JPH04313686A - Heat exchange unit - Google Patents

Heat exchange unit

Info

Publication number
JPH04313686A
JPH04313686A JP8002391A JP8002391A JPH04313686A JP H04313686 A JPH04313686 A JP H04313686A JP 8002391 A JP8002391 A JP 8002391A JP 8002391 A JP8002391 A JP 8002391A JP H04313686 A JPH04313686 A JP H04313686A
Authority
JP
Japan
Prior art keywords
air
heat exchange
fluid
heat
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8002391A
Other languages
Japanese (ja)
Inventor
Masahiro Inoue
雅裕 井上
Yoshimi Inoguchi
猪口 義己
Hidehito Chazono
茶園 秀仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuken Kogyo Co Ltd
Original Assignee
Kuken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuken Kogyo Co Ltd filed Critical Kuken Kogyo Co Ltd
Priority to JP8002391A priority Critical patent/JPH04313686A/en
Publication of JPH04313686A publication Critical patent/JPH04313686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To enhance the efficiency of heat exchange by increasing the flow rate of a secondary fluid (air) from that inlet side of a tube which a primary fluid (refrigerant) enters to the outlet side from which the secondary fluid leaves in structure and increasing the flow rate of the secondary fluid in inverse proportion to the differential temperature between the fluids. CONSTITUTION:A tower main body 1 is built-in with heat exchangers 5 and 6 which cools or heats refrigerant based on the application of air. The air from the lower end sections of the heat exchangers 5 and 6 flow past tubes 5 and 6 and flow through a tapered flow passage at the tip of pipe rows with minimum air resistance, which increases the velocity of the air flowing past the tubes 5 and 6 laid out on the upper end side faster than that on the lower end side. On the other hand, the temperature of the refrigerant flowing past the tubes 5 and 6 is increased gradually so that heat transfer may be gradually attenuated. The velocity of the air is more increased on the upper end side of the tubes 5b and 6b while the flow rate is maintained to a satisfactory extent, which makes it possible to inhibit a drop in the efficiency of heat exchange and hence a high efficiency of heat exchange may be maintained on the whole.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、冷凍機等の空気熱交換
器又は密閉式の冷却塔又は加熱塔に利用される伝熱管を
用いた熱交換ユニットに係り、特に直交流型熱交換器の
熱交換効率を向上させると共に、伝熱管やその他の部材
の表面への着霜による効率の低下を防ぐようにした熱交
換器の構造に関する。
[Industrial Field of Application] The present invention relates to a heat exchange unit using heat transfer tubes used in air heat exchangers such as refrigerators, closed cooling towers, or heating towers, and particularly relates to a heat exchange unit using heat transfer tubes used in air heat exchangers such as refrigerators, closed cooling towers, or heating towers, and particularly relates to cross-flow type heat exchangers. The present invention relates to a structure of a heat exchanger that improves the heat exchange efficiency of the heat exchanger and prevents a decrease in efficiency due to frost formation on the surfaces of heat exchanger tubes and other members.

【0002】0002

【従来の技術】従来、空調用等の冷却塔又は加熱塔及び
冷凍機の空気熱交換器等は、多数の管に内部流体を通し
外部からの空気をこれらの管の周りに流して加熱又は冷
却する構造がその一般的なものである。そして、加熱又
は冷却の伝熱方式としては、向流型,並流型及び直交流
型にそれぞれ分類される。向流型は、管の内部を通過す
る内部流体に対してその流れ方向と逆向きに空気を流し
て熱交換する方式であり、並流型はこれとは逆に内部流
体と空気のそれぞれの流れ方向を同じとしたものである
。また、直交流型は、内部流体の流れ方向に対してこれ
を直交して横切るように空気を流す方式である。
[Prior Art] Conventionally, cooling towers or heating towers for air conditioning, air heat exchangers for refrigerators, etc. pass internal fluid through a large number of pipes, and air from the outside flows around these pipes to heat or heat the tower. Cooling structures are common. The heat transfer method for heating or cooling is classified into a countercurrent type, a parallel flow type, and a cross flow type. The counterflow type exchanges heat by flowing air in the opposite direction to the flow direction of the internal fluid passing through the pipe, while the parallel flow type, on the other hand, exchanges heat between the internal fluid and air. The flow direction is the same. Further, the cross-flow type is a method in which air flows perpendicularly across the flow direction of the internal fluid.

【0003】これらの各種の方式の中で、熱交換効率は
向流型が最も良く、次いで直交流型及び並流型の順であ
り、空調用や工業用の設備等で現在最も多く利用されて
いるものは向流型である。
[0003] Among these various methods, the countercurrent type has the highest heat exchange efficiency, followed by the crossflow type and the parallel flow type, and is currently the most commonly used in air conditioning and industrial equipment. The one that is used is a countercurrent type.

【0004】向流型の熱交換器の場合、管の中を流れる
内部流体が零度以下であってこれを高温の空気で加熱す
るとき、温度の最も低くなる内部流体の入口側で空気が
冷却され、露点温度以下になると管表面に着霜を生じる
。このため、管どうしの間の空気流路が狭くなって流路
抵抗が増加し、空気流量も絞られて熱交換効率が低下し
てしまう。
In the case of a countercurrent heat exchanger, when the internal fluid flowing through the tube is below zero and is heated with high-temperature air, the air cools down at the inlet side of the internal fluid where the temperature is lowest. When the temperature drops below the dew point, frost forms on the tube surface. For this reason, the air flow path between the tubes becomes narrow, flow path resistance increases, and the air flow rate is also restricted, resulting in a decrease in heat exchange efficiency.

【0005】[0005]

【発明が解決しようとする課題】これに対し、直交流型
においても同様な着霜現象が起きるが、その程度は向流
型の熱交換器よりも軽くて済むことが知られている。こ
れは、たとえば熱交換する部分を水平にして伝熱管を蛇
行させ内部流体を上に向けて流し且つ空気も下から上に
流すような場合では、最も温度差の大きな下端部の伝熱
管にのみ着霜が起こるからである。一方、向流型の場合
では、内部流体と空気流れが向かい合うため、伝熱管の
全体に着霜してしまうことが多くなり、空気流量が減っ
て熱交換効率も下がってしまう。
[Problems to be Solved by the Invention] On the other hand, although a similar frosting phenomenon occurs in cross-flow type heat exchangers, it is known that the degree of frost formation is less than in counter-flow type heat exchangers. For example, if the heat exchange part is horizontal and the heat exchanger tube is meandering so that the internal fluid flows upward and the air also flows from the bottom to the top, this applies only to the heat exchanger tube at the bottom end where the temperature difference is greatest. This is because frost formation occurs. On the other hand, in the case of a countercurrent type, since the internal fluid and the air flow face each other, frost often forms on the entire heat exchanger tube, reducing the air flow rate and reducing the heat exchange efficiency.

【0006】しかしながら、着霜の問題は小さくても、
熱交換の効率自体では前述のように直交流型は向流型に
劣る。このため、着霜現象の発生が少ないと予想される
据付け環境であれば、向流型のものが好ましいことにな
るが、実際にはこの着霜による障害が大きいことから、
熱交換効率の面からだけで向流型に選定することは得策
ではない。
However, even if the problem of frost formation is small,
As mentioned above, the cross-flow type is inferior to the counter-flow type in terms of heat exchange efficiency itself. For this reason, if the installation environment is such that the occurrence of frost formation is expected to be low, a counter-current type is preferable, but in reality, this type of frost formation is a major problem, so
It is not a good idea to select a countercurrent type solely from the standpoint of heat exchange efficiency.

【0007】また、直交流型の場合では、着霜による障
害こそ少ないが、熱交換効率の向上には限界がある。こ
のため、内部流体の温度や流量及び据付け条件等にも制
約を受けるので、高い熱交換効率で操業させようとすれ
ば、限られた用途にしか対応できない。そして、直交流
型の熱交換器では、伝熱管の中を通過していく外部流体
すなわち空気等は、全ての伝熱管の周りで一様な流速に
なる。このため、内部流体と空気との温度差が小さくな
っている領域では、空気の流量を増やさなければ伝熱効
率が維持できず、一様な流速であれば効率の低下は免れ
ない。
[0007] In the case of a cross-flow type, there are fewer problems due to frost formation, but there is a limit to the improvement in heat exchange efficiency. For this reason, there are restrictions on the temperature and flow rate of the internal fluid, installation conditions, etc., and if an attempt is made to operate with high heat exchange efficiency, it can only be used for limited applications. In a cross-flow type heat exchanger, an external fluid, such as air, passing through the heat exchanger tubes has a uniform flow rate around all the heat exchanger tubes. Therefore, in a region where the temperature difference between the internal fluid and the air is small, the heat transfer efficiency cannot be maintained unless the air flow rate is increased, and if the flow rate is uniform, the efficiency inevitably decreases.

【0008】本発明において解決すべき課題は、向流型
と同等の熱効率を維持し且つ着霜による熱効率の低下を
抑えた直交流型の熱交換器を提供することにある。
The problem to be solved by the present invention is to provide a cross-flow type heat exchanger that maintains the same thermal efficiency as a counter-flow type and suppresses a decrease in thermal efficiency due to frost formation.

【0009】[0009]

【課題を解決するための手段】本発明は、冷凍機等の空
気熱交換器又は冷却塔又は加熱塔の塔本体に組み込まれ
、冷凍機等から一次流体を循環させ、該一次流体を空気
等の二次流体によって外部から加熱又は冷却するための
熱交換器を備えた熱交換ユニットであって、前記熱交換
器は、一次流体の入側から出側に向けて二次流体の通過
抵抗を小さくし且つ一次流体と二次流体の流れを直交さ
せる蛇行状のチューブを備えた直交流型とし、前記一次
流体が前記チューブに入る側から出る側に向けて前記二
次流体の流量を大きくする流量分布を持たせたことを特
徴とする。
[Means for Solving the Problems] The present invention is incorporated into an air heat exchanger such as a refrigerator or a tower body of a cooling tower or a heating tower, circulates a primary fluid from the refrigerator, etc., and converts the primary fluid into air, etc. A heat exchange unit equipped with a heat exchanger for externally heating or cooling with a secondary fluid, the heat exchanger increasing the passage resistance of the secondary fluid from the inlet side to the outlet side of the primary fluid. A cross-flow type with a meandering tube that is small and orthogonal to the flow of the primary fluid and the secondary fluid, and the flow rate of the secondary fluid is increased from the side where the primary fluid enters the tube to the side where it exits. It is characterized by having a flow rate distribution.

【0010】また、熱交換器の2個の組合せを一つのペ
アとし、一次流体のチューブへの入り側部分を開き出側
部分を狭くする配置とし、更に出側の熱交換器部分を吹
き抜け状とし、一次流体と二次流体の出側を同方向とす
る構成とすることもできる。
[0010] In addition, two heat exchangers are combined into one pair, and the inlet side of the primary fluid tube is opened and the outlet side is narrowed, and the outlet side of the heat exchanger is formed in an open-air shape. It is also possible to adopt a configuration in which the primary fluid and the secondary fluid exit in the same direction.

【0011】[0011]

【作用】直交流型の熱交換器では、チューブに入るとき
の一次流体と二次流体との温度差が最も大きく、チュー
ブを出るとき最小となる。このため、温度差が小さくな
る部分では熱移動が少なくなるが、本発明では二次流体
の流量が大きいので伝熱量に不足を生じることがない。 したがって、熱交換効率が高く維持され、また着霜部分
も一次流体の入り側部分のチューブのみに発生するだけ
なので、空気流量の全体が絞られることもなく、更に一
層熱交換効率の向上が図られる。
[Operation] In a cross-flow type heat exchanger, the temperature difference between the primary fluid and the secondary fluid is the largest when entering the tube, and is the smallest when exiting the tube. Therefore, heat transfer decreases in areas where the temperature difference is small, but in the present invention, the flow rate of the secondary fluid is large, so there is no shortage of heat transfer. Therefore, heat exchange efficiency is maintained at a high level, and since frost only forms on the tube on the entry side of the primary fluid, the entire air flow rate is not restricted, further improving heat exchange efficiency. It will be done.

【0012】0012

【実施例】図1は本発明の熱交換器を備えた冷却及び加
熱に兼用できる熱交換塔を示す概略図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram showing a heat exchange tower which is equipped with a heat exchanger of the present invention and can be used for both cooling and heating.

【0013】図において、熱交換塔はその塔本体1の底
部側の周壁に空気吸引用のルーバ2を備えると共に、上
端にはこのルーバ2を経て空気を吸い込んで排出するフ
ァン3を設けている。また、冷却塔として使う場合に備
えて上端部側にはスプレー散水用のノズルヘッド4を組
み込んでいる。
In the figure, the heat exchange tower is equipped with a louver 2 for sucking air on the peripheral wall of the bottom side of the tower body 1, and a fan 3 is installed at the upper end for sucking in air through the louver 2 and discharging it. . Furthermore, in preparation for use as a cooling tower, a nozzle head 4 for spraying water is incorporated in the upper end side.

【0014】塔本体1の内部には、ルーバ2から吸引し
た空気を利用して空調用の冷媒や蒸気及び冷凍機の冷媒
等を加熱又は冷却する熱交換器5,6が組み込まれる。 図2はこれらの熱交換器5,6の組立て状況を示す概略
斜視図であり、図3に一方の熱交換器5の側面図を示す
Heat exchangers 5 and 6 are installed inside the tower body 1 to heat or cool an air conditioning refrigerant or steam, a refrigerant for a refrigerator, etc. using the air sucked from the louvers 2. FIG. 2 is a schematic perspective view showing how these heat exchangers 5 and 6 are assembled, and FIG. 3 is a side view of one heat exchanger 5.

【0015】熱交換器5,6は図1において奥行き方向
に間隔をおいて配置した一対のヘッダー5a,6aを備
え、これらのヘッダー5a,6aにチューブ5b,6b
を配管接続している。一方のヘッダー5a,6aには、
加熱又は冷却する流体を供給する流入口5c,6cを設
け、更に熱交換後の流体を循環系に戻す還流口5d,6
dを設ける。なお、チューブ5bには熱移動を促進させ
るための適切なフィン5eを備え、他方のチューブ6b
も同様である。
The heat exchangers 5 and 6 are provided with a pair of headers 5a and 6a spaced apart in the depth direction in FIG.
is connected to the piping. In one header 5a, 6a,
Inflow ports 5c and 6c are provided for supplying fluid to be heated or cooled, and reflux ports 5d and 6 are provided for returning the fluid after heat exchange to the circulation system.
Provide d. Note that the tube 5b is provided with appropriate fins 5e for promoting heat transfer, and the other tube 6b is provided with appropriate fins 5e for promoting heat transfer.
The same is true.

【0016】熱交換器5は図3に示すように、2個のヘ
ッダー5aの間にチューブ5bを蛇行するように配管し
たものであり、この図では説明を簡単にするために1本
のチューブ5bとして描いている。これに対し、実際に
はチューブ5bは図1に示すようにヘッダー5aの縦方
向及び幅方向に複数を配列したものである。そして、ヘ
ッダー5aには仕切り壁5a−1,5a−2,5a−3
を設け、内部を複数の部屋に分割してそれぞれにチュー
ブ5bを接続している。なお、他方の熱交換器6も図3
のものと同様な構造を持つ。
As shown in FIG. 3, the heat exchanger 5 has tubes 5b arranged in a meandering manner between two headers 5a. In this figure, one tube is shown for ease of explanation. It is depicted as 5b. On the other hand, in reality, a plurality of tubes 5b are arranged in the longitudinal and width directions of the header 5a, as shown in FIG. The header 5a has partition walls 5a-1, 5a-2, 5a-3.
The interior is divided into a plurality of chambers, and a tube 5b is connected to each chamber. Note that the other heat exchanger 6 is also shown in FIG.
It has a similar structure to that of .

【0017】塔本体1の内部で一対のペアとして組み込
まれる熱交換器5,6は、図2に示すように、それぞれ
のヘッダー5a,6aの上端部を衝き当てて逆V字状に
組立てられる。このとき、ヘッダー5a,6aの間には
チューブ5b,6bが配管されているだけなので、図1
及び図2から判るように、熱交換器5,6で挟まれた空
間はほぼ三角形状の断面を持ち且つ上端も開放した吹き
抜け状となる。
The heat exchangers 5 and 6, which are assembled as a pair inside the tower body 1, are assembled in an inverted V shape by abutting the upper ends of the respective headers 5a and 6a, as shown in FIG. . At this time, since only the tubes 5b and 6b are installed between the headers 5a and 6a, as shown in FIG.
As can be seen from FIG. 2, the space sandwiched between the heat exchangers 5 and 6 has a substantially triangular cross-section and an open upper end.

【0018】以上の構成において、熱交換器5,6に摂
氏零度以下の冷媒を循環供給し、これを空気によって加
熱する加熱塔として使う場合の熱交換について、次に説
明する。
In the above configuration, heat exchange when a refrigerant below zero degrees Celsius is circulated and supplied to the heat exchangers 5 and 6 and used as a heating tower for heating with air will be described below.

【0019】塔本体1内ではその下部のルーバ2からフ
ァン3による吸引力によって空気が上に向けて強制的に
流される。一方、熱交換器5,6への冷媒の供給はその
下端の流入口5c,6cから行われ、強制循環によって
チューブ5b,6b内を進み、熱交換器5,6の全体か
ら見るときその下から上に向かう流れとなる。
Inside the tower body 1, air is forced upward from the louver 2 at the bottom by the suction force of the fan 3. On the other hand, the refrigerant is supplied to the heat exchangers 5 and 6 from the inflow ports 5c and 6c at the lower ends thereof, and flows through the tubes 5b and 6b by forced circulation, and when viewed from the whole of the heat exchangers 5 and 6, The flow is upward.

【0020】このような空気及び冷媒の流れの中で、熱
交換器5,6に供給された冷媒によって最も温度が低い
部分は流入口5c,6c及びこれに直結したチューブ5
b,6bの列の下端側である。このため、空気による加
熱過程のときでは、熱交換器5,6の下端部側に着霜現
象を集中して生じる。このような着霜は、たとえば図3
のチューブ5bの中でヘッダー5aの下端を走るものに
多く発生し、上に並べたチューブ5bの中の冷媒は次第
に加熱されてくるので、着霜の量は次第に減っていく。 このため、従来例で説明したように、向流型では空気流
路全面を塞ぐように低温の一次流体入口側の伝熱面全体
に着霜を生じるが、直交流型であれば着霜する領域は空
気流路の一部のみとなる。したがって、チューブ5bの
管をぬうようにして流れる空気の流量が絞られることが
なくなり、熱交換効率も高く維持される。
In such a flow of air and refrigerant, the portions having the lowest temperature due to the refrigerant supplied to the heat exchangers 5 and 6 are the inlets 5c and 6c and the tube 5 directly connected thereto.
This is the lower end side of the rows b and 6b. For this reason, during the heating process using air, frost formation is concentrated on the lower end portions of the heat exchangers 5 and 6. This kind of frost formation can be seen, for example, in Figure 3.
Most of the frost is generated in the tubes 5b running at the lower end of the header 5a, and as the refrigerant in the tubes 5b arranged above is gradually heated, the amount of frost is gradually reduced. For this reason, as explained in the conventional example, with a counter-flow type, frost forms on the entire heat transfer surface on the low-temperature primary fluid inlet side, blocking the entire air flow path, but with a cross-flow type, frost forms. The area is only a part of the air flow path. Therefore, the flow rate of the air flowing through the tube 5b is not restricted, and the heat exchange efficiency is maintained high.

【0021】また、図1に示すように、空気は熱交換器
5,6のチューブ5b,6bの間を抜けて通過する直交
型の熱交換となる。そして、熱交換器5,6の下端部か
らの空気はチューブ5b,6bの配置によってチューブ
5b,6bの間を抜けると共に、その先端の管列の空気
抵抗の小さい先細りの流路断面の中を流れる。このため
、上端側に配列したチューブ5b,6bの間を抜けて行
く空気の流速は下端側のチューブ5b,6b列の間を流
れるものよりも増速される。したがって、上下に並べた
チューブ5b,6bに対して下端側から上端側に向けて
空気の流速が大きくなる速度分布となる。
Further, as shown in FIG. 1, air passes between the tubes 5b and 6b of the heat exchangers 5 and 6, resulting in orthogonal heat exchange. Air from the lower ends of the heat exchangers 5 and 6 passes between the tubes 5b and 6b due to the arrangement of the tubes 5b and 6b, and also flows through the tapered flow path cross section with low air resistance of the tube row at the tip. flows. Therefore, the flow velocity of the air passing between the tubes 5b and 6b arranged on the upper end side is faster than that flowing between the rows of tubes 5b and 6b on the lower end side. Therefore, with respect to the tubes 5b and 6b arranged vertically, the velocity distribution becomes such that the flow velocity of the air increases from the lower end side to the upper end side.

【0022】一方、熱交換器5,6のチューブ5b,6
bの中を流れる冷媒は、上側に流れて行くにつれて次第
に空気によって加熱され、これらの冷媒と空気との間の
温度差も次第に小さくなっていく。このため、空気から
冷媒への熱移動も減衰していくが、チューブ5b,6b
の配列の中で上端側では空気流速が大きいので流量も充
分に確保されるので、熱交換効率の低下を抑えることが
できる。すなわち、温度差が小さくなるのに反比例して
空気流速が大きくなるので、熱伝達率の低下がなくなり
、全体から見た熱交換効率は高く維持され、効率的な熱
交換が可能となる。
On the other hand, the tubes 5b and 6 of the heat exchangers 5 and 6
The refrigerant flowing through b is gradually heated by the air as it flows upward, and the temperature difference between the refrigerant and the air gradually becomes smaller. Therefore, the heat transfer from the air to the refrigerant also decreases, but the tubes 5b and 6b
Since the air flow velocity is high on the upper end side of the arrangement, a sufficient flow rate is ensured, and a decrease in heat exchange efficiency can be suppressed. That is, since the air flow rate increases in inverse proportion to the decrease in temperature difference, there is no decrease in heat transfer coefficient, the overall heat exchange efficiency is maintained high, and efficient heat exchange is possible.

【0023】なお、熱交換器5,6の下端部ではその上
側の領域に比べると空気流速は小さい。しかし、空気と
冷媒との温度差が最大な部分であるため、空気の流量が
小さい場合でも流体間の熱交換は良好に行われる。した
がって、着霜が予想される部分でも効率的な熱交換が得
られる。
It should be noted that the air flow velocity is lower at the lower ends of the heat exchangers 5 and 6 than in the upper regions. However, since this is the part where the temperature difference between the air and the refrigerant is greatest, heat exchange between the fluids is performed well even when the flow rate of air is small. Therefore, efficient heat exchange can be achieved even in areas where frost formation is expected.

【0024】次いで、熱交換器5,6に送る流体を空気
とノズルヘッド4からのスプレー水によって冷却する冷
却塔として使う場合を考える。
Next, consider the case where the fluid sent to the heat exchangers 5 and 6 is used as a cooling tower in which air and water sprayed from the nozzle head 4 are used to cool the fluid.

【0025】この冷却塔の場合では、空気とスプレー水
とが対向流であってスプレー水と熱交換器5,6を流れ
る冷却流体も対向流となる。そして、前記のように、空
気は熱交換器5,6の下端部から上に吹き抜ける流れの
中で次第に増速されるので、下端側では流れの遅い空気
とスプレー水とが温度差の大きな冷却流体の間で良好に
熱交換が行われる。また、上端側では冷却流体との間の
温度差が小さくなるが、スプレー水を含んだ空気が増速
されて流れるので、熱交換効率も高く維持され熱交換の
効率が下がることもない。
In the case of this cooling tower, the air and the spray water flow in opposite directions, and the spray water and the cooling fluid flowing through the heat exchangers 5 and 6 also flow in opposite directions. As mentioned above, the speed of the air is gradually increased in the flow that blows upward from the lower ends of the heat exchangers 5 and 6, so that at the lower end side, the slow-flowing air and the spray water have a large temperature difference. Good heat exchange occurs between the fluids. Further, although the temperature difference between the upper end side and the cooling fluid becomes smaller, since the air containing the spray water flows at an increased speed, the heat exchange efficiency is maintained high and the heat exchange efficiency does not decrease.

【0026】図4は他の実施例であって、これは4個の
熱交換器5〜8を並列に配置したものである。図示のよ
うにペアを組む熱交換器5,6及び7,8がそれぞれ上
端部を衝き合わせて逆V字状に配置されている。その他
の構成は図1に示したものと同様であり、その2倍の熱
交換能力を持つ。なお、1aは水飛散防止エリミネータ
である。
FIG. 4 shows another embodiment in which four heat exchangers 5 to 8 are arranged in parallel. As shown in the figure, pairs of heat exchangers 5, 6 and 7, 8 are arranged in an inverted V shape with their upper ends abutting each other. The rest of the structure is the same as that shown in FIG. 1, and has twice the heat exchange capacity. In addition, 1a is a water scattering prevention eliminator.

【0027】また、図5は一個の熱交換器5を塔本体1
の中に納めた例を示す概略図である。熱交換器5は塔本
体1の中で斜めに傾けて配置され、下端の流入口5cか
ら還流口5dに向けて図の一点鎖線で示す方向に加熱又
は冷却流体を循環させる。そして、空気の流れも図1の
ものの右半分を切ったものと同様であり、上側に行くに
つれて空気の流速を上げることによる熱交換効率の向上
が可能である。
FIG. 5 also shows one heat exchanger 5 connected to the tower body 1.
FIG. The heat exchanger 5 is disposed obliquely in the tower body 1, and circulates heating or cooling fluid in the direction shown by the dashed line in the figure from the inlet 5c at the lower end toward the reflux port 5d. The air flow is also similar to that shown in the right half of FIG. 1, and the heat exchange efficiency can be improved by increasing the air flow velocity toward the top.

【0028】更に、図6は図4の4個の熱交換器5〜8
に加えてその下にも同様な熱交換器9〜12を配置した
スケルトン図を示すものである。このように熱交換器9
〜12を空気の流れ方向に2段又はそれ以上の段数とし
て組み込むこともできる。
Furthermore, FIG. 6 shows the four heat exchangers 5 to 8 of FIG.
This figure shows a skeleton diagram in which similar heat exchangers 9 to 12 are arranged in addition to the heat exchangers 9 to 12 below. In this way, the heat exchanger 9
-12 can also be incorporated as two or more stages in the air flow direction.

【0029】また、図7は複数の熱交換器10を横に配
列した例を示すものである。
Furthermore, FIG. 7 shows an example in which a plurality of heat exchangers 10 are arranged horizontally.

【0030】このように、内部を流れる空気を増速させ
るためにペアを組ませた2個の熱交換器を基本とするこ
とによって、熱交換器の各種のレイアウトが自在に行え
る。たとえば、図8に示すように同じ大きさの熱交換器
11を用意しておき、2個を一組として逆V字状に配列
すれば、熱交換器の様々な仕様が簡単に変更でき、更に
熱交換効率の向上によって省スペース化も図られる。
[0030] In this way, by using two heat exchangers as a basis, which are paired together in order to increase the speed of the air flowing inside, various layouts of the heat exchangers can be made freely. For example, as shown in FIG. 8, by preparing heat exchangers 11 of the same size and arranging two of them in an inverted V shape, various specifications of the heat exchangers can be easily changed. Furthermore, space can be saved by improving heat exchange efficiency.

【0031】[0031]

【発明の効果】本発明では、加熱又は冷却される一次流
体が流れる直交流型の熱交換器に対し、一次流体を加熱
又は冷却する空気等の二次流体を、流体どうしの温度差
に反比例して二次流体の流量を増やすことができる。こ
のため、直交流型の熱交換器の伝熱チューブの群れの周
りを一様な流速の二次流体によって熱交換する場合に比
べると、流体どうしの温度差に影響される伝熱量が減衰
することがなく、高い熱交換効率が得られる。また、着
霜が生じる領域はチューブの群れの一部だけなので、二
次流体の流速に影響を及ぼす度合いも小さく、常に高い
熱交換効率を維持できる。そして、このような高い熱交
換効率の達成によって、熱交換器のコンパクト化も可能
となり、省スペース化にも大きく貢献できる。
[Effects of the Invention] In the present invention, in a cross-flow type heat exchanger through which the primary fluid to be heated or cooled flows, the secondary fluid such as air that heats or cools the primary fluid is inversely proportional to the temperature difference between the fluids. The flow rate of the secondary fluid can be increased by For this reason, compared to the case where heat is exchanged by a secondary fluid with a uniform flow rate around a group of heat transfer tubes in a cross-flow type heat exchanger, the amount of heat transferred, which is affected by the temperature difference between the fluids, is attenuated. High heat exchange efficiency can be obtained. Further, since frost occurs only in a part of the group of tubes, the degree of influence on the flow velocity of the secondary fluid is small, and high heat exchange efficiency can be maintained at all times. By achieving such high heat exchange efficiency, it becomes possible to make the heat exchanger more compact, which greatly contributes to space saving.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の熱交換器を備えた加熱又は冷却塔兼用
の塔本体の概略図である。
FIG. 1 is a schematic diagram of a tower body that is equipped with a heat exchanger of the present invention and can be used as a heating or cooling tower.

【図2】熱交換器の組合せを示す概略斜視図である。FIG. 2 is a schematic perspective view showing a combination of heat exchangers.

【図3】熱交換器の内部を流れる流体及び空気の流れを
示す側面図である。
FIG. 3 is a side view showing the flow of fluid and air inside the heat exchanger.

【図4】4個の熱交換器を備えた塔本体の概略図である
FIG. 4 is a schematic diagram of a column body with four heat exchangers.

【図5】塔本体の中に1個の熱交換器を配置した例を示
す概略図である。
FIG. 5 is a schematic diagram showing an example in which one heat exchanger is disposed within the tower body.

【図6】塔本体に設ける4個ずつの熱交換器を2段に配
置した例を示す概略図である。
FIG. 6 is a schematic diagram showing an example in which four heat exchangers each provided in the tower body are arranged in two stages.

【図7】ほかの熱交換器の配列を示す概略図である。FIG. 7 is a schematic diagram showing another arrangement of heat exchangers.

【図8】2個の熱交換器の組合せを基本とした熱交換器
のレイアウトを示す概略図である。 1    塔本体 1a  水飛散防止エリミネータ 2    ルーバ 3    ファン 4    ノズルヘッド 5    熱交換器 5a  ヘッダー 5b  チューブ 5c  流入口 5d  還流口 6    熱交換器 6a  ヘッダー 6b  チューブ 6c  流入口 6d  還流口
FIG. 8 is a schematic diagram showing a heat exchanger layout based on a combination of two heat exchangers. 1 Tower body 1a Water scattering prevention eliminator 2 Louver 3 Fan 4 Nozzle head 5 Heat exchanger 5a Header 5b Tube 5c Inlet 5d Reflux port 6 Heat exchanger 6a Header 6b Tube 6c Inlet 6d Reflux port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  冷凍機等の空気熱交換器又は冷却塔又
は加熱塔の塔本体に組み込まれ、冷凍機等から一次流体
を循環させ、該一次流体を空気等の二次流体によって外
部から加熱又は冷却するための熱交換器を備えた熱交換
ユニットであって、前記熱交換器は、一次流体の入側か
ら出側に向けて二次流体の通過抵抗を小さくし且つ一次
流体と二次流体の流れを直交させる蛇行状のチューブを
備えた直交流型とし、前記一次流体が前記チューブに入
る側から出る側に向けて前記二次流体の流量を大きくす
る流量分布を持たせたことを特徴とする熱交換ユニット
Claim 1: It is built into an air heat exchanger such as a refrigerator or the tower body of a cooling tower or a heating tower, circulates a primary fluid from the refrigerator, etc., and heats the primary fluid from the outside with a secondary fluid such as air. Or a heat exchange unit equipped with a heat exchanger for cooling, wherein the heat exchanger reduces the passage resistance of the secondary fluid from the inlet side to the outlet side of the primary fluid and connects the primary fluid and the secondary fluid. A cross-flow type having meandering tubes that orthogonally intersect the flow of the fluid, and a flow rate distribution that increases the flow rate of the secondary fluid from the side where the primary fluid enters the tube to the side where the secondary fluid exits the tube. Features a heat exchange unit.
【請求項2】前記熱交換器の2個の組合せを一つのペア
とし、一次流体の前記チューブへの入り側部分を開き出
側部分を狭くする配置とし、更に出側の熱交換器部分を
吹き抜け状とし、一次流体と二次流体の出側を同方向と
したことを特徴とする請求項1記載の熱交換ユニット。
[Claim 2] A combination of two of the heat exchangers is made into one pair, and the arrangement is such that the inlet side portion of the primary fluid into the tube is opened and the outlet side portion is narrowed, and the outlet side heat exchanger portion is further narrowed. 2. The heat exchange unit according to claim 1, wherein the heat exchange unit has an open-air shape, and the outlet sides of the primary fluid and the secondary fluid are directed in the same direction.
JP8002391A 1991-04-12 1991-04-12 Heat exchange unit Pending JPH04313686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8002391A JPH04313686A (en) 1991-04-12 1991-04-12 Heat exchange unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8002391A JPH04313686A (en) 1991-04-12 1991-04-12 Heat exchange unit

Publications (1)

Publication Number Publication Date
JPH04313686A true JPH04313686A (en) 1992-11-05

Family

ID=13706691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8002391A Pending JPH04313686A (en) 1991-04-12 1991-04-12 Heat exchange unit

Country Status (1)

Country Link
JP (1) JPH04313686A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513728A (en) * 2004-09-17 2008-05-01 エスピーエックス・クーリング・テクノロジーズ・インコーポレーテッド Heating tower apparatus and heating method in which outlet air and inlet air are isolated
WO2014002369A1 (en) * 2012-06-28 2014-01-03 株式会社デンソー Heat pump cycle
WO2015029778A1 (en) * 2013-08-28 2015-03-05 三菱重工業株式会社 Air cooler, cooling device, and nuclear facility

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513728A (en) * 2004-09-17 2008-05-01 エスピーエックス・クーリング・テクノロジーズ・インコーポレーテッド Heating tower apparatus and heating method in which outlet air and inlet air are isolated
WO2014002369A1 (en) * 2012-06-28 2014-01-03 株式会社デンソー Heat pump cycle
JP2014009868A (en) * 2012-06-28 2014-01-20 Denso Corp Heat pump cycle
WO2015029778A1 (en) * 2013-08-28 2015-03-05 三菱重工業株式会社 Air cooler, cooling device, and nuclear facility
US10319482B2 (en) 2013-08-28 2019-06-11 Mitsubishi Heavy Industries, Ltd. Air cooler, intercooler and nuclear facility
US11289217B2 (en) 2013-08-28 2022-03-29 Mitsubishi Heavy Industries, Ltd. Intercooler for nuclear facility
US11289218B2 (en) 2013-08-28 2022-03-29 Mitsubishi Heavy Industries, Ltd. Air cooler, intercooler and nuclear facility

Similar Documents

Publication Publication Date Title
JP3371071B2 (en) Two-row flat tube heat exchanger
CA3010855C (en) Elliptically finned heat exchanger comprising indirect and direct heat exchange sections
MX2013000602A (en) Evaporative heat exchange apparatus with finned elliptical tube coil assembly.
KR20060025082A (en) An evaporator using micro- channel tubes
JP4686062B2 (en) Evaporator
JPH11294973A (en) Heat exchanger of absorption water cooler/heater
JP2002139295A (en) Heat exchanger for air conditioning
JPH04313686A (en) Heat exchange unit
JPH03140795A (en) Lamination type heat exchanger
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
JP4497527B2 (en) Refrigeration equipment
TW202242334A (en) Evaporator
CN112066601A (en) Heat exchanger and air conditioning system
JP2001304720A (en) Heat exchanger
JP2001133076A (en) Heat exchanger
JP2002081797A (en) Condenser
KR100213140B1 (en) Fin type heat exchanger
JP2907864B2 (en) Heat pump type air conditioner indoor unit heat exchanger
JP2005315567A (en) Evaporator
CN212299551U (en) Heat exchanger and air conditioning system
JP3909534B2 (en) Jet heat exchanger and evaporative condenser using the heat exchanger
KR100704770B1 (en) Heat exchanger
JP3879176B2 (en) Air-cooled absorption refrigeration system
JP3287954B2 (en) Closed heating tower
JPH0435750Y2 (en)