JP2005315567A - Evaporator - Google Patents

Evaporator Download PDF

Info

Publication number
JP2005315567A
JP2005315567A JP2005106234A JP2005106234A JP2005315567A JP 2005315567 A JP2005315567 A JP 2005315567A JP 2005106234 A JP2005106234 A JP 2005106234A JP 2005106234 A JP2005106234 A JP 2005106234A JP 2005315567 A JP2005315567 A JP 2005315567A
Authority
JP
Japan
Prior art keywords
heat exchange
path
side heat
evaporator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005106234A
Other languages
Japanese (ja)
Inventor
Hiroyuki Inaba
浩行 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2005106234A priority Critical patent/JP2005315567A/en
Publication of JP2005315567A publication Critical patent/JP2005315567A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporator having further reduced uneven temperature distribution. <P>SOLUTION: In an inlet side heat exchange portion 10 where a degree of drying is lower and the flow distribution of refrigerant easily deviates, the number of heat exchange passages of an upward flow path 10b is reduced than that of a downward flow path 10a. Thus, liquid phase refrigerant flowing on the upstream side in the longitudinal direction of a tank where liquid phase refrigerant in the upward flow path 10b is liable to lack is increased and regions where the liquid phase refrigerant lacks are reduced, thus reducing uneven temperature distribution. In an outlet side heat exchange portion 20 having a high degree of drying and causing little partial circulation distribution of the refrigerant, the number of heat exchange passages of the lowest flow path 20c where the volume of the distributed refrigerant most expands is greater than that of a path 20b right before the lowest flow. Thus, an increase in distribution resistance in the lowest flow path 20c is suppressed and the distribution resistance in the outlet side heat exchange portion 20 is kept lower. As a result, the evaporator has reduced uneven temperature distribution and lower distribution resistance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱交換部を風上と風下に並べて配置した蒸発器に関するものである。   The present invention relates to an evaporator in which heat exchange units are arranged side by side on the windward and leeward sides.

例えば特許文献1〜3に開示されるように、従来から2つの熱交換部を風上と風下に並べた蒸発器がある。図13はこの種の2つの熱交換部を風上側と風下側に並列配置した蒸発器の一例である。図13に示す蒸発器100は、上部タンク111および下部タンク112およびこれら両タンク111、112間に連通接続される複数の熱交換通路からなる風下側熱交換部110と、同じく上部タンク121および下部タンク122およびこれら両タンク121、122間に連通接続される複数の熱交換通路からなる風上側熱交換部120と、を送風方向に前後に重なり合うように配置して構成されている。   For example, as disclosed in Patent Documents 1 to 3, there is an evaporator in which two heat exchange units are conventionally arranged on the windward side and the leeward side. FIG. 13 shows an example of an evaporator in which two heat exchangers of this type are arranged in parallel on the windward side and the leeward side. The evaporator 100 shown in FIG. 13 includes an upper tank 111, a lower tank 112, and a leeward heat exchange unit 110 including a plurality of heat exchange passages connected to both the tanks 111, 112. A tank 122 and an upwind heat exchanging unit 120 including a plurality of heat exchange passages connected in communication between the tanks 121 and 122 are arranged so as to overlap each other in the air blowing direction.

風下側熱交換部110は、その上部タンク111の右端に蒸発器入口107が設けられ、上部タンク111が仕切部114によって上部第1タンク部111aおよび上部第2タンク部111bに区画される一方、下部タンク112が仕切部115によって下部第1タンク部112aおよび下部第2タンク部112bに区画されている。これにより、複数多段に積層される熱交換通路群は右から左に向けて順に第1パス110a、第2パス110b、第3パス110cに区画されることとなり、蒸発器入口107から風下側熱交換部110に導入される冷媒は、上部第1タンク部111a→第1パス110a→下部第1タンク部112a→第2パス110b→上部第2タンク部111b→第3パス110c→下部第2タンク部112bという順で流れる。そして、冷媒は、風下側熱交換部110の最下流部としての下部第2タンク部112bから、連通路109を通じて、風上側熱交換部120の最上流部としての下部第1タンク部122aに導入されるようになっている。   The leeward side heat exchanging part 110 is provided with an evaporator inlet 107 at the right end of the upper tank 111, and the upper tank 111 is partitioned into an upper first tank part 111a and an upper second tank part 111b by a partition part 114, The lower tank 112 is partitioned by a partition 115 into a lower first tank portion 112a and a lower second tank portion 112b. As a result, the heat exchange passage groups stacked in multiple stages are partitioned in order from the right to the left into the first path 110a, the second path 110b, and the third path 110c. The refrigerant introduced into the exchange unit 110 is the upper first tank unit 111a → the first pass 110a → the lower first tank unit 112a → the second pass 110b → the upper second tank unit 111b → the third pass 110c → the lower second tank. It flows in the order of part 112b. Then, the refrigerant is introduced from the lower second tank part 112b as the most downstream part of the leeward heat exchange part 110 into the lower first tank part 122a as the most upstream part of the windward heat exchange part 120 through the communication path 109. It has come to be.

一方、風上側熱交換部120は、下部タンク122が仕切部124によって下部第1タンク部122aおよび下部第2タンク部122bに区画される一方、上部タンク121が仕切部125によって上部第1タンク部121aおよび上部第2タンク部121bに区画されている。これにより、複数多段に積層される熱交換通路群は左から右に向けて順に第1パス120a、第2パス120b、第3パス120cに区画されることとなり、連通路109から風上側熱交換部120に導入される冷媒は、下部第1タンク部122a→第1パス120a→上部第1タンク部121a→第2パス120b→下部第2タンク部122b→第3パス120c→上部第2タンク部121bという順で流れる。そして、この冷媒は、風上側熱交換部120の最下流部としての上部第2タンク部121bの右端に設けられた蒸発器出口108から、蒸発器100から導出されるようになっている。   On the other hand, in the windward side heat exchanging unit 120, the lower tank 122 is partitioned into a lower first tank unit 122a and a lower second tank unit 122b by a partition unit 124, while the upper tank 121 is partitioned into an upper first tank unit by a partition unit 125. 121a and the upper 2nd tank part 121b are divided. As a result, the heat exchange passage groups stacked in a plurality of stages are partitioned into the first path 120a, the second path 120b, and the third path 120c in order from the left to the right. The refrigerant introduced into the section 120 is the lower first tank section 122a → the first path 120a → the upper first tank section 121a → the second path 120b → the lower second tank section 122b → the third path 120c → the upper second tank section. It flows in the order of 121b. And this refrigerant | coolant is derived | led-out from the evaporator 100 from the evaporator exit 108 provided in the right end of the upper 2nd tank part 121b as the most downstream part of the windward heat exchange part 120. FIG.

ここで、風上側と風下側とに重ね合わされるパス同士は、通風方向で重なり合っている。また、風上側と風下側とに重ね合わされるパス同士(10aと20c)(10bと20b)(10cと20a)は、その上流下流のタンク部の流れを含めて互いに冷媒の流通方向が逆になっている。なお、図中丸数字は、冷媒が流れる順番にそってパスに数字をつけたものである。   Here, the paths superimposed on the windward side and the leeward side overlap in the direction of ventilation. Also, the paths (10a and 20c) (10b and 20b) (10c and 20a) superimposed on the windward side and the leeward side have the refrigerant flow directions opposite to each other including the flow in the upstream and downstream tank portions. It has become. In the figure, the circled numbers are numbers added to the paths in the order in which the refrigerant flows.

図14aは、各熱交換部110、120における液相冷媒の分布を示し、図14bは、これを重ね合わせた蒸発器全体としての液相冷媒の分布を示す。なお、液相冷媒の分布はほぼ温度分布と一致する。図14bに示すように2つの熱交換部110、120を風の流通方向に積層した蒸発器100では、2つの熱交換部110、120で熱交換を互いに補え合えるため、1つの熱交換部からなる蒸発器に比べ温度分布のムラを小さくできる。
特開平6−74679号公報 特開平10−238896号公報 特開2000−105091号公報
FIG. 14a shows the distribution of the liquid-phase refrigerant in each of the heat exchange units 110 and 120, and FIG. 14b shows the distribution of the liquid-phase refrigerant as an entire evaporator obtained by superimposing these. Note that the distribution of the liquid-phase refrigerant almost coincides with the temperature distribution. As shown in FIG. 14b, in the evaporator 100 in which the two heat exchange units 110 and 120 are stacked in the wind flow direction, the two heat exchange units 110 and 120 can complement each other to exchange heat. As compared with the evaporator, the temperature distribution unevenness can be reduced.
JP-A-6-74679 Japanese Patent Laid-Open No. 10-238896 JP 2000-105091 A

しかしそれでもムラができてしまう。液相冷媒が流通しない領域すなわち気相冷媒ばかりが流通する領域が、通風する風を十分に冷却できないため温度ムラの原因となる。   However, unevenness is still produced. A region where the liquid-phase refrigerant does not flow, that is, a region where only the gas-phase refrigerant circulates causes temperature unevenness because the air flowing through cannot be sufficiently cooled.

本発明は上記点に鑑みてなされたもので、熱交換部を通風方向に向けて2層に積層した蒸発器であって、さらに温度分布のムラを小さくできる蒸発器の提供を目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide an evaporator in which a heat exchanging portion is laminated in two layers in the direction of ventilation, and further can reduce temperature distribution unevenness.

研究の結果、本発明者は、上昇流パス(本明細書では上昇流パスとは流通する冷媒が上昇流となるパスをいう)では、下部タンクから流れ込む気液混合冷媒が、下部タンクのタンク長手方向下流側に押し込まれて所定の圧力に達したところで上昇流パスを上昇するため、液相冷媒がタンク長手方向下流側に偏ってタンク長手方向上流側で不足してしまうことを突き止めた。しかも、本発明者は上記現象が、乾き度が低い(=湿り度が高い)冷媒(気液混合冷媒)が流通する入口側熱交換部において顕著に現れる一方で乾き度が高い(=湿り度が低い)冷媒(気相冷媒)が流通する出口側熱交換部においてはあまり顕著に現れず、むしろ出口側熱交換部においては冷媒が体積膨張することで流通抵抗が問題となり特に最も冷媒体積が大きくなる最下流パスでの流通抵抗が問題となることを同時に突き止めた。   As a result of research, the present inventor has found that in the upward flow path (in this specification, the upward flow path refers to a path in which the circulating refrigerant becomes an upward flow), the gas-liquid mixed refrigerant flowing from the lower tank is transferred to the tank of the lower tank. It has been found that the liquid flow refrigerant is biased to the downstream side in the tank longitudinal direction and short on the upstream side in the tank longitudinal direction because the upward flow path rises when the pressure is pushed downstream and reaches a predetermined pressure. Moreover, the present inventor shows that the above phenomenon appears remarkably in the inlet-side heat exchange section through which refrigerant (gas-liquid mixed refrigerant) having a low dryness (= high wetness) flows (= wetness). However, it does not appear so conspicuously in the outlet side heat exchange section through which the refrigerant (gas phase refrigerant) flows, but rather in the outlet side heat exchange section, the volume expansion of the refrigerant causes a problem of flow resistance, and the volume of the refrigerant is the largest. At the same time, we found out that the distribution resistance in the most downstream path becomes larger.

なお、図15は全室130a〜130fを上昇流のパスとした場合の温度分布を示す補足説明図である。図15に示すように下流側のパスほど冷媒の乾き度が増して冷媒の流速が早まることで、温度分布にムラが少なくなっていることがわかる。   FIG. 15 is a supplementary explanatory diagram showing the temperature distribution when all the rooms 130a to 130f are used as upward flow paths. As shown in FIG. 15, it can be seen that as the downstream path increases, the degree of dryness of the refrigerant increases and the flow rate of the refrigerant increases, so that the temperature distribution is less uneven.

そこで、本発明者は、入口側熱交換器においては上昇流バスの熱交換通路数を少なくすることでタンク長手方向上流側の液相冷媒量を増やして温度ムラを小さくするとともに、出口側熱交換器においては最下流パスの熱交換通路数を最下流直前パスの熱交換通路数よりも多くすることで流通抵抗の上昇を防止する技術的思想を想い到った。   Therefore, the present inventor has increased the amount of liquid-phase refrigerant on the upstream side in the longitudinal direction of the tank by reducing the number of heat exchange passages of the upflow bath in the inlet side heat exchanger, and reduced the temperature unevenness, and the outlet side heat. In the exchanger, the technical idea of preventing an increase in the flow resistance was conceived by increasing the number of heat exchange passages in the most downstream path than the number of heat exchange passages in the immediately downstream pass.

請求項1の発明にあっては、上下方向に延び且つ横方向に複数多段に積層され且つ内部に冷媒を流す熱交換通路と、この複数多段の熱交換通路の上下両端に設けられ熱交換通路からの冷媒を合流分配するタンクと、を有する熱交換部を備え、
前記熱交換部を通風方向に向けて二層に配置し、一方の熱交換部に冷媒を流通させた後に続けてその冷媒を他方の熱交換部に流通させるように、両熱交換部を接続した蒸発器であって、
前記冷媒の入口側の熱交換部を2以上のパスに設定し、前記冷媒の出口側の熱交換部を2以上のパスに設定し、
前記入口側熱交換部においては、冷媒が下降流となる下降流パスの熱交換通路数よりも冷媒が上昇流となる上昇流パスの熱交換通路数を少なくし、前記出口側熱交換部においては最下流パスの熱交換通路数を最下流直前パスの熱交換通路数よりも多くしたことを特徴とするものである。
In the first aspect of the present invention, a heat exchange passage that extends in the vertical direction and is laminated in a plurality of stages in the lateral direction and flows the refrigerant therein, and a heat exchange path provided at both upper and lower ends of the plurality of heat exchange paths in the plurality of stages. And a tank for merging and distributing the refrigerant from
Two heat exchange parts are connected so that the heat exchange part is arranged in two layers in the direction of the air flow and the refrigerant is circulated through one heat exchange part and then the refrigerant is circulated through the other heat exchange part. An evaporator,
Setting the heat exchange part on the inlet side of the refrigerant to two or more paths, setting the heat exchange part on the outlet side of the refrigerant to two or more paths,
In the inlet side heat exchange unit, the number of heat exchange passages in the upward flow path in which the refrigerant becomes an upward flow is smaller than the number of heat exchange passages in the downward flow path in which the refrigerant becomes a downward flow, and in the outlet side heat exchange unit Is characterized in that the number of heat exchange passages in the most downstream path is larger than the number of heat exchange passages in the immediately downstream pass.

請求項2の発明は、請求項1の蒸発器であって、両熱交換部でパス数がとなるようにし、対向する風上側のパスと風下側のパスとの冷媒の流れ方向が逆となるようにしたことを特徴とするものである。   The invention according to claim 2 is the evaporator according to claim 1, wherein the number of passes is equal in both heat exchanging portions, and the flow direction of the refrigerant in the opposite windward path and the leeward path is reversed. It is characterized by having become.

請求項3の発明は、請求項1の蒸発器であって、前記入口側熱交換部のパス数よりも前記出口側熱交換部のパス数を少なくしたことを特徴とするものでる。   The invention of claim 3 is the evaporator of claim 1, characterized in that the number of passes of the outlet side heat exchange section is smaller than the number of passes of the inlet side heat exchange section.

請求項4の発明は、請求項1〜3のいずれか1項の蒸発器であって、前記出口側熱交換部を3パス以上に設定し、前記出口側熱交換部において冷媒下流側のパスほど熱交換通路数を多くしたことを特徴とするものである。   Invention of Claim 4 is an evaporator of any one of Claims 1-3, Comprising: The said exit side heat exchange part is set to 3 paths or more, and the refrigerant | coolant downstream path | pass in the said exit side heat exchange part The feature is that the number of heat exchange passages is increased.

請求項5の発明は、請求項1〜4のいずれか1項の蒸発器であって、前記出口側熱交換部を3パス以上に設定し、前記出口側熱交換部で前記最下流のパスをのぞいて前記下降流パスの熱交換通路数よりも前記上昇流パスの熱交換通路数を少なくしたことを特徴とするものである。   Invention of Claim 5 is an evaporator of any one of Claims 1-4, Comprising: The said exit side heat exchange part is set to 3 or more paths, The said most downstream path | pass in the said exit side heat exchange part The number of heat exchange passages in the upward flow path is made smaller than the number of heat exchange passages in the downward flow path.

請求項6の発明は、請求項1〜5のいずれか1項の蒸発器であって、前記入口側熱交換部を3パス以上に設定したことを特徴とするものである。   The invention according to claim 6 is the evaporator according to any one of claims 1 to 5, wherein the inlet side heat exchange section is set to three or more passes.

請求項7の発明は、請求項1〜6のいずれか1項の蒸発器であって、前記入口側熱交換部を風下側に配置し且つ前記出口側熱交換部を風上側に配置したことを特徴とするものである。   Invention of Claim 7 is an evaporator of any one of Claims 1-6, Comprising: The said inlet side heat exchange part has been arrange | positioned in the leeward side, and the said outlet side heat exchange part has been arrange | positioned in the leeward side. It is characterized by.

請求項1の発明によれば、入口側熱交換部においては、下降流パスの熱交換通路数よりも冷媒が上昇流となる上昇流パスの熱交換通路数を少なくしたので、温度分布のムラを小さくできる。しかも、出口側熱交換部においては、最も流通冷媒の体積が膨張する最下流パスの熱交換通路数を最下流直前パスの熱交換通路数よりも多くしたので、流通抵抗の上昇を押さえることができる。これにより温度分布のムラが小さく且つ流通抵抗が低い蒸発器を実現できる。   According to the first aspect of the present invention, in the inlet side heat exchange section, the number of heat exchange passages in the upward flow path where the refrigerant becomes an upward flow is smaller than the number of heat exchange passages in the downward flow path. Can be reduced. Moreover, in the outlet side heat exchanging section, the number of heat exchange passages in the most downstream path where the volume of circulation refrigerant expands most is larger than the number of heat exchange passages in the path immediately before the most downstream, so that an increase in circulation resistance can be suppressed. it can. As a result, an evaporator with low temperature distribution unevenness and low flow resistance can be realized.

請求項2の発明によれば、請求項1の発明の効果に加え、2つの熱交換部でパス数が異なる蒸発器に比べ、2つの熱交換部の温度分布を重ね合わせた状態を予想またはシュミレーションしやすいため、管理しやすい。なお、請求項1の発明では、2つの熱交換部でパス数が異なる蒸発器を含み、特にこのように2つの熱交換部でパス数が異なる蒸発器では、請求項3のようなものが好ましい。   According to the invention of claim 2, in addition to the effect of the invention of claim 1, a state in which the temperature distributions of the two heat exchange parts are superposed or predicted is compared with an evaporator having two heat exchange parts with different paths. Easy to manage because it is easy to simulate. In addition, in invention of Claim 1, an evaporator with which the number of passes differs in two heat exchange parts, and especially an evaporator in which the number of passes differs in two heat exchange parts like this preferable.

請求項3の発明によれば、請求項1の発明の効果に加え、入口側熱交換部のパス数よりも出口側熱交換部のパス数を少なくしたため、出口側熱交換部では、各パスでの総通路断面積(各パスにおける熱交換通路の通路断面積の和)が大きくなる。そのため、各パスでの通路断面積が大きくなり通路抵抗が下がる。結果、出口側熱交換部の通路抵抗をさらに低減することが求められる場合に好適となる。   According to the invention of claim 3, in addition to the effect of the invention of claim 1, the number of passes of the outlet side heat exchange unit is smaller than the number of passes of the inlet side heat exchange unit. The total passage cross-sectional area at (the sum of the passage cross-sectional areas of the heat exchange passages in each pass) increases. Therefore, the passage cross-sectional area in each path is increased and the passage resistance is reduced. As a result, it is suitable when it is required to further reduce the passage resistance of the outlet side heat exchange section.

請求項4の発明によれば、請求項1〜4のいずれかの発明の効果に加え、出口側熱交換部において下流側のパスほど熱交換通路数を多くした構造であるため、つまり、冷媒の体積膨張にそってパスの総通路断面積を拡大させていく構造であるため、出口側熱交換部での通路抵抗を最も抑えることができる構造となる。   According to the invention of claim 4, in addition to the effect of the invention of any one of claims 1 to 4, the outlet side heat exchange section has a structure in which the number of heat exchange passages is increased toward the downstream side, that is, the refrigerant Since the total passage cross-sectional area of the path is enlarged along the volume expansion of the path, the passage resistance at the outlet side heat exchange section can be minimized.

請求項5の発明によれば、請求項1〜3のいずれかの発明の効果に加え、出口側熱交換部で、最下流パスをのぞいて下降流パスの熱交換通路数よりも上昇流パスの熱交換通路数を少なくしたため、出口側熱交換部においてもさらなる温度分布の改善が図られることとなり(請求項1参照)、出口側熱交換部において通路抵抗低減より温度分布均一性を優先したい場合に有効な構造となる。   According to the invention of claim 5, in addition to the effect of any one of claims 1 to 3, the outlet side heat exchanging section has an upward flow path that is larger than the number of heat exchange passages of the downflow path except for the most downstream path. Because the number of heat exchange passages is reduced, the temperature distribution in the outlet side heat exchange section can be further improved (refer to claim 1), and in the outlet side heat exchange section, it is desired to prioritize the temperature distribution uniformity over the passage resistance reduction. This is an effective structure.

特に請求項5と請求項4とを組み合わせた構造では、出口側熱交換部において通路抵抗を極めて低減しつつも温度分布の均一性をさらに向上できる。   In particular, in the structure in which claim 5 and claim 4 are combined, the uniformity of the temperature distribution can be further improved while the passage resistance is extremely reduced in the outlet side heat exchange section.

請求項6の発明によれば、請求項1〜5のいずれかの発明の効果に加え、入口側熱交換部を3パス以上に設定したため、さらに入口側熱交換部の温度分布のムラを小さくできる。   According to the invention of claim 6, in addition to the effects of the invention of any one of claims 1 to 5, since the inlet-side heat exchange part is set to three or more passes, the temperature distribution unevenness of the inlet-side heat exchange part is further reduced. it can.

請求項7の発明によれば、請求項1〜6のいずれかの発明の効果に加え、入口側熱交換部を風下側に配置し且つ出口側熱交換部を風上側に配置したため、まず最初に、出口側熱交換器で通風する空気を冷やし、次にこの冷えた空気を出口側熱交換部よりも低温の入口側熱交換部で更に冷やせる。つまり、風上側と風下側の熱交換部で段階的に空気を冷やすことができる。これにより風上側および風下側の熱交換部を無駄なく効率的に利用でき、さらに熱交換効率を向上できる。   According to the invention of claim 7, in addition to the effects of any one of claims 1 to 6, the inlet side heat exchange part is arranged on the leeward side and the outlet side heat exchange part is arranged on the leeward side. Then, the air that is ventilated by the outlet side heat exchanger is cooled, and then this cooled air can be further cooled by the inlet side heat exchange section at a lower temperature than the outlet side heat exchange section. That is, the air can be cooled stepwise by the heat exchange section on the leeward side and the leeward side. As a result, the windward and leeward heat exchange sections can be efficiently used without waste, and the heat exchange efficiency can be further improved.

以下、本発明の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1実施形態:図1〜図6は本発明の第1実施形態の蒸発器を説明する図である。   1st Embodiment: FIGS. 1-6 is a figure explaining the evaporator of 1st Embodiment of this invention.

この第1実施形態の蒸発器1は、自動車用空調装置の冷凍サイクルに介装される蒸発器であって、インストルメントパネルの内側に配置される空調ケース内に設置され、内部を流れる冷媒と外側を通過する空気とを熱交換させ、冷媒を蒸発気化させて空気を冷却するものである。なお本発明の蒸発器は車両用空調装置に限られずその他の分野で利用できる。   The evaporator 1 according to the first embodiment is an evaporator interposed in a refrigeration cycle of an automotive air conditioner, and is installed in an air conditioning case arranged inside an instrument panel, and flows through the refrigerant. Heat is exchanged with the air passing through the outside, and the refrigerant is evaporated to cool the air. The evaporator of the present invention is not limited to a vehicle air conditioner and can be used in other fields.

まず、図5をもとに蒸発器内の全体構造を説明する。   First, the overall structure in the evaporator will be described with reference to FIG.

この蒸発器1は、冷媒の入口側の熱交換部10と、冷媒の出口側の熱交換部20と、を風上側と風下側に並列配置した蒸発器である。   The evaporator 1 is an evaporator in which a heat exchange section 10 on the refrigerant inlet side and a heat exchange section 20 on the refrigerant outlet side are arranged in parallel on the windward side and the leeward side.

入口側熱交換部10は、上部タンク11および下部タンク12およびこれら両タンク11、12間に連通接続される複数の熱交換通路からなる。一方、出口側熱交換部20は、同じく上部タンク21および下部タンク22およびこれら両タンク21、22間に連通接続される複数の熱交換通路からなる。   The inlet-side heat exchange unit 10 includes an upper tank 11, a lower tank 12, and a plurality of heat exchange passages connected in communication between the tanks 11 and 12. On the other hand, the outlet side heat exchanging unit 20 includes an upper tank 21 and a lower tank 22 and a plurality of heat exchange passages connected in communication between the tanks 21 and 22.

入口側熱交換部10は、上部タンク11が仕切部51によって上部第1タンク部11aおよび上部第2タンク部11bに区画される一方、下部タンク12が仕切部51によって下部第1タンク部12aおよび下部第2タンク部12bに区画されている。その上部タンク11の右端には蒸発器入口7が設けられ、複数多段に積層される熱交換通路群は右から左に向けて順に第1パス10a、第2パス10b、第3パス10cに区画されることとなる。これにより蒸発器入口7から出口側熱交換部20に導入される冷媒は、上部第1タンク部11a→第1パス10a→下部第1タンク部12a→第2パス10b→上部第2タンク部11b→第3パス10c→下部第2タンク部12bという順で流れるようになっている。そして、この冷媒は、出口側熱交換部20の最下流部(下部第2タンク部12b)から、連通路9を通じて出口側熱交換部20の最上流部(下部第1タンク部22a)に導入される。   In the inlet-side heat exchange unit 10, the upper tank 11 is partitioned into an upper first tank unit 11 a and an upper second tank unit 11 b by a partition unit 51, while the lower tank 12 is partitioned by the partition unit 51 into the lower first tank unit 12 a and It is partitioned into a lower second tank portion 12b. An evaporator inlet 7 is provided at the right end of the upper tank 11, and a plurality of heat exchange passage groups stacked in multiple stages are divided into a first path 10a, a second path 10b, and a third path 10c in order from right to left. Will be. As a result, the refrigerant introduced from the evaporator inlet 7 to the outlet side heat exchange unit 20 is the upper first tank part 11a → the first path 10a → the lower first tank part 12a → the second path 10b → the upper second tank part 11b. → The third path 10c → the lower second tank portion 12b flows in this order. Then, the refrigerant is introduced from the most downstream part (lower second tank part 12b) of the outlet side heat exchange part 20 into the most upstream part (lower first tank part 22a) of the outlet side heat exchange part 20 through the communication path 9. Is done.

一方、出口側熱交換部20は、下部タンク22が仕切部51によって下部第1タンク部22aおよび下部第2タンク部22bに区画される一方、上部タンク21が仕切部51によって上部第1タンク部21aおよび上部第2タンク部21bに区画されて、上部タンク21の右端に蒸発器出口8が設けられている。これにより複数多段に積層される熱交換通路群は左から右に向けて順に第1パス20a、第2パス20b、第3パス20cに区画されることとなる。連通路9から出口側熱交換部20に導入される冷媒は、下部第1タンク部22a→第1パス20a→上部第1タンク部21a→第2パス20b→下部第2タンク部22b→第3パス20c→上部第2タンク部21bという順で流れるようになっている。そして、この冷媒は、風上側熱交換部(冷媒下流の熱交換部)20の最下流部としての上部第2タンク部21bの右端に設けられた蒸発器出口8から、蒸発器1から導出される。   On the other hand, in the outlet-side heat exchange unit 20, the lower tank 22 is partitioned into a lower first tank portion 22 a and a lower second tank portion 22 b by a partition portion 51, while the upper tank 21 is partitioned into an upper first tank portion by a partition portion 51. The evaporator outlet 8 is provided at the right end of the upper tank 21, which is partitioned into 21 a and an upper second tank portion 21 b. As a result, the heat exchange passage groups stacked in multiple stages are partitioned into a first path 20a, a second path 20b, and a third path 20c in order from left to right. The refrigerant introduced from the communication path 9 to the outlet side heat exchanging unit 20 is the lower first tank unit 22a → first path 20a → upper first tank unit 21a → second path 20b → lower second tank unit 22b → third. It flows in the order of the path 20c → the upper second tank portion 21b. Then, this refrigerant is led out from the evaporator 1 from an evaporator outlet 8 provided at the right end of the upper second tank portion 21b as the most downstream part of the windward heat exchange part (heat exchange part downstream of the refrigerant) 20. The

この蒸発器1は、両熱交換部10、20で蛇行数が同一となるように各熱交換部10、20を複数(この例では3つ)のパス(10a、10b、10c,20a、20b、20c)に分割してあり、そして、風上側と風下側とに重ね合わされるパス同士(例えば、入口側熱交換部10の第1パス10aと出口側熱交換部20の第3パス20c)は、その上流下流のタンク部の流れを含めて互いに冷媒の流通方向が逆になっている。   The evaporator 1 includes a plurality of (three in this example) paths (10a, 10b, 10c, 20a, 20b) in which each of the heat exchange units 10, 20 has the same number of meanders in both the heat exchange units 10, 20. , 20c), and the paths that are overlapped on the windward side and the leeward side (for example, the first path 10a of the inlet-side heat exchange unit 10 and the third path 20c of the outlet-side heat exchange unit 20). The refrigerant flows in opposite directions including the flow in the upstream and downstream tank portions.

次に、この第1実施形態の蒸発器1の製造工程を補足する。この蒸発器1は、垂直方向に向けて配置されたチューブ30をアウターフィン33を介在させつつ水平方向に向けて複数多段に積層し、チューブ積層方向最外側(水平方向最外側)に強度補強用のサイドプレート35、37および配管コネクタ36等を付設して所定の蒸発器の形状とした状態で、一体にろう付けすることで製造される(図1、図2、図3参照)。なお、図1、2中符号34は最外端用の金属薄板を示す。   Next, the manufacturing process of the evaporator 1 according to the first embodiment will be supplemented. In this evaporator 1, tubes 30 arranged in the vertical direction are stacked in a plurality of stages in the horizontal direction with outer fins 33 interposed therebetween, and the strength is strengthened on the outermost side in the tube stacking direction (outermost in the horizontal direction). The side plates 35 and 37, the pipe connector 36, etc. are attached to be in a predetermined evaporator shape, and are manufactured by brazing together (see FIGS. 1, 2, and 3). 1 and 2, reference numeral 34 denotes an outermost metal thin plate.

使用されるチューブ30は、図3に示すように、一対の金属薄板40A、40Bの間にインナーフィン61、61を挟み込んだ状態でこれら一対の金属薄板40A,40Bを最中合わせに接合して構成され、チューブ30内部には中央部の仕切部30aを隔てて冷媒を流す2本の熱交換通路31、31が形成され且つチューブ30壁部には各熱交換通路31の両端部から外方に向けて筒状に突出するタンク部32、32が形成されている。なお、このチューブ30を形成する各金属薄板40A、40Bは、チューブ30の2本の通路31、31と4つのタンク部32、32に対応して、2本の熱交換通路用凹部41、42と4つのタンク部43、44、45、46とを備えた構造となっている。また、金属薄板40Aと金属薄板40Bは同一形状であり、金属薄板40Aを裏返したものが金属薄板40Bとなり、金属薄板40Bを裏返したものが金属薄板40Aである。   As shown in FIG. 3, the tube 30 to be used is formed by joining the pair of thin metal plates 40A and 40B in the middle with the inner fins 61 and 61 sandwiched between the pair of thin metal plates 40A and 40B. In the tube 30, two heat exchange passages 31, 31 are formed inside the tube 30 to flow the refrigerant across the central partition portion 30 a, and the tube 30 wall is outward from both ends of each heat exchange passage 31. The tank parts 32 and 32 which protrude in a cylinder shape toward are formed. The thin metal plates 40A and 40B forming the tube 30 correspond to the two passages 31 and 31 of the tube 30 and the four tank portions 32 and 32, and the two heat exchange passage recesses 41 and 42, respectively. And four tank parts 43, 44, 45, 46. Moreover, the metal thin plate 40A and the metal thin plate 40B have the same shape, and the thin metal plate 40A is the metal thin plate 40B, and the thin metal plate 40B is the thin metal plate 40A.

上述の各熱交換部10、20のタンク11、12、21、22に形成される仕切部51は、図4に示す仕切部51を構成するための閉塞部を備える金属薄板50を、所定の積層位置の金属薄板40A、40Bの代わりに利用することで形成される。   The partition part 51 formed in the tanks 11, 12, 21, and 22 of each of the heat exchange parts 10 and 20 described above is a metal thin plate 50 provided with a blocking part for constituting the partition part 51 shown in FIG. It is formed by using instead of the metal thin plates 40A and 40B at the stacking position.

「特徴点」
次に図2および図6を参照しつつ第1実施形態の特徴点について説明する。この第1実施形態では金属薄板50の配置位置により設定されるパスの区画に特徴がある。
"Feature point"
Next, features of the first embodiment will be described with reference to FIGS. 2 and 6. The first embodiment is characterized by a path section set by the arrangement position of the metal thin plate 50.

まず、入口側熱交換部10においては、下降流パスとしての第1パス10aおよび第3パス10cの熱交換通路数よりも上昇流パスとしての第2パス10bの熱交換通路数を少なくしてある。言い換えると、上昇流パス10bの総通路断面積S10cと下降流パス10a、10cの総通路断面積S10a、S10cとの関係を、S10a,S10c>S10bとなるようにしてある同時に、上昇流パス10bのタンク長手方向(水平方向)のサイズL10bと下降流パス10a、10cのタンク長手方向(水平方向)のサイズL10a、L10cとの関係を、L10a,L10c>L10bとなるようにしてある。なお、本明細書において「パスの総通路断面積」とは(パスの熱交換通路数)×(熱交換通路の通路断面積)をいう。   First, in the inlet-side heat exchange unit 10, the number of heat exchange passages in the second path 10b as the upward flow path is made smaller than the number of heat exchange passages in the first path 10a and the third path 10c as the downward flow path. is there. In other words, the relationship between the total passage sectional area S10c of the upward flow path 10b and the total passage sectional areas S10a, S10c of the downward flow paths 10a, 10c is set to satisfy S10a, S10c> S10b, and at the same time, the upward flow path 10b. The relationship between the size L10b in the tank longitudinal direction (horizontal direction) and the size L10a and L10c in the tank longitudinal direction (horizontal direction) of the downflow paths 10a and 10c is such that L10a, L10c> L10b. In the present specification, the “total passage cross-sectional area of the path” means (the number of heat exchange paths of the path) × (the cross-sectional area of the heat exchange path).

このため、乾き度が低い(=湿り度が高い)気液混合冷媒が流通する入口側熱交換部10においては、図6aに示すように上昇流パス10bでのタンク長手方向上流側(図6中左側)の液相冷媒量が増えて上昇流パス10bでの液相冷媒が不足する領域が減る。これにより入口側熱交換部10における温度ムラが小さくなる。   For this reason, in the inlet-side heat exchange unit 10 through which the gas-liquid mixed refrigerant having a low dryness (= high wetness) flows, as shown in FIG. 6a, the upstream side in the tank longitudinal direction in the upward flow path 10b (FIG. 6). The amount of the liquid refrigerant on the middle left side increases, and the region where the liquid refrigerant is insufficient in the upward flow path 10b decreases. Thereby, the temperature nonuniformity in the inlet side heat exchange part 10 becomes small.

一方、出口側熱交換部20においては、下流側のパスほど熱交換通路数を多くしてある。言い換えると、第1パス20aの総通路断面積S20aと第2パスの総通路断面積S20bと第3パス20cの総通路断面積S20cの関係が、S20c>S20b>S20aとなると同時に、第1パス20aのタンク長手方向(水平方向)のサイズL20aと、第2パス20bのタンク長手方向(水平方向)のサイズとL20bと、第3パス20cのタンク長手方向(水平方向)のサイズL20cと、の関係が、L20c>L20b>L20aとなる。   On the other hand, in the outlet side heat exchange section 20, the number of heat exchange passages is increased in the downstream path. In other words, the relationship between the total passage sectional area S20a of the first path 20a, the total passage sectional area S20b of the second path, and the total passage sectional area S20c of the third path 20c becomes S20c> S20b> S20a, and at the same time A tank longitudinal direction (horizontal direction) size L20a of 20a, a tank longitudinal direction (horizontal direction) size L20b of the second pass 20b, and a tank longitudinal direction (horizontal direction) size L20c of the third pass 20c. The relationship is L20c> L20b> L20a.

このため、乾き度が高く(=湿り度が低く)体積膨張した気液混合冷媒または気相冷媒が流通する出口側熱交換部20においては、流通抵抗が問題となる最下流パスとしての第3パス20cでの流通抵抗が低減され、出口側熱交換部20における通路抵抗が低減される。   For this reason, in the outlet-side heat exchange unit 20 through which the gas-liquid mixed refrigerant or the gas-phase refrigerant having a high degree of dryness (= low degree of wetness) and volume expansion flows, the third downstream path as a problem of flow resistance. The flow resistance in the path 20c is reduced, and the passage resistance in the outlet side heat exchange unit 20 is reduced.

また、この実施形態では、最下流パス20cを除いて下降流パス20bの熱交換通路数よりも上昇流パス20aの熱交換通路数が少なくなっている。そのため、最下流パスとしての第3パス20cを除いて下降流パスとしての第2パス20bの総通路断面積S20bよりも上昇流パスとしての第1パス20aの総通路断面積S20aが小さくなっている。これにより、上昇流パス20aでのタンク長手方向上流側の液相冷媒量が増えて、上昇流パスでの液相冷媒が不足する領域が減る。これにより出口側熱交換部20における温度ムラもさらに小さくなる。   In this embodiment, the number of heat exchange passages in the upflow path 20a is smaller than the number of heat exchange passages in the downflow path 20b except for the most downstream path 20c. Therefore, the total passage sectional area S20a of the first path 20a as the upward flow path is smaller than the total passage sectional area S20b of the second path 20b as the downward flow path except for the third path 20c as the most downstream path. Yes. As a result, the amount of liquid-phase refrigerant on the upstream side in the longitudinal direction of the tank in the upward flow path 20a is increased, and the region where the liquid-phase refrigerant in the upward flow path is insufficient is reduced. Thereby, the temperature nonuniformity in the exit side heat exchange part 20 is further reduced.

「効果」
次に、この第1実施形態の蒸発器1の効果をまとめる。
"effect"
Next, the effects of the evaporator 1 of the first embodiment will be summarized.

(I)この第1実施形態によれば、冷媒の乾き度が低く液相冷媒の流通分布に偏りがでやすい入口側熱交換部10においては、上昇流パス10bの熱交換通路数を下降流パス10a、10cの熱交換通路数よりも少なくした構造(S10a,S10c>S10b)であるため、上昇流パス10bで液相冷媒が不足しがちなタンク長手方向上流側に流れる液相冷媒(図6中点線部分)が増えて液相冷媒不足領域が減り、温度分布のムラが小さくなる。   (I) According to the first embodiment, in the inlet-side heat exchange unit 10 where the dryness of the refrigerant is low and the flow distribution of the liquid-phase refrigerant is easily biased, the number of heat exchange passages of the upflow path 10b is reduced. Since the number of heat exchange passages in the paths 10a and 10c is smaller (S10a, S10c> S10b), the liquid-phase refrigerant that flows to the upstream side in the longitudinal direction of the tank where the liquid-phase refrigerant tends to be insufficient in the upward flow path 10b (see FIG. 6 middle dotted line portion) increases, the liquid-phase refrigerant shortage region decreases, and the temperature distribution unevenness decreases.

また、乾き度が高く冷媒(気液混合冷媒または気相冷媒)の流通分布に偏りが出にくい出口側熱交換部20においては、最も流通冷媒の体積が膨張する最下流パス20cの熱交換通路数を最下流直前パス20bの熱交換通路数よりも多くした構造(S20c>S20b)であるため、最下流パス20cにおける流通抵抗の上昇が抑えられて出口側熱交換部20における流通抵抗が低く抑えられる。   Further, in the outlet side heat exchanging unit 20 that has a high degree of dryness and the distribution distribution of the refrigerant (gas-liquid mixed refrigerant or gas phase refrigerant) is less likely to be biased, the heat exchange passage of the most downstream path 20c in which the volume of the circulating refrigerant expands most. Since the number of heat exchange passages is greater than the number of heat exchange passages in the immediately downstream path 20b (S20c> S20b), an increase in the flow resistance in the most downstream path 20c is suppressed, and the flow resistance in the outlet side heat exchange section 20 is low. It can be suppressed.

結果、温度分布のムラが小さく且つ流通抵抗が低い蒸発器を実現できる。   As a result, it is possible to realize an evaporator with small temperature distribution unevenness and low flow resistance.

(II)特にこの第1実施形態によれば、出口側熱交換部20が3パス以上に設定され、冷媒体積が膨張する下流側のパスほど熱交換通路数を多くした構造であるため、つまりS20c>S20b>S20aとした構造であるため、出口側熱交換部20における通路抵抗を低減するのに最もふさわしい構造となる。   (II) In particular, according to the first embodiment, the outlet side heat exchanging unit 20 is set to three or more passes, and the downstream pass where the refrigerant volume expands has a structure in which the number of heat exchange passages is increased. Since the structure is S20c> S20b> S20a, the structure is most suitable for reducing the passage resistance in the outlet-side heat exchange unit 20.

(III)またこの第1実施形態によれば、両熱交換部10、20のパス数(この例では3つ)を同一に設定し且つ通風方向に向かって対向するパス同士(10aと20c)(10bと20b)(10cと20a)の冷媒の流れ方向が逆となるようにした構造であるため、2つの熱交換部10、20でパス数が異なる蒸発器(例えば第4実施形態の蒸発器400や第7実施形態の蒸発器700)に比べ、2つの熱交換部10、20の温度分布を重ね合わせた状態を予想またはシュミレーションしやすく、管理しやすい。   (III) Moreover, according to this 1st Embodiment, the number of paths (three in this example) of both the heat exchange parts 10 and 20 is set identically, and the paths (10a and 20c) which face each other toward the ventilation direction Since (10b and 20b) (10c and 20a) have a structure in which the refrigerant flow directions are reversed, evaporators having different numbers of passes between the two heat exchange units 10 and 20 (e.g., evaporation in the fourth embodiment) Compared to the evaporator 400 and the evaporator 700) of the seventh embodiment, it is easier to predict or simulate the state in which the temperature distributions of the two heat exchanging units 10 and 20 are overlapped and manage.

(IV)またこの第1実施形態によれば、出口側熱交換部20において最下流パス20cをのぞいて下降流パス20bの熱交換通路数よりも上昇流パス20aの熱交換通路数を少なくした構造であるため、つまりS20b>S20aとした構造であるため、出口側熱交換部20でもさらなる温度分布の改善が図られる。   (IV) Further, according to the first embodiment, the number of heat exchange passages in the upflow path 20a is made smaller than the number of heat exchange passages in the downflow path 20b except for the most downstream path 20c in the outlet side heat exchange section 20. Because of the structure, that is, the structure of S20b> S20a, the temperature distribution at the outlet side heat exchanging unit 20 can be further improved.

(V)またこの第1実施形態によれば、入口側熱交換部10を3パス以上に設定した構造であるため、2パス以下の構造(例えば第2実施形態や第3実施形態)に比べて各パス10a、10b、10cの総通路断面積S10a、S10b、S10cが小さくなるため、入口側熱交換部10の温度分布のムラをさらに小さくできる。   (V) Further, according to the first embodiment, since the inlet side heat exchanging unit 10 is configured to have three or more passes, the structure is less than two passes (for example, the second embodiment and the third embodiment). Since the total passage sectional areas S10a, S10b, and S10c of the paths 10a, 10b, and 10c are reduced, the temperature distribution unevenness of the inlet side heat exchange unit 10 can be further reduced.

(VI)またこの第1実施形態によれば、入口側熱交換部10を風下側に配置し且つ出口側熱交換部20を風上側に配置したため、まず最初に風上側の出口側熱交換部20で空気を冷やし、次にこの冷えた空気を風下側の出口側熱交換部20よりも低温の入口側熱交換部10で更に冷やせる。つまり、出口側熱交換部20と入口側熱交換部10とで段階的に空気を冷やすことができる。これにより風上側および風下側の熱交換部20、10を無駄なく効率的に利用でき、さらに熱交換効率を向上できる。   (VI) Also, according to the first embodiment, the inlet side heat exchange unit 10 is arranged on the leeward side and the outlet side heat exchange unit 20 is arranged on the leeward side. The air is cooled at 20, and the cooled air can be further cooled at the inlet-side heat exchange unit 10, which is at a lower temperature than the leeward-side outlet-side heat exchange unit 20. That is, the air can be cooled stepwise by the outlet side heat exchange unit 20 and the inlet side heat exchange unit 10. As a result, the heat exchange units 20 and 10 on the windward side and the leeward side can be efficiently used without waste, and the heat exchange efficiency can be further improved.

以下、本発明のその他の実施形態を説明する。以下の実施形態では詳細部分の図面を省略するとともに第1実施形態と同一または類似の構成については同一の符号を付して説明を省略する。   Hereinafter, other embodiments of the present invention will be described. In the following embodiments, detailed drawings are omitted, and the same or similar configurations as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

第2実施形態:図7は第2実施形態の蒸発器を示すものである。   Second Embodiment: FIG. 7 shows an evaporator according to a second embodiment.

この第2実施形態の蒸発器200は、仕切部51の設定により入口側熱交換部210が2パスであり且つ出口側熱交換部220が2パスである点で、入口側熱交換部10が3パスであり且つ出口側熱交換部20が3パスである第1実施形態の蒸発器1と異なっている。   In the evaporator 200 of the second embodiment, the inlet side heat exchange unit 10 has two passes and the outlet side heat exchange unit 220 has two passes by setting the partition 51. It differs from the evaporator 1 of 1st Embodiment which is 3 passes and the exit side heat exchange parts 20 are 3 passes.

この第2実施形態では、以下のような構成であるため、(II)(IV)(V)を除いた第1実施形態と同様の効果(I)(III)(VI)が得られる。   Since the second embodiment has the following configuration, the same effects (I), (III), and (VI) as those in the first embodiment except for (II), (IV), and (V) can be obtained.

(I)第2実施形態の蒸発器200は、第1実施形態と同様に、入口側熱交換部210において、第2パス(上昇流パス)210bの熱交換通路数を第1パス(下降流パス)210aの熱交換通路数よりも少なくした構造(S210b<S210a)であり、且つ、出口側熱交換部220においては、第2パス(最下流パス)220bの熱交換通路数を第1パス(最下流直前パス)220aの熱交換通路数よりも多くした構造(S220a<S220b)である。そのため、入口側熱交換部210では上昇流パス210bで液相冷媒が不足しがちなタンク長手方向上流側に流れる液相冷媒が増えて液相冷媒不足領域が減り、温度分布のムラが小さくなる。また、出口側熱交換部220では最下流パス220bにおける流通抵抗の上昇が抑えられて出口側熱交換部220における流通抵抗が低く抑えられる。これにより温度分布のムラが小さく且つ流通抵抗が低い蒸発器を実現できる。   (I) In the evaporator 200 of the second embodiment, the number of heat exchange passages of the second path (upflow path) 210b is changed to the first path (downflow) in the inlet-side heat exchange unit 210, as in the first embodiment. (Path) 210a is less than the number of heat exchange passages (S210b <S210a), and in the outlet side heat exchange section 220, the number of heat exchange passages of the second path (the most downstream path) 220b is the first path. This is a structure (S220a <S220b) that is larger than the number of heat exchange passages in the most downstream downstream path 220a. Therefore, in the inlet side heat exchanging section 210, the liquid phase refrigerant that tends to be short of the liquid phase refrigerant in the upstream flow path 210b increases on the upstream side in the longitudinal direction of the tank, the liquid phase refrigerant shortage region is reduced, and the temperature distribution unevenness is reduced. . Further, in the outlet side heat exchange unit 220, the increase in the flow resistance in the most downstream path 220b is suppressed, and the flow resistance in the outlet side heat exchange unit 220 is suppressed low. As a result, an evaporator with low temperature distribution unevenness and low flow resistance can be realized.

(III)また第2実施形態は、第1実施形態と同様に、両熱交換部210、220のパス数(この例では2つ)を同一に設定し且つ通風方向に向かって対向するパス同士(210aと220b)(210bと220a)の冷媒の流れ方向が逆となるようにした構造である。そのため、2つの熱交換部210、220でパス数が異なる蒸発器(例えば第4実施形態の蒸発器400や第7実施形態の蒸発器700)に比べ、2つの熱交換部210、220の温度分布を重ね合わせた状態を予想またはシュミレーションしやすく、管理しやすい。   (III) Moreover, 2nd Embodiment sets the number of the paths (two in this example) of both the heat exchange parts 210 and 220 similarly to 1st Embodiment, and the paths which face toward the ventilation direction (210a and 220b) (210b and 220a) is a structure in which the flow direction of the refrigerant is reversed. Therefore, compared with the evaporators (for example, the evaporator 400 of the fourth embodiment and the evaporator 700 of the seventh embodiment) in which the number of passes is different between the two heat exchange units 210 and 220, the temperatures of the two heat exchange units 210 and 220 are different. It is easy to predict or simulate the superposition of distributions and to manage them.

(VI)またこの第2実施形態は、第1実施形態と同様に、入口側熱交換部210を風下側に配置し且つ出口側熱交換部220を風上側に配置した構造である。そのため、まず最初に風上側の出口側熱交換部220で空気を冷やし、次にこの冷えた空気を出口側熱交換部220よりも低温の入口側熱交換部210で更に冷やせる。つまり、出口側熱交換部220と入口側熱交換部210とで段階的に空気を冷やすことができる。これにより風上側および風下側の熱交換部220、210を無駄なく効率的に利用でき、さらに熱交換効率を向上できる。   (VI) Moreover, this 2nd Embodiment is the structure which has arrange | positioned the entrance side heat exchange part 210 in the leeward side, and has arrange | positioned the exit side heat exchange part 220 in the leeward side like 1st Embodiment. Therefore, the air is first cooled by the outlet-side heat exchange unit 220 on the windward side, and then the cooled air can be further cooled by the inlet-side heat exchange unit 210 having a temperature lower than that of the outlet-side heat exchange unit 220. That is, the air can be cooled stepwise by the outlet side heat exchange unit 220 and the inlet side heat exchange unit 210. As a result, the heat exchange units 220 and 210 on the windward side and the leeward side can be efficiently used without waste, and the heat exchange efficiency can be further improved.

第3実施形態:図8は本発明の第3実施形態を示すものである。   Third Embodiment: FIG. 8 shows a third embodiment of the present invention.

この第3実施形態の蒸発器300は、第2実施形態の蒸発器200とは冷媒の流通方向が上下逆になっている点を除いて第2実施形態の蒸発器200と同様の構成であり、次に説明するように第2実施形態の蒸発器200と同様の効果が得られる。   The evaporator 300 according to the third embodiment has the same configuration as that of the evaporator 200 according to the second embodiment except that the flow direction of the refrigerant is upside down from the evaporator 200 according to the second embodiment. As will be described below, the same effect as the evaporator 200 of the second embodiment can be obtained.

(I)この第3実施形態の蒸発器300は、入口側熱交換部310において上昇流パスとしての第1パス310aの熱交換通路数を下降流パスとしての第2パス310bの熱交換通路数よりも少なくした構造(S310a<S310b)であり、且つ、出口側熱交換部320においては、最下流パスとしの第2パス320bの熱交換通路数を最下流直前パスとしての第1パス320aの熱交換通路数よりも多くした構造(S320b>S320a)である。そのため、入口側熱交換部310では上昇流パス310aで液相冷媒が不足しがちなタンク長手方向上流側に流れる液相冷媒が増えて液相冷媒不足領域が減り、温度分布のムラが小さくなる。また、出口側熱交換部320では最下流パス320bにおける流通抵抗の上昇が抑えられて出口側熱交換部320における流通抵抗が低く抑えられる。これにより温度分布のムラが小さく且つ流通抵抗が低い蒸発器を実現できる。   (I) In the evaporator 300 of the third embodiment, the number of heat exchange passages in the first path 310a as the upward flow path in the inlet side heat exchange unit 310 is the number of heat exchange passages in the second path 310b as the downward flow path. And the number of heat exchange passages in the second path 320b as the most downstream path in the outlet side heat exchange section 320 of the first path 320a as the most downstream immediately preceding path is smaller (S310a <S310b). The structure is larger than the number of heat exchange passages (S320b> S320a). Therefore, in the inlet side heat exchanging section 310, the liquid phase refrigerant that tends to be short of the liquid phase refrigerant in the upstream flow path 310a increases on the upstream side in the longitudinal direction of the tank, the liquid phase refrigerant shortage region is reduced, and the temperature distribution unevenness is reduced. . Further, in the outlet side heat exchange unit 320, the increase in the flow resistance in the most downstream path 320b is suppressed, and the flow resistance in the outlet side heat exchange unit 320 is suppressed low. As a result, an evaporator with low temperature distribution unevenness and low flow resistance can be realized.

(III)またこの第3実施形態の蒸発器300は、両熱交換部310、320のパス数(この例では2つ)を同一に設定し且つ通風方向に向かって対向するパス同士(310aと320b)(310bと320a)の冷媒の流れ方向が逆となるようにした構造である。そのため、2つの熱交換部310、320でパス数が異なる蒸発器(例えば第4実施形態の蒸発器400や第7実施形態の蒸発器700)に比べ、2つの熱交換部310、320の温度分布を重ね合わせた状態を予想またはシュミレーションしやすく、管理しやすい。   (III) Moreover, the evaporator 300 of this 3rd Embodiment sets the number of paths (two in this example) of both the heat exchange parts 310 and 320 to the same, and the path | passes (310a and 310a) which opposes toward a ventilation direction. 320b) (310b and 320a) has a structure in which the flow direction of the refrigerant is reversed. Therefore, compared with the evaporators (for example, the evaporator 400 of the fourth embodiment and the evaporator 700 of the seventh embodiment) in which the number of passes is different between the two heat exchange units 310 and 320, the temperatures of the two heat exchange units 310 and 320 are different. It is easy to predict or simulate the superposition of distributions and to manage them.

(VI)またこの第3実施形態の蒸発器300は、入口側熱交換部310を風下側に配置し且つ出口側熱交換部320を風上側に配置した構造である。そのため、まず最初に風上側の出口側熱交換部320で空気を冷やし、次にこの冷えた空気を出口側熱交換部320よりも低温の入口側熱交換部310で更に冷やせる。つまり、出口側熱交換部320と入口側熱交換部310で段階的に空気を冷やすことができる。これにより風上側および風下側の熱交換部320、310を無駄なく効率的に利用でき、さらに熱交換効率を向上できる。   (VI) Further, the evaporator 300 of the third embodiment has a structure in which the inlet side heat exchange unit 310 is arranged on the leeward side and the outlet side heat exchange unit 320 is arranged on the leeward side. Therefore, the air is first cooled by the outlet side heat exchange unit 320 on the windward side, and then the cooled air can be further cooled by the inlet side heat exchange unit 310 that is lower in temperature than the outlet side heat exchange unit 320. That is, the air can be cooled stepwise by the outlet side heat exchange unit 320 and the inlet side heat exchange unit 310. As a result, the windward and leeward heat exchange units 320 and 310 can be efficiently used without waste, and the heat exchange efficiency can be further improved.

第4実施形態:図9は本発明の第4実施形態を示すものである。   Fourth Embodiment: FIG. 9 shows a fourth embodiment of the present invention.

この第4実施形態の蒸発器400は、出口側熱交換部420が2パスである点で第1実施形態の蒸発器1と異なっており、それ以外はほぼ第1実施形態と同様の構成となっている。この第4実施形態の蒸発器400によれば、以下のような構成であるため、(II)(III)(IV)を除いた第1実施形態と同様の効果(I)(V)(VI)に加えて(VII)の効果も得られる。   The evaporator 400 according to the fourth embodiment is different from the evaporator 1 according to the first embodiment in that the outlet side heat exchanging section 420 has two passes, and the other configurations are substantially the same as those in the first embodiment. It has become. According to the evaporator 400 of this 4th Embodiment, since it is the following structures, (I) (V) (VI) similar to 1st Embodiment except (II) (III) (IV) In addition, the effect of (VII) is also obtained.

(I)この第4実施形態は、入口側熱交換部410においては、上昇流パスとしての第2パス410bの熱交換通路数を下降流パスとしての第1パス410aおよび第3パス410cの熱交換通路数よりも少なくした構造(S410a,S410c>S410b)であり、且つ、出口側熱交換部420においては、最も流通冷媒の体積が膨張する最下流パスとしての第2パス420bの熱交換通路数を最下流直前パスとしての第1パス420aの熱交換通路数よりも多くした構造(S420b>S420a)である。   (I) In the fourth embodiment, in the inlet side heat exchanging section 410, the number of heat exchange passages in the second path 410b as the upflow path is the heat of the first path 410a and the third path 410c as the downflow path. The number of exchange passages is smaller (S410a, S410c> S410b), and in the outlet side heat exchange section 420, the heat exchange passage of the second path 420b as the most downstream path in which the volume of the circulating refrigerant expands most. This is a structure (S420b> S420a) in which the number is larger than the number of heat exchange passages of the first path 420a as the immediately downstream path.

そのため、乾き度が低く冷媒の流通分布に偏りがでやすい入口側熱交換部410においては、上昇流パス410bで液相冷媒が不足しがちなタンク長手方向上流側に流れる液相冷媒が増えて液相冷媒不足領域が減り、温度分布のムラが小さくなる。また、乾き度が高く冷媒の流通分布に偏りが出にくい出口側熱交換部420においては、最も流通冷媒の体積が膨張する最下流パス420bでの流通抵抗の上昇が抑えられて出口側熱交換部420における流通抵抗が低く抑えられる。結果、温度分布のムラが小さく且つ流通抵抗が低い蒸発器を実現できる。   Therefore, in the inlet side heat exchanging section 410 that has a low dryness and tends to be biased in the distribution of refrigerant, the amount of liquid phase refrigerant that flows upstream in the longitudinal direction of the tank, which tends to be insufficient in the upward flow path 410b, increases. The liquid-phase refrigerant shortage area is reduced, and the temperature distribution is less uneven. Further, in the outlet side heat exchanging section 420, which has a high degree of dryness and the distribution distribution of the refrigerant is less likely to be biased, an increase in the distribution resistance in the most downstream path 420b where the volume of the circulating refrigerant expands is suppressed, and the outlet side heat exchange is performed. The distribution resistance in the part 420 is kept low. As a result, it is possible to realize an evaporator with small temperature distribution unevenness and low flow resistance.

(V)またこの第4実施形態は、入口側熱交換部410を3パス以上に設定した構造である。そのため、2パス以下の構造(例えば第2実施形態や第3実施形態)に比べて各パス410a、410b、410cの総通路断面積S410a、S410b、S410cが小さくなるため、入口側熱交換部410の温度分布のムラをさらに小さくできる。   (V) Moreover, this 4th Embodiment is the structure which set the entrance side heat exchange part 410 to 3 or more passes. Therefore, the total passage cross-sectional areas S410a, S410b, and S410c of each of the paths 410a, 410b, and 410c are smaller than the structure of two paths or less (for example, the second embodiment and the third embodiment). The unevenness of the temperature distribution can be further reduced.

(VI)またこの第4実施形態は、入口側熱交換部410を風下側に配置し且つ出口側熱交換部420を風上側に配置した構造である。そのため、まず最初に風上側の出口側熱交換部420で空気を冷やし、次にこの冷えた空気を出口側熱交換部420よりも低温の入口側熱交換部410で更に冷やせる。つまり、出口側熱交換部420と入口側熱交換部410とで段階的に空気を冷やすことができる。これにより風上側および風下側の熱交換部420、410を無駄なく効率的に利用でき、さらに熱交換効率を向上できる。   (VI) Moreover, this 4th Embodiment is the structure which has arrange | positioned the inlet side heat exchange part 410 in the leeward side, and has arrange | positioned the outlet side heat exchange part 420 in the leeward side. Therefore, the air is first cooled by the outlet side heat exchange unit 420 on the windward side, and then the cooled air can be further cooled by the inlet side heat exchange unit 410 having a temperature lower than that of the outlet side heat exchange unit 420. That is, the air can be cooled stepwise by the outlet side heat exchange unit 420 and the inlet side heat exchange unit 410. As a result, the heat exchange units 420 and 410 on the windward side and the leeward side can be efficiently used without waste, and the heat exchange efficiency can be further improved.

(VII)またこの第4実施形態の蒸発器400によれば、入口側熱交換部410のパス数(この例は3つ)よりも出口側熱交換部420のパス数(この例では2つ)を少なくした構造である。そのため、出口側熱交換部420では各パス410a、410bでの総通路断面積S410a、S410bが大きくなる。結果、出口側熱交換部420の通路抵抗をさらに低減することが求められる場合に好適となる。   (VII) Further, according to the evaporator 400 of the fourth embodiment, the number of passes of the outlet side heat exchange unit 420 (two in this example) is more than the number of passes of the inlet side heat exchange unit 410 (three in this example). ). Therefore, in the outlet side heat exchange section 420, the total passage sectional areas S410a and S410b in the paths 410a and 410b are increased. As a result, it is suitable when it is required to further reduce the passage resistance of the outlet side heat exchanging section 420.

第5実施形態:図10は第5実施形態の蒸発器500を示すものである。   Fifth Embodiment: FIG. 10 shows an evaporator 500 according to a fifth embodiment.

この第5実施形態の蒸発器500は、冷媒の流通方向が第1実施形態の蒸発器1とは上下逆になっており、且つ、出口側熱交換部520において最下流パス520cを除いて下降流パス520aの熱交換通路数よりも上昇流パス520bの熱交換通路数が多くなってはいないこと以外は第1実施形態と同様の構造である。第5実施形態では、以下のような構成であるため、(IV)を除いた第1実施形態と同様の効果(I)(II)(III)(V)(VI)が得られる。   In the evaporator 500 of the fifth embodiment, the refrigerant flow direction is reversed upside down from that of the evaporator 1 of the first embodiment, and the outlet side heat exchange unit 520 is lowered except for the most downstream path 520c. The structure is the same as that of the first embodiment except that the number of heat exchange passages in the upward flow path 520b is not larger than the number of heat exchange passages in the flow path 520a. Since the fifth embodiment has the following configuration, the same effects (I), (II), (III), (V), and (VI) as those in the first embodiment except for (IV) can be obtained.

(I)この第5実施形態の蒸発器500は、入口側熱交換部510においては、上昇流パスとしての第1パス510aおよび第3パス510cの熱交換通路数を下降流パスとしての第2パス510bの熱交換通路数よりも少なくした構造(510a,S510c<S510b)であり、且つ、出口側熱交換部520においては、最も流通冷媒の体積が膨張する最下流パスとしての第3パス520cの熱交換通路数を最下流直前パスとしての第2パス520bの熱交換通路数よりも多くした構造(S520c>S520b)である。そのため、乾き度が低く冷媒の流通分布に偏りがでやすい入口側熱交換部510においては、上昇流パス510c、510aで液相冷媒が不足しがちなタンク長手方向上流側に流れる液相冷媒が増えて液相冷媒不足領域が減り、温度分布のムラが小さくなる。また、乾き度が高く冷媒の流通分布に偏りが出にくい出口側熱交換部520においては、最も流通冷媒の体積が膨張する最下流パス520cにおける流通抵抗の上昇が抑えられて出口側熱交換部520における流通抵抗が低く抑えられる。結果、温度分布のムラが小さく且つ流通抵抗が低い蒸発器を実現できる。   (I) In the evaporator 500 of the fifth embodiment, in the inlet-side heat exchange unit 510, the number of heat exchange passages of the first path 510a and the third path 510c as the upflow path is the second as the downflow path. The number of heat exchange passages in the path 510b is smaller (510a, S510c <S510b), and the outlet side heat exchange section 520 has a third path 520c as the most downstream path in which the volume of the circulating refrigerant expands most. The number of heat exchange passages is larger than the number of heat exchange passages of the second path 520b as the immediately downstream pass (S520c> S520b). Therefore, in the inlet side heat exchanging portion 510 having a low dryness and a tendency to be biased in the distribution of refrigerant, the liquid phase refrigerant flowing upstream in the longitudinal direction of the tank, which tends to be short of the liquid phase refrigerant in the upward flow paths 510c and 510a. It increases and the liquid-phase refrigerant shortage area decreases, and the temperature distribution unevenness decreases. Further, in the outlet side heat exchange section 520 that has a high degree of dryness and the distribution distribution of the refrigerant is less likely to be biased, an increase in circulation resistance in the most downstream path 520c in which the volume of the circulation refrigerant expands most is suppressed, and the outlet side heat exchange section. The flow resistance at 520 is kept low. As a result, it is possible to realize an evaporator with small temperature distribution unevenness and low flow resistance.

(II)またこの第5実施形態の蒸発器500によれば、出口側熱交換部520が3パス以上に設定され、冷媒体積が膨張する下流側のパスほど熱交換通路数を多くした構造(S520c>S520b>S520a)である。そのため、出口側熱交換部20における通路抵抗を低減するのに最もふさわしい構造となる。   (II) Further, according to the evaporator 500 of the fifth embodiment, the outlet side heat exchange section 520 is set to three or more passes, and the number of heat exchange passages is increased in the downstream pass where the refrigerant volume expands ( S520c> S520b> S520a). Therefore, it becomes the most suitable structure for reducing the passage resistance in the outlet side heat exchange section 20.

(III)またこの第5実施形態によれば、両熱交換部510、520のパス数(この例では3つ)を同一に設定し且つ通風方向に向かって対向するパス同士(510aと520c)(510bと520b)(510cと520a)の冷媒の流れ方向が逆となるようにした構造である。そのため、2つの熱交換部510、520でパス数が異なる蒸発器(例えば第4実施形態の蒸発器400や第7実施形態の蒸発器700)に比べ、2つの熱交換部510、520の温度分布を重ね合わせた状態を予想またはシュミレーションしやすく、管理しやすい。   (III) According to the fifth embodiment, the number of paths (three in this example) of both the heat exchanging units 510 and 520 are set to be the same, and the paths facing each other in the ventilation direction (510a and 520c). (510b and 520b) (510c and 520a) is a structure in which the flow direction of the refrigerant is reversed. Therefore, compared with the evaporators (for example, the evaporator 400 of the fourth embodiment and the evaporator 700 of the seventh embodiment) in which the number of passes is different between the two heat exchange units 510 and 520, the temperatures of the two heat exchange units 510 and 520 are different. It is easy to predict or simulate the superposition of distributions and to manage them.

(V)またこの第5実施形態の蒸発器500は、入口側熱交換部510を3パス以上に設定した構造であるため、2パス以下の構造(例えば第2実施形態や第3実施形態)に比べて各パス510a、510b、510cの総通路断面積S510a、S510b、S510cが小さくなるため、入口側熱交換部510の温度分布のムラをさらに小さくできる。   (V) Moreover, since the evaporator 500 of this 5th Embodiment is the structure which set the inlet side heat exchange part 510 to 3 or more paths, it is a structure of 2 paths or less (for example, 2nd Embodiment or 3rd Embodiment). Since the total passage cross-sectional areas S510a, S510b, and S510c of the paths 510a, 510b, and 510c are smaller than the above, the temperature distribution unevenness of the inlet-side heat exchange unit 510 can be further reduced.

(VI)またこの第5実施形態の蒸発器500は、入口側熱交換部510を風下側に配置し且つ出口側熱交換部520を風上側に配置した構造である。そのため、まず最初に風上側の出口側熱交換部520で空気を冷やし、次にこの冷えた空気を出口側熱交換部520よりも低温の入口側熱交換部510で更に冷やせる。つまり、出口側熱交換部520と入口側熱交換部510とで段階的に空気を冷やすことができる。これにより風上側および風下側の熱交換部520、510を無駄なく効率的に利用でき、さらに熱交換効率を向上できる。   (VI) Further, the evaporator 500 of the fifth embodiment has a structure in which the inlet side heat exchange unit 510 is arranged on the leeward side and the outlet side heat exchange unit 520 is arranged on the leeward side. Therefore, the air is first cooled by the outlet side heat exchange unit 520 on the windward side, and the cooled air can be further cooled by the inlet side heat exchange unit 510 having a temperature lower than that of the outlet side heat exchange unit 520. That is, the air can be cooled stepwise by the outlet side heat exchange unit 520 and the inlet side heat exchange unit 510. As a result, the windward and leeward heat exchange units 520 and 510 can be efficiently used without waste, and the heat exchange efficiency can be further improved.

第6実施形態:図11は本発明の第6実施形態の蒸発器600を示すものである。この第6実施形態の蒸発器600は、入口側熱交換部610および出口側熱交換部620で4パスに設定された点で第1実施形態と異なっており、それ以外は第1実施形態とほぼ同様の構成になっている。この第6実施形態では、以下のような構成であるため、(IV)を除いた第1実施形態の蒸発器1と同様の効果(I)(II)(III)(V)(VI)が得られる。   Sixth Embodiment: FIG. 11 shows an evaporator 600 according to a sixth embodiment of the present invention. The evaporator 600 of this sixth embodiment is different from the first embodiment in that it is set to four paths at the inlet-side heat exchange unit 610 and the outlet-side heat exchange unit 620, and other than that of the first embodiment. The configuration is almost the same. Since the sixth embodiment has the following configuration, the same effects (I), (II), (III), (V), and (VI) as those of the evaporator 1 of the first embodiment except for (IV) are obtained. can get.

(I)この第6実施形態の蒸発器600は、入口側熱交換部610においては、上昇流パスとしての第2パス610bおよび第4パス610dの熱交換通路数を下降流パスとしての第1パス610aおよび第3パス610cの熱交換通路数よりも少なくした構造(S610a,S610c>S610b,610d)であり、且つ、出口側熱交換部620においては、最も流通冷媒の体積が膨張する最下流パスとしての第4パス620dの熱交換通路数を最下流直前パスとしての第3パス620cの熱交換通路数よりも多くした構造(S620d>S620c)である。そのため、乾き度が低く冷媒の流通分布に偏りがでやすい入口側熱交換部610においては、上昇流パス610b、610dで液相冷媒が不足しがちなタンク長手方向上流側に流れる液相冷媒が増えて液相冷媒不足領域が減り、温度分布のムラが小さくなる。また、乾き度が高く冷媒の流通分布に偏りが出にくい出口側熱交換部620においては、最も流通冷媒の体積が膨張する最下流パス620dにおける流通抵抗の上昇が抑えられて出口側熱交換部620における流通抵抗が低く抑えられる。   (I) In the evaporator 600 of the sixth embodiment, in the inlet-side heat exchange unit 610, the number of heat exchange passages of the second path 610b and the fourth path 610d as the upflow path is the first as the downflow path. It is a structure (S610a, S610c> S610b, 610d) in which the number of heat exchange passages of the path 610a and the third path 610c is reduced, and the most downstream of the outlet side heat exchange unit 620 where the volume of the circulating refrigerant expands In this structure, the number of heat exchange passages in the fourth path 620d as the path is larger than the number of heat exchange passages in the third path 620c as the immediately downstream path (S620d> S620c). Therefore, in the inlet-side heat exchange unit 610 that has a low degree of dryness and tends to be biased in the distribution of refrigerant, the liquid-phase refrigerant that flows to the upstream side in the longitudinal direction of the tank, where the liquid-phase refrigerant tends to be insufficient in the upward flow paths 610b and 610d. It increases and the liquid-phase refrigerant shortage area decreases, and the temperature distribution unevenness decreases. Further, in the outlet side heat exchange unit 620 that has a high degree of dryness and the distribution distribution of the refrigerant is less likely to be biased, an increase in circulation resistance in the most downstream path 620d in which the volume of the circulation refrigerant expands is suppressed, and the outlet side heat exchange unit The distribution resistance at 620 is kept low.

(II)特にこの第6実施形態の蒸発器600は、出口側熱交換部620が3パス以上に設定され、冷媒体積が膨張する下流側のパスほど熱交換通路数を多くした構造(S620d>S620c>S620b>S620a)であるため、出口側熱交換部620における通路抵抗を低減するのに最もふさわしい構造となる。   (II) In particular, the evaporator 600 of the sixth embodiment has a structure in which the outlet side heat exchange section 620 is set to three or more passes, and the number of heat exchange passages is increased in the downstream pass where the refrigerant volume expands (S620d> Since S620c> S620b> S620a), the structure is most suitable for reducing the passage resistance in the outlet side heat exchange section 620.

(III)またこの第6実施形態の蒸発器600は、両熱交換部610、620のパス数(この例では4つ)を同一に設定し且つ通風方向に向かって対向するパス同士(610aと620d)(610bと620c)(610cと620b)(610dと620a)の冷媒の流れ方向が逆となるようにした構造である。そのため、2つの熱交換部610、620でパス数が異なる蒸発器(例えば第4実施形態の蒸発器400や第7実施形態の蒸発器700)に比べ、2つの熱交換部610、620の温度分布を重ね合わせた状態を予想またはシュミレーションしやすく、管理しやすい。   (III) Further, the evaporator 600 of the sixth embodiment sets the same number of paths (four in this example) for both the heat exchangers 610 and 620, and faces the paths (610a and 610a) facing each other in the ventilation direction. 620d) (610b and 620c) (610c and 620b) (610d and 620a) are configured such that the refrigerant flow directions are reversed. Therefore, compared with the evaporators (for example, the evaporator 400 of the fourth embodiment and the evaporator 700 of the seventh embodiment) in which the number of passes is different between the two heat exchange units 610 and 620, the temperatures of the two heat exchange units 610 and 620 are different. It is easy to predict or simulate the superposition of distributions and to manage them.

(V)またこの第6実施形態の蒸発器600は、入口側熱交換部610を3パス以上に設定した構造である。そのため、2パス以下の構造(例えば第2実施形態や第3実施形態)に比べて各パス610a、610b、610c、610dの総通路断面積S610a、S610b、S610c、610dが小さくなるため、入口側熱交換部610の温度分布のムラをさらに小さくできる。   (V) Moreover, the evaporator 600 of this 6th Embodiment is the structure which set the entrance side heat exchange part 610 to 3 or more passes. Therefore, the total passage cross-sectional area S610a, S610b, S610c, 610d of each path 610a, 610b, 610c, 610d is smaller than the structure of two paths or less (for example, the second embodiment or the third embodiment), so that the entrance side Unevenness in the temperature distribution of the heat exchange unit 610 can be further reduced.

(VI)またこの第6実施形態の蒸発器600は、入口側熱交換部610を風下側に配置し且つ出口側熱交換部620を風上側に配置した構造である。そのため、まず最初に風上側の出口側熱交換部620で空気を冷やし、次にこの冷えた空気を出口側熱交換部620よりも低温の入口側熱交換部610で更に冷やせる。つまり、出口側熱交換部620と入口側熱交換部610とで段階的に空気を冷やすことができる。これにより風上側および風下側の熱交換部620、610を無駄なく効率的に利用でき、さらに熱交換効率を向上できる。   (VI) Moreover, the evaporator 600 of this 6th Embodiment is the structure which has arrange | positioned the inlet side heat exchange part 610 in the leeward side, and has arrange | positioned the outlet side heat exchange part 620 in the leeward side. Therefore, the air is first cooled by the outlet side heat exchange unit 620 on the windward side, and then the cooled air can be further cooled by the inlet side heat exchange unit 610 having a temperature lower than that of the outlet side heat exchange unit 620. That is, the air can be cooled stepwise by the outlet side heat exchange unit 620 and the inlet side heat exchange unit 610. Thereby, the heat exchange units 620 and 610 on the windward side and the leeward side can be efficiently used without waste, and the heat exchange efficiency can be further improved.

第7実施形態:図12は本発明の第7実施形態の蒸発器700を示すものである。この第7実施形態の蒸発器700は、出口側熱交換部720が2パスで構成されている以外は、第6実施形態とほぼ同様の構成となっている。   Seventh Embodiment: FIG. 12 shows an evaporator 700 according to a seventh embodiment of the present invention. The evaporator 700 of the seventh embodiment has substantially the same configuration as that of the sixth embodiment, except that the outlet side heat exchange unit 720 is configured with two passes.

この第7実施形態によれば、以下のような構成であるため、(II)(III)(IV)をのぞく第1実施形態と同様の効果(I)(V)(VI)に加えて、後述する(VII)の効果も得られる。   According to the seventh embodiment, since it has the following configuration, in addition to the same effects (I), (V), and (VI) as in the first embodiment except (II), (III), and (IV), The effect of (VII) described later can also be obtained.

(I)この第7施形態の蒸発器700は、入口側熱交換部710においては、上昇流パスとしての第2パス710bおよび第4パス710dの熱交換通路数を下降流パスとしての第1パス710aおよび第3パス710cの熱交換通路数よりも少なくした構造S710a,S710c>S710b,710d)であり、且つ、出口側熱交換部720においては、最も流通冷媒の体積が膨張する最下流パスとしての第2パス720bの熱交換通路数を最下流直前パスとしての第1パス720aの熱交換通路数よりも多くした構造(S720b>S720a)である。そのため、乾き度が低く冷媒の流通分布に偏りがでやすい入口側熱交換部710においては、上昇流パス710b、710dで液相冷媒が不足しがちなタンク長手方向上流側に流れる液相冷媒が増えて液相冷媒不足領域が減り、温度分布のムラが小さくなる。また、乾き度が高く冷媒の流通分布に偏りが出にくい出口側熱交換部720においては、最も流通冷媒の体積が膨張する最下流パス720bにおける流通抵抗の上昇が抑えられて出口側熱交換部720における流通抵抗が低く抑えられる。   (I) In the evaporator 700 of the seventh embodiment, in the inlet-side heat exchange unit 710, the number of heat exchange passages of the second path 710b and the fourth path 710d as the upward flow path is the first as the downward flow path. The structure S710a, S710c> S710b, 710d) in which the number of heat exchange passages of the path 710a and the third path 710c is smaller than that of the path 710a and the third path 710c. The number of heat exchange passages in the second path 720b as the number of heat exchange passages is larger than the number of heat exchange passages in the first path 720a as the most immediately downstream path (S720b> S720a). Therefore, in the inlet-side heat exchange unit 710 that has a low dryness and tends to be biased in the refrigerant distribution, the liquid-phase refrigerant that flows to the upstream side in the tank longitudinal direction, where the liquid-phase refrigerant tends to be insufficient in the upward flow paths 710b and 710d, It increases and the liquid-phase refrigerant shortage area decreases, and the temperature distribution unevenness decreases. Further, in the outlet side heat exchange unit 720 that has a high degree of dryness and is less likely to be biased in the distribution of refrigerant, an increase in circulation resistance in the most downstream path 720b in which the volume of the circulating refrigerant expands is suppressed, and the outlet side heat exchange unit The distribution resistance at 720 is kept low.

(V)またこの第7実施形態の蒸発器700は、入口側熱交換部710を3パス以上に設定した構造である。そのため、2パス以下の構造(例えば第2実施形態や第3実施形態)に比べて各パス710a、710b、710c、710dの総通路断面積S710a、S710b、S710c、710dが小さくなるため、入口側熱交換部710の温度分布のムラをさらに小さくできる。   (V) Moreover, the evaporator 700 of this 7th Embodiment is the structure which set the entrance side heat exchange part 710 to 3 or more passes. Therefore, since the total passage cross-sectional areas S710a, S710b, S710c, and 710d of each path 710a, 710b, 710c, and 710d are smaller than the structure of two paths or less (for example, the second embodiment or the third embodiment), the entrance side Unevenness in the temperature distribution of the heat exchange unit 710 can be further reduced.

(VI)またこの第7実施形態の蒸発器700は、入口側熱交換部710を風下側に配置し且つ出口側熱交換部720を風上側に配置した構造である。そのため、まず最初に風上側の出口側熱交換部720で空気を冷やし、次にこの冷えた空気を出口側熱交換部720よりも低温の入口側熱交換部710で更に冷やせる。つまり、出口側熱交換部720と入口側熱交換部710とで段階的に空気を冷やすことができる。これにより風上側および風下側の熱交換部720、710を無駄なく効率的に利用でき、さらに熱交換効率を向上できる。   (VI) Further, the evaporator 700 of the seventh embodiment has a structure in which the inlet side heat exchange unit 710 is arranged on the leeward side and the outlet side heat exchange unit 720 is arranged on the leeward side. Therefore, the air is first cooled by the outlet side heat exchange unit 720 on the windward side, and then the cooled air can be further cooled by the inlet side heat exchange unit 710 having a temperature lower than that of the outlet side heat exchange unit 720. That is, the air can be cooled stepwise by the outlet side heat exchange unit 720 and the inlet side heat exchange unit 710. As a result, the heat exchange units 720 and 710 on the windward side and the leeward side can be efficiently used without waste, and the heat exchange efficiency can be further improved.

(VII)またこの第7実施形態は、入口側熱交換部710のパス数(この例は4つ)よりも出口側熱交換部720のパス数(この例では2つ)を少なくした構造である。そのため、出口側熱交換部720では各パス720a、720bでの総通路断面積S720a、S720bが大きくなる。結果、出口側熱交換部720の通路抵抗をさらに低減することが求められる場合に好適となる。   (VII) In the seventh embodiment, the number of paths (two in this example) of the outlet side heat exchange section 720 is smaller than the number of paths of the inlet side heat exchange section 710 (four in this example). is there. Therefore, in the outlet side heat exchange unit 720, the total passage cross-sectional areas S720a and S720b in the paths 720a and 720b are increased. As a result, it is suitable when it is required to further reduce the passage resistance of the outlet side heat exchange section 720.

以上要するに、本発明は、乾き度が低く冷媒の流通分布に偏りがでやすい入口側熱交換部においては、上昇流パスの熱交換通路数を下降流パスの熱交換通路数よりも少なくした構造であるため、上昇流パスで液相冷媒が不足しがちなタンク長手方向上流側に流れる液相冷媒が増えて液相冷媒不足領域が減り、温度分布のムラが小さくなる。また、乾き度が高く冷媒の流通分布に偏りが出にくい出口側熱交換部においては、最も流通冷媒の体積が膨張する最下流パスの熱交換通路数を最下流直前パスの熱交換通路数よりも多くした構造であるため、最下流パスにおける流通抵抗の上昇が抑えられて出口側熱交換部における流通抵抗が低く抑えられる。これにより、温度分布のムラが小さく且つ流通抵抗が低い蒸発器となる。   In short, the present invention has a structure in which the number of heat exchange passages in the upflow path is smaller than the number of heat exchange passages in the downflow path in the inlet-side heat exchange section that has a low dryness and tends to be biased in the distribution of refrigerant. Therefore, the liquid phase refrigerant that tends to run out of liquid phase refrigerant in the upward flow path increases in the upstream side in the longitudinal direction of the tank, the liquid phase refrigerant shortage region decreases, and the temperature distribution unevenness is reduced. In addition, in the outlet side heat exchange section where the degree of dryness is high and the distribution of refrigerant is less likely to be biased, the number of heat exchange passages in the most downstream path where the volume of circulation refrigerant expands is more than the number of heat exchange passages in the immediately downstream path. Therefore, the increase in the flow resistance in the most downstream path is suppressed, and the flow resistance in the outlet side heat exchange section is suppressed to a low level. Thereby, it becomes an evaporator with small nonuniformity of temperature distribution and low flow resistance.

図1は第1実施形態の蒸発器の風上側から見た正面図。FIG. 1 is a front view of the evaporator according to the first embodiment as viewed from the windward side. 図2は同蒸発器の上面図。FIG. 2 is a top view of the evaporator. 図3はチューブの構造を示す斜視図。FIG. 3 is a perspective view showing the structure of the tube. 図4はタンクの仕切部を構成する閉塞部を備える金属薄板を示す斜視図。FIG. 4 is a perspective view showing a thin metal plate having a closing portion that constitutes a partition portion of the tank. 図5は蒸発器内の冷媒の流れを示す概略図。FIG. 5 is a schematic view showing the flow of the refrigerant in the evaporator. 図6は蒸発器内の液相冷媒の分布を示す概略図。FIG. 6 is a schematic diagram showing the distribution of the liquid refrigerant in the evaporator. 図7は第2実施形態の蒸発器を示す概略図。FIG. 7 is a schematic view showing an evaporator according to the second embodiment. 図8は第3実施形態の蒸発器を示す概略図。FIG. 8 is a schematic view showing an evaporator according to a third embodiment. 図9は第4実施形態の蒸発器を示す概略図。FIG. 9 is a schematic view showing an evaporator according to a fourth embodiment. 図10は第5実施形態の蒸発器を示す概略図。FIG. 10 is a schematic view showing an evaporator according to a fifth embodiment. 図11は第6実施形態の蒸発器を示す概略図。FIG. 11 is a schematic view showing an evaporator according to a sixth embodiment. 図12は第7実施形態の蒸発器を示す概略図。FIG. 12 is a schematic view showing an evaporator according to a seventh embodiment. 図13は従来の蒸発器の一例を示す概略図。FIG. 13 is a schematic view showing an example of a conventional evaporator. 図14は図13の蒸発器内の液相冷媒の分布を示す概略図。FIG. 14 is a schematic view showing a distribution of the liquid refrigerant in the evaporator of FIG. 図15は全室を上昇流のパスとした場合の温度分布を示す模式図。FIG. 15 is a schematic diagram showing the temperature distribution when all the rooms are used as upward flow paths.

符号の説明Explanation of symbols

1…蒸発器
10…入口側熱交換部
10…出口側熱交換部
10a…第1パス(下降流パス)
10b…第2パス(上昇流パス)
10c…第3パス(下降流パス)
11…上部タンク
12…下部タンク
20…出口側熱交換部
20a…第1パス(上昇流パス)
20b…第2パス(最下流直前パス,下降流パス)
20c…第3パス(最下流パス)
21…上部タンク
22…下部タンク
31…熱交換通路
51…仕切部
S10a、b、c…パスの総通路断面積
S20a、b、c…パスの総通路断面積
200…蒸発器
210…入口側熱交換部
210a…第1パス(下降流パス)
210b…第2パス(上昇流パス)
220…出口側熱交換部
220a…第1パス(最下流直前パス)
220b…第2パス(最下流パス)
S210a、b…パスの総通路断面積
S220a、b…パスの総通路断面積
300…蒸発器
310…入口側熱交換部
310a…第1パス(上昇流パス)
310b…第2パス(下降流パス)
320…出口側熱交換部
320a…第1パス(最下流直前パス)
320b…第2パス(最下流パス)
S310a、b…パスの総通路断面積
S320a、b…パスの総通路断面積
400…蒸発器
410…入口側熱交換部
410a…第1パス(下降流パス)
410b…第2パス(上昇流パス)
410c…第1パス(下降流パス)
420…出口側熱交換部
420a…第1パス(最下流直前パス)
420b…第2パス(最下流パス,上昇流パス)
S410a、b、c…パスの総通路断面積
S420a、b…パスの総通路断面積
500…蒸発器
510…入口側熱交換部
510a…第1パス(上昇流パス)
510b…第2パス(下降流パス)
510c…第3パス(上昇流パス)
520…出口側熱交換部
520a…第1パス
520b…第2パス(最下流直前パス)
520c…第3パス(最下流パス)
S510a、b、c…パスの総通路断面積
S520a、b、c…パスの総通路断面積
600…蒸発器
610…入口側熱交換部
610a…第1パス(下降流パス)
610b…第2パス(上昇流パス)
610c…第3パス(下降流パス)
610d…第4パス(上昇流パス)
620…出口側熱交換部
620a…第1パス
620b…第2パス
620c…第3パス(最下流直前パス)
620d…第4パス(最下流パス)
S610a、b、c、d…パスの総通路断面積
S620a、b、c、d…パスの総通路断面積
700…蒸発器
710…入口側熱交換部
710a…下降流パス
710b…上昇流パス
720…出口側熱交換部
720…熱交換部
720c…第3パス(最下流直前パス)
720d…最下流パス
S710a、b、c、d…パスの総通路断面積
S720a、b…パスの総通路断面積
DESCRIPTION OF SYMBOLS 1 ... Evaporator 10 ... Inlet side heat exchange part 10 ... Outlet side heat exchange part 10a ... 1st path | pass (downflow path)
10b ... 2nd pass (upflow path)
10c 3rd pass (downflow pass)
DESCRIPTION OF SYMBOLS 11 ... Upper tank 12 ... Lower tank 20 ... Outlet side heat exchange part 20a ... 1st path | pass (upflow path)
20b ... 2nd pass (pass immediately before the most downstream, downward flow pass)
20c ... 3rd pass (the most downstream pass)
DESCRIPTION OF SYMBOLS 21 ... Upper tank 22 ... Lower tank 31 ... Heat exchange passage 51 ... Partition part S10a, b, c ... Total passage sectional area of path S20a, b, c ... Total passage sectional area of path 200 ... Evaporator 210 ... Inlet side heat Exchanger 210a ... 1st pass (downflow path)
210b ... 2nd pass (upflow path)
220 ... Outlet side heat exchanging part 220a ... 1st pass (pass immediately before the most downstream)
220b ... 2nd path (downstream path)
S210a, b ... total passage cross-sectional area of path S220a, b ... total path cross-sectional area of path 300 ... evaporator 310 ... inlet side heat exchange section 310a ... first path (upflow path)
310b ... 2nd pass (downward flow pass)
320 ... exit side heat exchange section 320a ... first pass (pass immediately before the most downstream)
320b ... 2nd path (downstream path)
S310a, b ... total passage cross-sectional area of the path S320a, b ... total passage cross-sectional area of the path 400 ... evaporator 410 ... inlet side heat exchange section 410a ... first path (downflow path)
410b ... 2nd pass (upflow path)
410c ... 1st path | pass (downflow path)
420: outlet side heat exchanging section 420a: first pass (pass immediately before the most downstream)
420b ... 2nd path (downstream path, upflow path)
S410a, b, c: total passage cross-sectional area of the path S420a, b: total cross-sectional area of the path 500 ... evaporator 510 ... inlet side heat exchange section 510a ... first path (upflow path)
510b ... 2nd pass (downward flow pass)
510c 3rd pass (upflow path)
520 ... Outlet side heat exchange section 520a ... First pass 520b ... Second pass (pass immediately before the most downstream)
520c ... 3rd pass (the most downstream pass)
S510a, b, c: total passage cross-sectional area of the path S520a, b, c ... total path cross-sectional area of the path 600 ... evaporator 610 ... inlet side heat exchange section 610a ... first path (downflow path)
610b ... 2nd pass (upflow path)
610c ... 3rd pass (downflow path)
610d 4th pass (upflow path)
620 ... Outlet side heat exchange section 620a ... 1st pass 620b ... 2nd pass 620c ... 3rd pass (pass immediately before the most downstream)
620d ... Fourth path (the most downstream path)
S610a, b, c, d: total passage cross-sectional area of the path S620a, b, c, d: total cross-sectional area of the path 700 ... evaporator 710 ... inlet side heat exchange section 710a ... downflow path 710b ... upflow path 720 ... Exit side heat exchange part 720 ... Heat exchange part 720c ... 3rd pass (pass immediately before the most downstream)
720d: the most downstream path S710a, b, c, d: the total passage sectional area of the path S720a, b: the total passage sectional area of the path

Claims (7)

上下方向に延び且つ横方向に複数多段に積層され且つ内部に冷媒を流す熱交換通路(31)と、この複数多段の熱交換通路(31、31、・・)の上下両端に設けられ熱交換通路(31、31、・・)からの冷媒を合流分配するタンク(11、12、21、22)と、を有する熱交換部(10、20)を備え、
前記熱交換部(10、20)を通風方向に向けて二層に配置し、
いずれか一方の熱交換部(10)に冷媒を流通させた後に続けてその冷媒を他方の熱交換部(20)に流通させるように、両熱交換部(10、20)を接続した蒸発器であって、
冷媒の入口側の熱交換部(10)を2以上のパス(10a、10b、・・・)に設定し、
冷媒の出口側の熱交換部(20)を2以上のパス(20a、20b、・・・)に設定し、
前記入口側熱交換部(10)において、冷媒が下降流となる下降流パスの熱交換通路数よりも冷媒が上昇流となる上昇流パスの熱交換通路数を少なくし、
前記出口側熱交換部(20)において、最下流パスの熱交換通路数を最下流直前パスの熱交換通路数よりも多くしたことを特徴とする蒸発器(1)(200)(300)(400)(500)(600)(700)。
A heat exchange passage (31) that extends in the vertical direction and is laminated in a plurality of multi-stages in the horizontal direction and allows refrigerant to flow inside, and heat exchange provided at both upper and lower ends of the multi-stage heat exchange passages (31, 31,...) A heat exchange section (10, 20) having a tank (11, 12, 21, 22) for merging and distributing the refrigerant from the passage (31, 31, ...),
The heat exchange part (10, 20) is arranged in two layers in the direction of ventilation,
An evaporator in which both heat exchanging parts (10, 20) are connected so that the refrigerant is circulated to the other heat exchanging part (20) after the refrigerant is circulated to any one of the heat exchanging parts (10). Because
Set the heat exchange section (10) on the refrigerant inlet side to two or more paths (10a, 10b,...)
Set the heat exchange part (20) on the outlet side of the refrigerant in two or more paths (20a, 20b, ...),
In the inlet-side heat exchange section (10), the number of heat exchange passages in the upflow path where the refrigerant becomes an upward flow is smaller than the number of heat exchange passages in the downflow path where the refrigerant becomes a downward flow,
In the outlet side heat exchange section (20), the number of heat exchange passages in the most downstream path is greater than the number of heat exchange passages in the immediately downstream pass, and the evaporators (1) (200) (300) ( 400) (500) (600) (700).
請求項1に記載の蒸発器であって、
両熱交換部(10、20)でパス数が同一となるようにし、
対向する風上側のパスと風下側のパスとの冷媒の流れ方向が逆となるようにしたことを特徴とする蒸発器(1)(200)(300)(500)(600)。
The evaporator according to claim 1, comprising:
Make the number of passes the same in both heat exchange parts (10, 20),
The evaporators (1), (200), (300), (500), and (600), wherein the refrigerant flow directions in the opposite windward path and the leeward path are opposite to each other.
請求項1に記載の蒸発器であって、
前記入口側熱交換部(10)よりも、前記出口側熱交換部(20)のパス数を少なくしたことを特徴とする蒸発器(400)(700)。
The evaporator according to claim 1, comprising:
The evaporator (400) (700), wherein the number of passes of the outlet side heat exchange part (20) is smaller than that of the inlet side heat exchange part (10).
請求項1〜3のいずれか1項に記載の蒸発器であって、
前記出口側熱交換部(20)を3パス以上に設定し、
前記出口側熱交換部(20)で、下流側のパスに向けて除々に熱交換通路数を多くしたことを特徴とする蒸発器(1)(500)(600)。
The evaporator according to any one of claims 1 to 3,
The outlet side heat exchange part (20) is set to 3 passes or more,
The evaporator (1) (500) (600), wherein the number of heat exchange passages is gradually increased toward the downstream path in the outlet side heat exchange section (20).
請求項1〜4のいずれか1項に記載の蒸発器であって、
前記出口側熱交換部(20)を3パス以上にし、
前記出口側熱交換部(20)で、前記最下流パスをのぞいて前記下降流パスの熱交換通路数よりも前記上昇流パスの熱交換通路数を少なくしたことを特徴とする蒸発器(1)。
The evaporator according to any one of claims 1 to 4,
The outlet side heat exchange part (20) is set to 3 passes or more,
In the outlet side heat exchange section (20), the number of heat exchange passages in the upflow path is smaller than the number of heat exchange passages in the downflow path except for the most downstream path. ).
請求項1〜5のいずれか1項に記載の蒸発器であって、
前記入口側熱交換部(10)を3パス以上に設定したことを特徴とする蒸発器(1)(400)(500)(600)(700)。
The evaporator according to any one of claims 1 to 5,
The evaporator (1) (400) (500) (600) (700), wherein the inlet side heat exchange section (10) is set to three or more passes.
請求項1〜6のいずれか1項に記載の蒸発器であって、
前記入口側熱交換部(10)を風下側に配置し且つ前記出口側熱交換部(20)を風上側に配置したことを特徴とする蒸発器(1)(200)(300)(400)(500)(600)(700)。
The evaporator according to any one of claims 1 to 6,
The evaporator (1) (200) (300) (400) characterized in that the inlet side heat exchange part (10) is arranged on the leeward side and the outlet side heat exchange part (20) is arranged on the leeward side. (500) (600) (700).
JP2005106234A 2004-04-02 2005-04-01 Evaporator Pending JP2005315567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106234A JP2005315567A (en) 2004-04-02 2005-04-01 Evaporator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004110286 2004-04-02
JP2005106234A JP2005315567A (en) 2004-04-02 2005-04-01 Evaporator

Publications (1)

Publication Number Publication Date
JP2005315567A true JP2005315567A (en) 2005-11-10

Family

ID=35443172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106234A Pending JP2005315567A (en) 2004-04-02 2005-04-01 Evaporator

Country Status (1)

Country Link
JP (1) JP2005315567A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180479A (en) * 2007-01-26 2008-08-07 Showa Denko Kk Heat exchanger
WO2008133203A1 (en) * 2007-04-25 2008-11-06 Calsonic Kansei Corporation Evaporator
KR20190143756A (en) * 2018-06-21 2019-12-31 한온시스템 주식회사 Heat Exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126591A (en) * 1996-10-08 1997-05-16 Sharp Corp Heat exchanger
JP2003130581A (en) * 2001-10-17 2003-05-08 Showa Denko Kk Evaporator and car air conditioner having it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126591A (en) * 1996-10-08 1997-05-16 Sharp Corp Heat exchanger
JP2003130581A (en) * 2001-10-17 2003-05-08 Showa Denko Kk Evaporator and car air conditioner having it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180479A (en) * 2007-01-26 2008-08-07 Showa Denko Kk Heat exchanger
WO2008133203A1 (en) * 2007-04-25 2008-11-06 Calsonic Kansei Corporation Evaporator
US8302427B2 (en) 2007-04-25 2012-11-06 Calsonic Kansei Corporation Evaporator
KR20190143756A (en) * 2018-06-21 2019-12-31 한온시스템 주식회사 Heat Exchanger
KR102538973B1 (en) * 2018-06-21 2023-06-02 한온시스템 주식회사 Heat Exchanger

Similar Documents

Publication Publication Date Title
EP1582834B1 (en) Evaporator
JP4761790B2 (en) Evaporator
JP3960233B2 (en) Heat exchanger
JP5740134B2 (en) Evaporator
US7055585B2 (en) Layered evaporator for use in motor vehicle air conditioners or the like, layered heat exchanger for providing the evaporator, and refrigeration cycle system comprising the evaporator
JP4047891B2 (en) Heat exchanger
JP4233419B2 (en) Evaporator
US20140060789A1 (en) Heat exchanger and method of operating the same
US8302427B2 (en) Evaporator
JP4254015B2 (en) Heat exchanger
JP2006105581A (en) Laminated heat exchanger
JP2010151381A (en) Evaporator
JPH11294973A (en) Heat exchanger of absorption water cooler/heater
JP2005315567A (en) Evaporator
JP2004163036A (en) Double row heat exchanger
JP4547205B2 (en) Evaporator
JP2813732B2 (en) Stacked heat exchanger
JP2001133076A (en) Heat exchanger
JP4633967B2 (en) Ice thermal storage air conditioner
JP2003294338A (en) Heat exchanger
JP2005291659A (en) Evaporator
JP4480539B2 (en) Evaporator
KR100556231B1 (en) air conditioner evaporator
JP2005300021A (en) Heat exchanger
JPH04313686A (en) Heat exchange unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Effective date: 20100914

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110125

Free format text: JAPANESE INTERMEDIATE CODE: A02