JPH0370947A - Lamination type heat exchanger - Google Patents
Lamination type heat exchangerInfo
- Publication number
- JPH0370947A JPH0370947A JP20699589A JP20699589A JPH0370947A JP H0370947 A JPH0370947 A JP H0370947A JP 20699589 A JP20699589 A JP 20699589A JP 20699589 A JP20699589 A JP 20699589A JP H0370947 A JPH0370947 A JP H0370947A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- flow
- tube
- passage
- partition wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003475 lamination Methods 0.000 title 1
- 239000003507 refrigerant Substances 0.000 claims abstract description 184
- 238000005192 partition Methods 0.000 claims abstract description 29
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/03—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
- F28D1/0308—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
- F28D1/0325—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
- F28D1/0333—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は車両の空調装置等に組み込まれて使用される積
層型熱交換器に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laminated heat exchanger that is incorporated into a vehicle air conditioner or the like.
[従来技術]
一般に車両の空調装置等に組み込まれて使用される81
層型熱交換器(エバポレータ)には、冷媒流入口及び冷
媒流出口と該冷媒流入口と冷媒流出口の間に配される偏
平な冷媒流域部とを備え相互に並列且つ複数段に連通さ
れる多数の冷媒チューブと、被冷却空気がその間を通過
する多数のフィンと、を積層状に配してなる形式のもの
がある。[Prior art] Generally used by being incorporated into vehicle air conditioners, etc. 81
A layered heat exchanger (evaporator) includes a refrigerant inlet, a refrigerant outlet, and a flat refrigerant flow area disposed between the refrigerant inlet and the refrigerant outlet, and the refrigerant is connected to each other in parallel and in multiple stages. There is a type in which a number of refrigerant tubes and a number of fins through which air to be cooled passes are arranged in a stacked manner.
従来の積層型熱交換器について図面を参照して説明する
。第7図は従来例の積層型熱交換器の全体姿図であり、
第8図はこの熱交換器における冷媒の流れを示している
。A conventional stacked heat exchanger will be explained with reference to the drawings. FIG. 7 is an overall view of a conventional laminated heat exchanger.
FIG. 8 shows the flow of refrigerant in this heat exchanger.
第7図及び8図において1図示しないコンデンサ側から
冷媒導入管18を経由し圧縮機動力により送られてきた
気液混合状態の冷媒は、膨張弁通過後まず冷媒流入口と
なる各チューブ付属のタンク部より前段のチューブ内部
の冷媒流路を第8図に示す如く矢印の向きに流れる。次
に冷媒は、順次多段に接続されたチューブを貫流し、こ
の貫流の間に各チューブと交互に配されたコルゲートフ
ィンの間を通過して流れる被冷却空気を冷却する。In FIGS. 7 and 8, the refrigerant in a gas-liquid mixed state is sent by the compressor power from the condenser side (not shown) via the refrigerant inlet pipe 18, and after passing through the expansion valve, first the refrigerant is attached to each tube that becomes the refrigerant inlet. The refrigerant flows in the direction of the arrow as shown in FIG. 8 through the refrigerant flow path inside the tube at the stage before the tank section. Next, the refrigerant flows through the tubes connected in multiple stages one after another, and during this flow, the coolant cools the air flowing between the tubes and the alternating corrugated fins.
即ち冷媒は、このチューブ内を流れる間に被冷却空気か
ら熱を奪い、自身は蒸発気化すると共に冷媒排出管17
より蒸気となって再びコンプレッサ側へ還流する。この
後冷媒はコンプレッサ及びコンデンサにより再び圧縮液
化され気液混合状態となり、膨張弁を経てまた熱交換器
側に戻ることを繰り返す。That is, the refrigerant removes heat from the air to be cooled while flowing inside this tube, and the refrigerant itself evaporates and vaporizes while passing through the refrigerant discharge pipe 17.
It becomes more steam and returns to the compressor side. Thereafter, the refrigerant is compressed and liquefied again by the compressor and condenser to become a gas-liquid mixed state, and returns to the heat exchanger side via the expansion valve, repeating the process.
[発明が解決しようとする課WJ]
積層型熱交換器においては冷媒流の方向は被冷却空気流
の方向と直交するいわゆる直交流として構成されている
が、かかる直交流によっては原理的にあまり大きな熱交
換効率が期待できない。[Issue WJ to be solved by the invention] In a laminated heat exchanger, the direction of the refrigerant flow is orthogonal to the direction of the air flow to be cooled, so-called cross flow, but in principle, such a cross flow is not very effective. Great heat exchange efficiency cannot be expected.
更に、熱交換器において冷媒が冷媒排出管に到達する直
前の冷媒流域部はいわゆるスーパーヒート領域といわれ
る部分であり、冷媒は既にこれ以前に完全に気化してお
り、このスーパーヒート領域においては冷媒は気化状態
のまま被冷却空気の熱により約5〜lO℃程度の温度上
昇を与えられる。この温度上昇の制御は熱交換器の冷媒
導入管側に設置されている膨張弁において冷媒の流量を
制御することによって行われているものであるが、この
スーパーヒート領域によって冷却される被冷却空気の温
度はこの冷媒の高温度のため他の蒸発冷却領域にて冷却
される空気よりも必然的に高くなる。従って、被冷却空
気の温度分布を均一にし、快適な空調を得るためにはス
ーパーヒート領域はできるだけ短くすることが望ましい
。一方このスーパーヒート領域において所定の熱量の交
換が行なわれず、これに起因して冷媒が液状のままコン
プレッサ側に流入することがあるといわゆるコンプレッ
サの液圧縮という事態が生じ、これはコンプレッサに大
きな障害を与える。Furthermore, the refrigerant flow area immediately before the refrigerant reaches the refrigerant discharge pipe in the heat exchanger is a so-called superheat region, and the refrigerant has already completely vaporized before this point. is given a temperature rise of about 5 to 10° C. by the heat of the air to be cooled while it remains in a vaporized state. This temperature rise is controlled by controlling the flow rate of the refrigerant in an expansion valve installed on the refrigerant inlet pipe side of the heat exchanger, but the air to be cooled is cooled by this superheat area. Due to the high temperature of this refrigerant, the temperature of the air is necessarily higher than that of the air cooled in other evaporative cooling regions. Therefore, in order to make the temperature distribution of the air to be cooled uniform and to obtain comfortable air conditioning, it is desirable to make the superheat region as short as possible. On the other hand, if the predetermined amount of heat is not exchanged in this superheat region, and as a result, the refrigerant may flow into the compressor in a liquid state, a situation called liquid compression in the compressor will occur, which can cause serious problems for the compressor. give.
従ってこのスーパーヒート領域においては、できるだけ
短かい区間において所定量の熱交換が行なわれるという
、特に熱交換効率を高くできる熱交換器が望まれていた
。Therefore, in this superheat region, there has been a demand for a heat exchanger that can exchange a predetermined amount of heat over as short a period as possible, and that can particularly increase heat exchange efficiency.
本発明は上述の問題点に鑑み、最終段の冷媒チューブの
冷媒出口近傍において被冷却流の方向に対する冷媒の流
れ方向に着目して、少くとも最終段の熱交換効率を高く
した積層型熱交換器を提供することを目的とする。In view of the above-mentioned problems, the present invention focuses on the flow direction of the refrigerant with respect to the direction of the flow to be cooled near the refrigerant outlet of the refrigerant tube in the final stage, and provides a stacked heat exchanger that increases the heat exchange efficiency at least in the final stage. The purpose is to provide equipment.
〔課題を達成するための手段]
本発明の前記目的は、冒頭に述べた形式の積層型熱交換
器を、少くとも最終段の冷媒チューブは、被冷却空気流
の上流側に配される冷媒流出口と、冷媒流域部に被冷却
空気流と略平行に配され一方の側に冷媒主通路を他方の
側に該冷媒主通路よりも小さな冷媒補助通路を夫々有す
る少くとも一つの流路仕切壁と、を備えるものであり。[Means for Achieving the Object] The object of the present invention is to provide a laminated heat exchanger of the type mentioned at the beginning, in which at least the final stage refrigerant tube is provided with a refrigerant disposed on the upstream side of the air flow to be cooled. an outlet, and at least one flow path partition disposed in the refrigerant flow area substantially parallel to the air flow to be cooled and having a main refrigerant passage on one side and an auxiliary refrigerant passage smaller than the main refrigerant passage on the other side. It is equipped with a wall and.
前記冷媒流出口に対向する前記流路仕切壁は。The flow path partition wall faces the refrigerant outlet.
その冷媒主通路を被冷却空気流の下流側に有するもので
あるとすることによって達成される。This is achieved by having the main refrigerant passage downstream of the airflow to be cooled.
流路仕切壁は2個所に設け、相互に逆の側に冷媒主通路
を設けると共に冷媒流入口を被冷却空気流の下流側に設
けることが好ましい。It is preferable that the flow path partition walls be provided at two locations, with the refrigerant main passages provided on mutually opposite sides, and the refrigerant inflow port provided on the downstream side of the air flow to be cooled.
[作用]
最終段の冷媒チューブの冷媒流出口を被冷却空気流の上
流側に、冷媒流出口と対向する流路仕切壁の冷媒主通路
を被冷却空気流の下流側に設けることにより、熱交換器
の出口近傍即ちスーパーヒート流域における冷媒の主流
の方向が被冷却空気流の方向と対向することとなる。更
に冷媒補助通路を通る冷媒の補助流により冷媒流域部の
側壁と流路仕切壁とによって形式される隅(コーナー)
部における冷媒のよどみが防止できる。その結果冷媒チ
ューブ内における冷媒の滞溜を防止し、−層熱交換効率
を高める。[Function] By providing the refrigerant outlet of the final stage refrigerant tube on the upstream side of the airflow to be cooled, and the main refrigerant passage of the flow path partition wall facing the refrigerant outlet on the downstream side of the airflow to be cooled, heat can be removed. The direction of the main flow of the refrigerant near the outlet of the exchanger, that is, the superheat region, is opposite to the direction of the air flow to be cooled. In addition, the auxiliary flow of refrigerant through the auxiliary refrigerant passage creates a corner defined by the side wall of the refrigerant flow area and the flow path partition wall.
stagnation of refrigerant in the area can be prevented. As a result, accumulation of the refrigerant in the refrigerant tube is prevented, and the -layer heat exchange efficiency is increased.
[実施例]
本発明の構成について更に図面を参照して説明する。第
1図は2本発明の一実施例に係る積層型熱交換器のチュ
ーブの全体構成を、矢印で示した冷媒の流れと共に示す
透視図である。[Example] The configuration of the present invention will be further explained with reference to the drawings. FIG. 1 is a perspective view showing the overall structure of tubes of a laminated heat exchanger according to an embodiment of the present invention, together with the flow of refrigerant indicated by arrows.
この熱交換器の各チューブは夫々4つのタンク部を備え
ると共に9前後に配される各チューブとは付属する当該
タンク部において相互に連通している。Each tube of this heat exchanger is provided with four tank sections, and communicates with each of the tubes placed before and after the tubes at the attached tank sections.
冷媒導入管18及び冷媒排出管■7の側から見て手前か
ら半分まで(前半部)のチューブであって且つ手前から
奇数番目に配されている各チューブは、冷媒流入口とな
る手前から見て右上にあるタンク部において冷媒導入管
18に連通されると共にその内部にこの右上タンク部と
左下タンク部とを連通させる冷媒流路を夫々備えている
。前半部のチューブであって且つ手前から偶数番目の各
チューブは冷媒流出口となる手前から見て左上にあるタ
ンク部において冷媒排出管17に連通されると共にその
内部にこの左上タンク部と右下タンク部とを連通させる
冷媒流路を夫々備えている。When viewed from the front half (first half) of the refrigerant inlet pipe 18 and refrigerant discharge pipe 7, each tube arranged at an odd number from the front becomes a refrigerant inlet when viewed from the front. The upper right tank section communicates with the refrigerant inlet pipe 18, and has refrigerant channels therein that connect the upper right tank section and the lower left tank section. The tubes in the front half and the even-numbered tubes from the front are connected to the refrigerant discharge pipe 17 at the tank section located at the upper left when viewed from the front, which serves as the refrigerant outlet, and the upper left tank section and the lower right tube are connected inside the tank section at the upper left when viewed from the front. Each of the refrigerant channels is provided with a refrigerant flow path that communicates with the tank section.
前半部とそれ以降(後半部)のタンク部は上側のタンク
部において互いにその連通が阻止されており、下側のタ
ンク部においては互いに連通している。後半部のチュー
ブであって且つその最前部から数えて奇数番目の各チュ
ーブはその内部に左下タンク部と右上タンク部とを連通
させる冷媒流路を備え、後半部で且つその最前部から数
えて偶数番目の各チューブは左上タンク部と右下タンク
部とを連通させる冷媒流路をその内部に有している。更
に後半部の全てのチューブは上側の左右双方のタンク部
相互間においても夫々冷媒流路を備えている。前半部及
び後半部のチューブの数は夫々偶数個となっている。な
お図示されていないが、大きな矢印で示した被冷却空気
流がその間を通過するコルゲートフィンは各チューブの
間に夫々配されており、各チューブ及び各コルゲートフ
ィンとが積層状態に交互に配されて一つの熱交換器が構
成されている。The first half and the subsequent (second half) tank sections are prevented from communicating with each other in the upper tank section, and communicate with each other in the lower tank section. Each of the odd-numbered tubes in the rear half, counting from the frontmost part, is provided with a refrigerant flow path that communicates the lower left tank part and the upper right tank part, and Each of the even-numbered tubes has a refrigerant flow path therein that connects the upper left tank section and the lower right tank section. Furthermore, all the tubes in the rear half have refrigerant passages between the upper left and right tank parts, respectively. The numbers of tubes in the first half and the second half are even numbers. Although not shown, corrugated fins, indicated by large arrows, through which the airflow to be cooled passes, are arranged between each tube, and each tube and each corrugated fin are arranged alternately in a stacked state. A single heat exchanger is constructed.
第3図〜第5図に基いて各チューブの構造を説明する。The structure of each tube will be explained based on FIGS. 3 to 5.
第3図は理解を容易にするために、第1図の熱交換器の
前半部に配されている各チューブを2枚のパネル状のチ
ューブエレメントに分解して示したものである。奥側に
示したチューブエレメント1はほぼ長方形のパネル状部
分を有しており、夫々5〜8と符号を付された4つのタ
ンク部(A)〜(D)をその上端及び下端に備え、更に
そのパネル状部分には他方のチューブエレメントとの間
において冷媒流路となる冷媒流域部2Bを備える。タン
ク部(A)〜(D)は夫々のチューブの前後に配される
他のチューブの各隣接するタンク部と連通ずる連通孔2
0〜23を夫々備えている。For ease of understanding, FIG. 3 shows each tube disposed in the front half of the heat exchanger of FIG. 1 disassembled into two panel-shaped tube elements. The tube element 1 shown on the back side has a substantially rectangular panel-shaped part, and has four tank parts (A) to (D), respectively numbered 5 to 8, at its upper and lower ends, Furthermore, the panel-shaped portion is provided with a refrigerant flow area 2B that serves as a refrigerant flow path between it and the other tube element. Tank parts (A) to (D) have communication holes 2 that communicate with adjacent tank parts of other tubes arranged before and after each tube.
0 to 23 respectively.
2つのタンク部(B)6及び(C)7は夫々。The two tank parts (B) 6 and (C) 7 are respectively.
冷媒流入口又は冷媒流出口となるよう冷媒流域部2Bに
直接連通されているが、他の2つのタンク部(A〉5及
び(D)8はこの冷媒流域部との連通を阻止されており
、従って熱交換器として組立てた場合には単に前後のチ
ューブのタンク部と連通する役目を有するのみである。Although it is directly connected to the refrigerant basin section 2B to serve as a refrigerant inlet or a refrigerant outlet, the other two tank sections (A>5 and (D) 8) are blocked from communicating with this refrigerant basin section. Therefore, when assembled as a heat exchanger, it merely serves to communicate with the tank portions of the front and rear tubes.
チューブ内において冷媒流域部26となるチューブエレ
メントの凹部には2両端に夫々冷媒主通路30A、 3
0Bおよび冷媒補助通路31A、 31Bを残して冷媒
流をその部分において阻止する二つの直線状の仕切壁9
A、9Bが冷媒流域部の幅+程度の長さだけ水平に形成
されており、この2つの仕切り壁9A、9B相互は図示
の如く左右互い違いに冷媒主通路30A、 30B及び
冷媒補助通路31A、 31Bを備えて配されている。In the concave part of the tube element that becomes the refrigerant flow area 26 in the tube, there are two refrigerant main passages 30A and 3 at both ends, respectively.
0B and two straight partition walls 9 that block the refrigerant flow leaving the refrigerant auxiliary passages 31A and 31B.
A, 9B are formed horizontally by a length approximately equal to the width of the refrigerant flow area + the length of the refrigerant flow area, and these two partition walls 9A, 9B form refrigerant main passages 30A, 30B and refrigerant auxiliary passages 31A, alternating left and right as shown in the figure. 31B.
冷媒流域部2B内部のチューブ内の冷媒を撹拌し冷媒の
熱交換効率を向上させる目的で多数の直線状のリブ10
がチューブエレメントのパネル状部分全体に渡って斜め
に且つ相互に平行して形成されている。なお第3図にお
いては簡単のためリブlOは単に一部のみを示している
。符号2で示した手前側のチューブエレメントはリブ1
0’が奥側のチューブエレメント1のリブ10とクロス
して当接するように形成されている点を除けば奥側チュ
ーブ1と対称形に製作されている。双方のチューブエレ
メント1及び2を重ね合わせることにより一つの偏平な
袋状のチューブが形成される。第1図の熱交換器の前半
部のチューブは、第3図に示したチューブエレメントで
構成されるチューブを手前から奇数番目と偶数番目とに
おいてその表裏の向きを互い違いにして配されている。A large number of linear ribs 10 are provided for the purpose of stirring the refrigerant in the tube inside the refrigerant flow area 2B and improving the heat exchange efficiency of the refrigerant.
are formed obliquely and parallel to each other over the entire panel-shaped portion of the tube element. Note that in FIG. 3, only a portion of the rib 1O is shown for the sake of simplicity. The tube element on the near side indicated by code 2 is rib 1.
It is manufactured to be symmetrical to the inner tube element 1 except that 0' is formed so as to cross and abut against the rib 10 of the inner tube element 1. By overlapping both tube elements 1 and 2, one flat bag-like tube is formed. The tubes in the first half of the heat exchanger shown in FIG. 1 are arranged with the front and back directions of the tubes made up of the tube elements shown in FIG. 3 alternated between odd-numbered tubes and even-numbered tubes from the front.
第1図に示されているように本実施例の熱交換器の最終
段の冷媒チューブは、冷媒流出口となるタンク部6が被
冷却空気流の上流側に配されており、この流出口に対向
する流路仕切壁9Aはその冷媒主通路30Aを被冷却空
気の下流側に備えている。As shown in FIG. 1, in the final stage refrigerant tube of the heat exchanger of this embodiment, a tank portion 6 serving as a refrigerant outlet is arranged on the upstream side of the air flow to be cooled, and this outlet The flow path partition wall 9A facing the cooling medium has a main refrigerant passage 30A on the downstream side of the air to be cooled.
第4図には第1図の熱交換器の後半部に配されている各
チューブが第3図同様各エレメント毎に分解して示され
ている。第3図との相違点はその上側の左右のタンク部
がチューブ内において連通部12を介して連通している
点である。なお第4図ではリブ10は省略のため表示し
ていないが第3図同様に形成されている。前半部の最後
列及び後半部の最前列に位置するチューブエレメント1
9は例として第5図に示す如くその上部タンク部に連通
孔を備えていない。なお1第1図の熱交換器における冷
媒流を模式的に示した第2図においては。In FIG. 4, the tubes disposed in the latter half of the heat exchanger in FIG. 1 are shown disassembled into elements as in FIG. 3. The difference from FIG. 3 is that the upper left and right tank sections communicate with each other through a communication section 12 within the tube. Although the rib 10 is not shown in FIG. 4 for simplicity, it is formed in the same manner as in FIG. 3. Tube element 1 located in the last row of the front half and the front row of the rear half
9 does not have a communicating hole in its upper tank portion, as shown in FIG. Note that FIG. 2 schematically shows the refrigerant flow in the heat exchanger of FIG. 1.
前半部と後半部の上部タンク部間に配した冷媒流路壁2
4でこの連通孔を有しないタンク部を模式的に示してい
る。Refrigerant flow path wall 2 arranged between the upper tank part of the first half and the second half
4 schematically shows a tank portion that does not have this communication hole.
このように構成した熱交換器の冷媒の流れについて説明
する。The flow of refrigerant in the heat exchanger configured as described above will be explained.
第1図において図示しないコンプレッサにより圧縮され
、コンデンサで液化し、その後膨張弁を通過して冷媒導
入管18より流入した気液混合状態の冷媒は、冷媒導入
管18側から見て前半部で且つ手前から奇数番目にある
チューブのその右上タンク部よりチューブ内に流入し、
冷媒流域部を主として矢印の如く仕切壁9A、9Bに従
ってコの字状に流れる。In FIG. 1, the refrigerant in a gas-liquid mixed state is compressed by a compressor (not shown), liquefied in a condenser, passes through an expansion valve, and flows into the refrigerant introduction pipe 18. It flows into the tube from the upper right tank part of the odd-numbered tube from the front,
The refrigerant mainly flows in a U-shape along the partition walls 9A and 9B as shown by the arrows in the refrigerant flow area.
これらのチューブを通った冷媒は更に、後半部でその手
前側から奇数番目の各チューブの左下側のタンク部より
夫々のチューブ内の冷媒流路中に流入しこの冷媒流路を
経由して右上側、及びこれを経由して左上側の双方のタ
ンク部に至る。次に冷媒は、この後半部の各奇数番目の
チューブに後続して隣接する偶数番目のチューブの夫々
の右」二及び左上タンク部よりチューブ内に流入し、冷
媒流路を経由して夫々の右下のタンク部に至り。The refrigerant that has passed through these tubes further flows into the refrigerant flow path in each tube from the tank section on the lower left side of each odd-numbered tube from the front side in the latter half, and passes through this refrigerant flow path to the upper right side. side, and via this it reaches both tanks on the upper left side. Next, the refrigerant flows into the tubes from the right and upper left tank portions of the even-numbered tubes that follow and adjoin each odd-numbered tube in the latter half, and flows through the refrigerant flow path into each tube. Reach the tank section on the bottom right.
奥から順次手前側のタンク部を貫流して前半部のチュー
ブ側に還る。The water flows sequentially from the back through the tank section on the front side and returns to the tube side in the front half.
次にこの冷媒は、前半部で且つ手前から偶数番目のチュ
ーブの夫々の右下タンク部7からチューブ内の冷媒流路
26に流入し、この冷媒流路を経由して夫々の左上タン
ク部6に至り、更に図示の如く矢印に沿って順次手前側
のタンク部を経由して流れ 冷媒排出管17より再びコ
ンプレッサ側に還流することとなる。大きな矢印で示し
た被冷却空気流は各チューブの間に配されているコルゲ
ートフィンの間を通過し、冷媒により冷却されると共に
冷媒を気化する。この冷媒流の系統図は第2図に模式的
に示されている。Next, this refrigerant flows into the refrigerant passage 26 in the tube from the lower right tank part 7 of each even-numbered tube from the front in the front half, and passes through this refrigerant passage to the upper left tank part 6 of each tube. Then, as shown in the figure, the refrigerant flows sequentially along the arrow through the tank section on the near side, and returns to the compressor side through the refrigerant discharge pipe 17. The airflow to be cooled, indicated by the large arrow, passes between the corrugated fins arranged between the tubes, is cooled by the refrigerant, and vaporizes the refrigerant. A diagram of this refrigerant flow is schematically shown in FIG.
各チューブ内においての冷媒の流れ方向は第6図の冷媒
流の説明図に一例として示されている。The flow direction of the refrigerant in each tube is shown as an example in the explanatory diagram of the refrigerant flow in FIG. 6.
この例の場合、冷媒流入側のタンク部6より流入した冷
媒は流路仕切壁9Aによってまずその流れ方向が定めら
れる。即ち流入口6と対向する仕切壁9Aは流入口と遠
い側に冷媒主通路30Aを有しており、従ってこの冷媒
主通路30Aを流れる冷媒の主流は蛇行する。次の流路
仕切壁9Bは逆の側に冷媒主通路30Bを有しており、
この流路仕切壁によって冷媒は更に蛇行する。2番目の
流路仕切壁9Bの冷媒主通路30Bを通過して冷媒流出
口7に向かう場合にも冷媒はその方向が曲げられ。In this example, the flow direction of the refrigerant flowing from the tank portion 6 on the refrigerant inflow side is first determined by the flow path partition wall 9A. That is, the partition wall 9A facing the inlet 6 has a main refrigerant passage 30A on the side far from the inlet, and therefore the main flow of the refrigerant flowing through the main refrigerant passage 30A meanders. The next flow path partition wall 9B has a refrigerant main path 30B on the opposite side,
The refrigerant is further meandered by this flow path partition wall. The direction of the refrigerant is also bent when it passes through the refrigerant main passage 30B of the second flow path partition wall 9B and heads toward the refrigerant outlet 7.
この流線の長さにより冷媒と被冷却空気との充分な熱交
換が得られる。更に双方の冷媒補助通路31A、 31
Bは冷媒が流路仕切壁9A、9Bとチューブ側壁32.
33とで形成されるコーナ一部において滞溜することの
ないように冷媒を補助的に流通させる役目を有し、これ
により熱交換効率を上昇させている。The length of this streamline allows sufficient heat exchange between the refrigerant and the air to be cooled. Furthermore, both refrigerant auxiliary passages 31A, 31
In B, the refrigerant flows through the flow path partition walls 9A, 9B and the tube side wall 32.
It has the role of auxiliary circulation of the refrigerant so that it does not stagnate in a part of the corner formed by 33, thereby increasing the heat exchange efficiency.
第1図を参照すると熱交換器の最終段のチューブの出口
付近にあるスーパーヒート領域25においては冷媒の主
流の方向が被冷却空気流の方向と対向するように冷媒流
出口6及び冷媒主通路30Aが配されている。これによ
り、前記冷媒補助通路と相まって、この部分における高
い熱交換効率が得られる。このため冷媒がコンプレッサ
側に液状のまま流入することが確実に防止されている。Referring to FIG. 1, in the superheat region 25 near the exit of the final stage tube of the heat exchanger, the refrigerant outlet 6 and the refrigerant main passage are arranged such that the main flow direction of the refrigerant is opposite to the direction of the air flow to be cooled. 30A is arranged. Thereby, in combination with the refrigerant auxiliary passage, high heat exchange efficiency can be obtained in this part. This reliably prevents the refrigerant from flowing into the compressor in a liquid state.
またこの対向流により、熱交換器内に占めるスーパーヒ
ート領域の割合が従来品に比べて小さくできる。この結
果蒸発冷却領域の割合が大きくできるので、空調装置の
能力を大きくすることが可能となる。Furthermore, due to this counterflow, the proportion of the superheat area within the heat exchanger can be made smaller than that of conventional products. As a result, the ratio of the evaporative cooling area can be increased, making it possible to increase the capacity of the air conditioner.
本実施例においては、冷媒チューブの全てが冷媒主通路
及び冷媒補助通路を有する流路仕切壁を備えるものを示
したが、少くともスーパーヒート領域を有するチューブ
において、冷媒主通路及び冷媒補助流路を備える流路仕
切壁を有し、且つスーパーヒート領域において冷媒の主
流が被冷却空気流と対向する方向に流れることにより本
発明の目的が達成されるものであり、必ずしもチューブ
全体がかかる構成を有することを要しない。In this embodiment, all of the refrigerant tubes are provided with a flow path partition wall having a main refrigerant passage and an auxiliary refrigerant passage. The object of the present invention is achieved by having a flow path partition wall having a flow path partition wall, and in which the main flow of the refrigerant flows in a direction opposite to the air flow to be cooled in the superheat region, and it is not necessary that the entire tube has such a configuration. It is not necessary to have one.
[発明の効果]
本発明において、少くとも最終段の冷媒チューブは被冷
却空気流の上流側に配される冷媒流出口と、冷媒流域部
に配され一方の側に冷媒主通路を他方の側に冷媒補助通
路を有する流路仕切壁と。[Effects of the Invention] In the present invention, at least the final stage refrigerant tube has a refrigerant outlet disposed on the upstream side of the air flow to be cooled, and a refrigerant main passage disposed in the refrigerant basin region on one side and a refrigerant main passage on the other side. and a flow path partition wall having a refrigerant auxiliary passage.
を備えており、且つ、冷媒流出口に対向する流路仕切壁
はその冷媒主通路を被冷却空気流の下流側に配した構成
により、最終段の冷媒チューブのスーパーヒート領域に
おいて冷媒の主流が被冷却空気流と対向し、且つ冷媒補
助通路によりコーナ一部の冷媒の滞溜の恐れを除いたの
で、少くとも最終段のスーパーヒート領域において熱交
換効率の高い熱交換器を提供でき、更にこれにより後続
するコンプレッサが液圧縮により故障するという恐れを
除いた熱交換器を提供できることとなった。In addition, the flow path partition wall facing the refrigerant outlet has a configuration in which the main refrigerant passage is placed on the downstream side of the air flow to be cooled, so that the main flow of the refrigerant is in the superheat region of the refrigerant tube in the final stage. Since the auxiliary refrigerant passage faces the air flow to be cooled and eliminates the possibility of refrigerant stagnation in a part of the corner, it is possible to provide a heat exchanger with high heat exchange efficiency at least in the superheat region of the final stage. This makes it possible to provide a heat exchanger that eliminates the risk of failure of the following compressor due to liquid compression.
第1図は本発明の一実施例に係る積層型熱交換器のチュ
ーブ配列を熱交換器における冷媒流の向きと共に示す斜
視図。
第2v!Jは第1図の熱交換器の冷媒流を模式的に示す
線図。
第3図〜第5図は第1図の熱交換器の各チューブのチュ
ーブエレメントの構造説明図。
第6図は冷媒チューブ内の冷媒の流れを示す説明図。
第7図は従来例の積層型熱交換器の構造を示す斜視図。
第8図は第7図の熱交換器における冷媒流を模式的に示
す線図。
である
[符号の説明]
1〜4,19・・・チューブエレメント5〜8・・・タ
ンク部
9A、9B・・・流路仕切壁
10、10’・・・リブ 17・・・冷媒排出管1
8・・・冷媒導入管
20〜23.20’〜23′・・・連通孔25・・・ス
ーパーヒート領域
26・・・冷媒流域部
30A、 30B・・・冷媒主通路
31A、 31B・・・冷媒補助通路
第3図FIG. 1 is a perspective view showing the tube arrangement of a laminated heat exchanger according to an embodiment of the present invention, together with the direction of refrigerant flow in the heat exchanger. 2nd v! J is a diagram schematically showing a refrigerant flow in the heat exchanger of FIG. 1. 3 to 5 are structural explanatory diagrams of tube elements of each tube of the heat exchanger of FIG. 1. FIG. 6 is an explanatory diagram showing the flow of refrigerant within the refrigerant tube. FIG. 7 is a perspective view showing the structure of a conventional stacked heat exchanger. FIG. 8 is a diagram schematically showing the refrigerant flow in the heat exchanger of FIG. 7. [Explanation of symbols] 1 to 4, 19...Tube elements 5 to 8...Tank parts 9A, 9B...Flow path partition walls 10, 10'...Ribs 17...Refrigerant discharge pipe 1
8... Refrigerant introduction pipes 20 to 23. 20' to 23'... Communication holes 25... Super heat area 26... Refrigerant basin areas 30A, 30B... Refrigerant main passages 31A, 31B... Refrigerant auxiliary passage Figure 3
Claims (1)
の間に配される偏平な冷媒流域部とを備え相互に並列且
つ複数段に連通される多数の冷媒チューブと、被冷却空
気がその間を通過する多数のフィンと、を積層状に配し
てなる積層型熱交換器において、 少くとも最終段の冷媒チューブは、被冷却空気流の上流
側に配される冷媒流出口と、冷媒流域部に被冷却空気流
と略平行に配され一方の側に冷媒主通路を他方の側に該
冷媒主通路よりも小さな冷媒補助通路を夫々有する少く
とも一つの流路仕切壁と、を備えるものであり、 前記冷媒流出口に対向する前記流路仕切壁は、その冷媒
主通路を被冷却空気流の下流側に有するものであること
、 を特徴とする積層型熱交換器。[Scope of Claims] A large number of refrigerant tubes that are connected to each other in parallel and in multiple stages, each having a refrigerant inlet, a refrigerant outlet, and a flat refrigerant flow area disposed between the refrigerant inlet and the refrigerant outlet. and a large number of fins through which the air to be cooled passes, in a stacked heat exchanger, in which at least the final stage refrigerant tube is arranged on the upstream side of the flow of the air to be cooled. a refrigerant outlet, and at least one flow path arranged substantially parallel to the air flow to be cooled in the refrigerant flow area and having a main refrigerant passage on one side and an auxiliary refrigerant passage smaller than the main refrigerant passage on the other side. a partition wall, and the flow path partition wall facing the refrigerant outlet has a main refrigerant passage on the downstream side of the air flow to be cooled. exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1206995A JP2813732B2 (en) | 1989-08-11 | 1989-08-11 | Stacked heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1206995A JP2813732B2 (en) | 1989-08-11 | 1989-08-11 | Stacked heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0370947A true JPH0370947A (en) | 1991-03-26 |
JP2813732B2 JP2813732B2 (en) | 1998-10-22 |
Family
ID=16532444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1206995A Expired - Lifetime JP2813732B2 (en) | 1989-08-11 | 1989-08-11 | Stacked heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2813732B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100358838B1 (en) * | 2000-03-31 | 2002-10-30 | 만도공조 주식회사 | Expansion evaporator |
CN104792199A (en) * | 2015-04-23 | 2015-07-22 | 山东大学 | Plate heat exchanger achieving different flow amounts of heat exchange fluid |
CN104792213A (en) * | 2015-04-23 | 2015-07-22 | 山东大学 | Heat exchange plate |
-
1989
- 1989-08-11 JP JP1206995A patent/JP2813732B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100358838B1 (en) * | 2000-03-31 | 2002-10-30 | 만도공조 주식회사 | Expansion evaporator |
CN104792199A (en) * | 2015-04-23 | 2015-07-22 | 山东大学 | Plate heat exchanger achieving different flow amounts of heat exchange fluid |
CN104792213A (en) * | 2015-04-23 | 2015-07-22 | 山东大学 | Heat exchange plate |
CN104792213B (en) * | 2015-04-23 | 2016-07-06 | 山东大学 | A kind of heat exchange plate |
Also Published As
Publication number | Publication date |
---|---|
JP2813732B2 (en) | 1998-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3960233B2 (en) | Heat exchanger | |
AU740183B2 (en) | Heat exchanger | |
US7398820B2 (en) | Evaporator | |
JP6202451B2 (en) | Heat exchanger and air conditioner | |
EP3059542B1 (en) | Laminated header, heat exchanger, and air-conditioner | |
JP4178472B2 (en) | Heat exchanger and air conditioner | |
JP2006105581A (en) | Laminated heat exchanger | |
JP4254015B2 (en) | Heat exchanger | |
US6814135B2 (en) | Stacked-type evaporator | |
KR100497847B1 (en) | Evaporator | |
JP2002139295A (en) | Heat exchanger for air conditioning | |
JPH10288480A (en) | Plate type heat-exchanger | |
JP2005030741A (en) | Heat exchanger | |
JP2737286B2 (en) | Stacked heat exchanger | |
JP2007155183A (en) | Heat exchanger | |
JP2891486B2 (en) | Heat exchanger | |
JPH0370947A (en) | Lamination type heat exchanger | |
JPH10267462A (en) | Evaporator | |
JPH0345302B2 (en) | ||
JPS62131195A (en) | Heat exchanger | |
JP2005315567A (en) | Evaporator | |
JPH02106697A (en) | Lamination type heat exchanger | |
JPH1151412A (en) | Indoor unit for air-conditioner, and its indoor heat exchanger | |
JP2001133076A (en) | Heat exchanger | |
JPH02171591A (en) | Laminated type heat exchanger |