and heat is reliably absorbed from the LSI10.

尚、LS I 10と冷媒6との間の低熱抵抗を要求さ
れる場合は、LSIにヒートシンを接着する等ずれば良
い。
Note that if low thermal resistance is required between the LSI 10 and the coolant 6, a heat sink may be bonded to the LSI.

[発明の効果] 以上説明したように本発明の電子部品の冷却構造によれ
ば、冷却サイクルの蒸発部に被冷却体としての電子部品
をとり込み、低温となった冷媒によって直接冷却するの
で、2次冷媒である冷却水を用いなくても良く、そのた
め、冷却水の水質管理が不要になるとともに、構造も簡
単になり、また、膨張弁と圧m機間の距離を短くするこ
とができ、結露対策が少なくてすむという効果がある。
[Effects of the Invention] As explained above, according to the electronic component cooling structure of the present invention, the electronic component as the object to be cooled is taken into the evaporation section of the cooling cycle and is directly cooled by the low-temperature refrigerant. There is no need to use cooling water, which is a secondary refrigerant, so there is no need to manage the quality of the cooling water, the structure is simple, and the distance between the expansion valve and the pressure machine can be shortened. This has the effect of requiring fewer measures against condensation.

更に、蒸発部内の冷媒温度を低くすることかでき、冷媒
と電子部品との温度差が小さい場合に必要とする極低熱
抵抗を不要にてきるという効果がある。
Furthermore, the temperature of the refrigerant in the evaporator can be lowered, making it unnecessary to provide extremely low thermal resistance, which is required when the temperature difference between the refrigerant and electronic components is small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の冷却構造を示す図、第2図は従来の冷
却構造の一例を示す図、第3図はその要部断面図である
。 1;電子装置 3:排熱部 5:蒸発部 8 : 膨づ長井 10:LSl 13:ファン 22:冷却装置
FIG. 1 is a diagram showing a cooling structure of the present invention, FIG. 2 is a diagram showing an example of a conventional cooling structure, and FIG. 3 is a sectional view of a main part thereof. 1; Electronic device 3: Heat exhaust section 5: Evaporation section 8: Expanding Nagai 10: LSL 13: Fan 22: Cooling device

Claims (1)

【特許請求の範囲】[Claims] 冷媒の圧縮を行なう圧縮機と、圧縮された冷媒の排熱を
行なう排熱部と、排熱された冷媒を膨張させる膨張弁と
、膨張された冷媒によって吸熱する冷媒の蒸発部とから
冷却サイクルを構成するとともに、冷却サイクルに不活
性かつ絶縁性の冷媒を用い、蒸発部内に電子部品を収納
し、蒸発部内の冷媒で直接電子部品からの吸熱を行なう
ようにしたことを特徴とする電子部品の冷却構造。
A cooling cycle consists of a compressor that compresses refrigerant, a heat exhaust section that exhausts heat from the compressed refrigerant, an expansion valve that expands the exhausted refrigerant, and a refrigerant evaporator that absorbs heat by the expanded refrigerant. An electronic component characterized in that an inert and insulating refrigerant is used in the cooling cycle, electronic components are housed in an evaporator, and the refrigerant in the evaporator directly absorbs heat from the electronic components. cooling structure.
JP20587289A 1989-08-09 1989-08-09 Cooling structure for electronic part Pending JPH0370975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20587289A JPH0370975A (en) 1989-08-09 1989-08-09 Cooling structure for electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20587289A JPH0370975A (en) 1989-08-09 1989-08-09 Cooling structure for electronic part

Publications (1)

Publication Number Publication Date
JPH0370975A true JPH0370975A (en) 1991-03-26

Family

ID=16514126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20587289A Pending JPH0370975A (en) 1989-08-09 1989-08-09 Cooling structure for electronic part

Country Status (1)

Country Link
JP (1) JPH0370975A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375650A (en) * 1991-11-15 1994-12-27 Nec Corporation Liquid coolant circulation control system for immersion cooling systems
US6205803B1 (en) * 1996-04-26 2001-03-27 Mainstream Engineering Corporation Compact avionics-pod-cooling unit thermal control method and apparatus
US6345512B1 (en) * 2001-06-15 2002-02-12 Marconi Communications, Inc. Power efficient, compact DC cooling system
KR100438294B1 (en) * 2001-11-28 2004-07-02 엘지전자 주식회사 Cooler for IC
KR100438295B1 (en) * 2001-11-28 2004-07-02 엘지전자 주식회사 Cooler for IC

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375650A (en) * 1991-11-15 1994-12-27 Nec Corporation Liquid coolant circulation control system for immersion cooling systems
US5458185A (en) * 1991-11-15 1995-10-17 Nec Corporation Liquid coolant circulation control system for immersion cooling
US6205803B1 (en) * 1996-04-26 2001-03-27 Mainstream Engineering Corporation Compact avionics-pod-cooling unit thermal control method and apparatus
US6345512B1 (en) * 2001-06-15 2002-02-12 Marconi Communications, Inc. Power efficient, compact DC cooling system
KR100438294B1 (en) * 2001-11-28 2004-07-02 엘지전자 주식회사 Cooler for IC
KR100438295B1 (en) * 2001-11-28 2004-07-02 엘지전자 주식회사 Cooler for IC

Similar Documents

Publication Publication Date Title
Schmidt et al. High-end server low-temperature cooling
EP0489326B1 (en) Cooling system of electronic computer
TWI285912B (en) Processing apparatus and method of processing apparatus maintenance
US6233959B1 (en) Dehumidified cooling assembly for IC chip modules
US20080310112A1 (en) System and Method for Providing Dewpoint Control in an Electrical Enclosure
JP2011122779A (en) Refrigerating cycle device
JPH024163A (en) Cooling device for semiconductor element for power
JP2012528296A (en) Vapor compression cooling system with pumped loop drive
TW200521657A (en) Pumped liquid cooling system using a phase change refrigerant
JP2009085526A (en) Air conditioner
JPH0370975A (en) Cooling structure for electronic part
US7215544B2 (en) Apparatus for enhancing heat transfer efficiency of endothermic/exothermic article
WO2021189726A1 (en) Radiator and air conditioner outdoor unit
JPH0498026A (en) Outdoor unit of air conditioner
JP2001085883A (en) Device for cooling electronics
JP2009264710A (en) Heat pump device
JP3703889B2 (en) Cooling device and refrigerator
JP2001108339A (en) Refrigerator with dehumidifying function
JP2005019907A (en) Cooler
JPH07332829A (en) Freezer
JPS61131553A (en) Immersion liquid cooling apparatus
JPH06221738A (en) Electronic refrigerating and heating plant
JPH0442931Y2 (en)
JP2003314942A (en) Heat collector
KR100218327B1 (en) Cooling apparatus of semiconductor package