JP3909534B2 - Jet heat exchanger and evaporative condenser using the heat exchanger - Google Patents

Jet heat exchanger and evaporative condenser using the heat exchanger Download PDF

Info

Publication number
JP3909534B2
JP3909534B2 JP30642197A JP30642197A JP3909534B2 JP 3909534 B2 JP3909534 B2 JP 3909534B2 JP 30642197 A JP30642197 A JP 30642197A JP 30642197 A JP30642197 A JP 30642197A JP 3909534 B2 JP3909534 B2 JP 3909534B2
Authority
JP
Japan
Prior art keywords
jet
upright
panel
heat exchange
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30642197A
Other languages
Japanese (ja)
Other versions
JPH11125478A (en
Inventor
潤二 松田
正人 竹田
利明 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP30642197A priority Critical patent/JP3909534B2/en
Publication of JPH11125478A publication Critical patent/JPH11125478A/en
Application granted granted Critical
Publication of JP3909534B2 publication Critical patent/JP3909534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/041Details of condensers of evaporative condensers

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、気体等の冷却媒体を用いた凝縮器、蒸発器ないし蒸発器凝縮器兼用の噴流式熱交換器とそれを使用した蒸発式凝縮器に関する。
【0002】
【従来の技術】
従来凝縮器や蒸発器等に使用されている熱交換器では、熱は冷媒から前記冷媒管の管壁を経て冷却媒体である水または空気へ流れる構成を持っている。
例えば、空冷凝縮器の場合は図6に示すように、フィン付きコイル50の管内の冷媒と外気取り入れ口52から取り入れ管外を流れるようにした冷却媒体である外気との間で熱交換を行い、冷媒を冷却凝縮させているが、この場合一般に冷媒菅であるコイルには外側に大きな面積を持つフィン50aを設けたプレートフィン熱交換器が使用されている。
【0003】
また、従来の蒸発式凝縮器は、図7に示すように、冷媒の通過する冷媒管55の外側表面を噴霧水56aで濡らしこれに冷却媒体である空気をファン57を介して取り入れ、水の蒸発潜熱を利用して冷媒を冷却するコイル構造のものが使用されている。この場合噴霧水56aは下部の散水溜めタンク58よりポンプ59により噴霧管56を介して循環噴霧するようにしてある。
【0004】
ところで、上記従来のプレートフィン熱交換器の場合は、冷却媒体である空気側の熱伝達率は冷媒側の熱伝達率と比較して非常に小さいので、熱交換器としては空気側に大きな伝熱面積を付加する必要があり、そのために冷媒管の外側に大きな面積を持つフィンを設ける必要がありスペース効率が悪い問題がある。
また、上記フィン付きの場合空気温度が低下すると空気中の水分がフィンに着霜し伝熱面積を減少させ、熱伝達効率を低下させる問題がある。
また、フィン付き冷媒管の場合通過する気流に温度変化があると熱交換率が低下する問題がある。
【0005】
また、上記蒸発式凝縮器の場合、多量の水が噴霧水と使用され、また冷媒管がコイル構造のため、コイル内に多量の冷媒が常時保有されることになり、コスト高と冷媒漏洩の場合漏洩量が多くなってしまうマイナス面を持っている。
【0006】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑みなされたもので、冷媒の持つ熱を冷媒管の管壁よりの管壁外側の空気側への熱の伝達に際しての、層流による熱伝導を主体とする熱伝達において、フィン表面上の切り起しによる温度境界層の発達阻止による熱伝達率の向上が僅かに図られている従来の手法に対し、本発明では伝熱面における冷却媒体の流れを層流より不安定な乱流に遷移させ物理量であるエンタルピの乱流拡散を起して熱伝達率の格段の向上を図るようにしたもので、そのため、冷却媒体を噴流状に伝熱壁面に衝突させ衝突噴流を形成させ、伝熱面上の壁面噴流領域に乱流を形成させ、さらに隣接衝突噴流同士のよどみ点での左右分離後に前記壁面噴流領域において対向噴流の衝突を惹起させ、熱の効率的外部拡散を図かるようにしたものである。
【0007】
そのために、従来冷媒管の代わりに平板状熱交換パネルを使用し、該パネルのパネル面に対し冷却媒体である空気の衝突噴流を形成させ、該噴流がパネル面へ衝突後のパネル面上に形成される壁面噴流領域に二次元乱流壁面噴流を形成させ、高効率の熱伝達を可能にする。
而して上記高効率の熱の授受が終了した噴流は、隣接スリットからの前記同様に形成された二次元乱流壁面噴流との間に対向噴流を形成させ、その衝突により上方排出流を形成して外部へ拡散できるようにし、熱伝達率の著しく高い熱交換器の提供を可能にしたものである。
【0008】
また、蒸発式凝縮器としては、上記噴流式熱交換器の噴流空気に水を混入させ、水の潜熱の高効率利用を図ったものである。
【0009】
【課題を解決するための手段】
そこで、本発明の噴流式熱交換器は、
直立平板状熱交換パネルと、該パネルのパネル面に対し高速冷却媒体の噴流を垂直に衝突させ衝突噴流を形成させる複数列直立スリット群と、より構成し、
更に前記複数列直立スリット群は、前記直立平板状熱交換パネルに平行に延設した断面台形状の高速冷却媒体供給ダクトの傾斜面に植設され、スリット間の外側に開放空間を形成させ、該空間により上方排出流の排出路を形成する構成としたことを特徴とする。
【0010】
また、本発明の複数列直立スリット群は、隣接スリットからの噴流同士がパネル面に衝突後壁面噴流領域において対向噴流同士の衝突を惹起させ、上方排出流を形成させるべく適当間隔に配設するのがよい。
【0011】
【0012】
また、本発明の複数列直立スリット群と前記直立平板状熱交換パネル面とは、適当距離をあけて交互にサンドイッチ状に対向並設するのがよい。
【0013】
また、本発明の冷却媒体は例えば空気によりなる。
【0014】
また、本発明の噴流式熱交換器を使用した蒸発式凝縮器は、
請求項5に記載したように、直立平板状熱交換パネルと、該パネルのパネル面に対し高速冷却媒体の噴流を垂直に衝突させ衝突噴流を形成させる複数列直立スリット群と、より構成した噴流式熱交換器において、
前記冷却媒体は空気と水との混相流より構成し、該混相流形成用の水滴噴霧ノズルを高速冷却媒体中に設け、
更に前記複数列直立スリット群は、前記直立平板状熱交換パネルに平行延設した断面台形状の高速気流供給ダクトの傾斜面に植設され、スリット間の外側に開放空間を形成させ、該空間により上方排出流の排出路を形成する構成とした、ことを特徴とする
【0015】
また、前記複数列直立スリット群は、隣接スリットからの噴流同士がパネル面に衝突後壁面噴流領域において対向噴流同士の衝突を惹起させ、上方排出流を形成させるべく適当間隔に配設するのがよい。
【0016】
【0017】
また、前記複数列直立スリット群と前記直立平板状熱交換パネル面とは、適当距離をあけて交互にサンドイッチ状に対向並設する、構成とするのがよい。
【0018】
【作用】
従って、請求項1に対応する本発明に係わる噴流式熱交換器は、従来のコイル状冷媒管の代わりに使用した直立平板状熱交換パネルと、該熱交換パネルのパネル面に冷却媒体の2次元噴流による衝突噴流を形成させるべく該パネル面に対し適当距離を於いて並設した複数列直立スリット群と、よりなる構成にしてある。 そのため、複数列直立スリット群より対向位置にある直立平板状熱交換パネルのパネル面に向け吹き出された冷却媒体よりなる高速冷却媒体は、二次元噴流を形成して伝熱面である前記パネル面に垂直に衝突した後衝突中心のよどみ点より左右に分離し、分離した噴流は前記よどみ点のある衝突領域の下流側の壁面噴流領域に二次元乱流壁面噴流を形成する。
上記二次元乱流壁面噴流により、冷却媒体と伝熱面との間では従来の層流による熱伝達に対しては比較にならない程効率の高い乱流熱伝達が行われる。
即ち、上記層流による熱伝達は熱伝導によってのみ熱移動が行われるが、乱流熱伝達においては熱伝導による熱移動に加えて乱流変動によるエンタルピ輸送が重なり合うため、層流に比較し著しく大なる熱伝達率を持つ。しかも、その高効率の熱伝達は前記よどみ点の両側下流に展開された壁面噴流領域で行われる。
更に加えて複数列の直立スリット群は、対向位置にある直立平板状熱交換パネルに対し、平行に延設した断面形状が台形の高速冷却媒体供給ダクトの両面ないし片面の傾斜面に植設され、隣接するスリット間の外側には上方への開放空間を形成させてある。そのため、パネル面への衝突噴流が二次元乱流壁面噴流形成後向流噴流を形成して向流噴流同士が衝突するまでの間上記壁面噴流領域における熱の授受を終了して加熱された冷却媒体は、上方排出流となり境界層の外側に拡散し、下部に滞留することなく前記開放空間を上昇して外部へ排出される。
【0019】
また、請求項2記載の発明においては、前記複数列直立スリット群のスリット間隔を適当に設定して下記上方排出流が効率よく形成できるようにしたものである。即ち、
隣接位置にあるスリット同士より平行に吹き出される衝突噴流は直立平板状熱交換パネルのパネル面に衝突後よどみ点より左右にそれぞれ分離する。そして衝突領域の下流側の壁面噴流領域に形成された二次元乱流壁面噴流同士は、対向噴流となり前記壁面噴流領域の末端で衝突が惹起される。その衝突により上方への上方排出流が形成される。
隣接スリットの間隔を適当に設定して上記二次元乱流壁面噴流同士が衝突して上方排出流を形成させるようにしてあるため、複数列の多段スリット構造により、さきに衝突噴流により壁面噴流領域において高効率の熱交換をした冷却媒体は上記向流噴流の衝突により前記壁面噴流領域の境界層の外側に分離拡散排出させることができる。
【0020】
【0021】
また、請求項記載の発明においては、
前記複数列直立スリット群は、直立平板状熱交換パネルのパネル両面に対し、前記衝突噴流の形成に必要とする適当距離を置いて、複数列片面直立スリット群→パネル両面→複数列両面スリット群→…→パネル両面→複数列片面直立スリット群、とサンドイッチ状に対向並設してあるため、所用熱交換用空間を適宜設定できる。
【0022】
また、請求項記載の発明においては、冷却媒体に例えば空気を使用する構成にしたものである。
【0023】
また、請求項記載の発明においては、前記請求項1の噴流式熱交換器を使用した蒸発式凝縮器に関するもので、
直立平板状熱交換パネルと、該パネル面に対し冷却媒体の噴流を垂直に衝突させて衝突噴流を形成させる複数列の直立スリット群と、よりなる噴流式熱交換器において、
前記冷却媒体は空気と水との混相流より構成し、該混相流形成用の水滴噴霧ノズルを高速媒体である高速気流中に設けたもので、
前記請求項1の噴流式熱交換器の効果に加えて、空気とともに水を混合した状態で、前記複数列の直立スリットよりの噴流を形成させてあるため、前記空気と水の混相流の顕熱及び潜熱は冷媒に対し高速熱交換を可能とし、高効率の冷媒の凝縮を可能とすることができる。
【0024】
また、請求項記載の発明においては、前記直立スリット群における各スリットの間隔を適当に設定して、各スリットからの噴流がパネル面での衝突噴流を形成後壁面噴流領域において向流噴流同士の衝突を壁面噴流領域の末端付近の適当位置に惹起させ、上方排出流を形成させるようにしたもので、壁面領域での空気の顕熱及び水の潜熱を介しての熱の授受が最適条件で行われるようにしたものである。
【0025】
また、請求項記載の発明の作用は、前記請求項の発明における作用と類似の作用を持つ。
【0026】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載が無い限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
図1は本発明の噴流式熱交換器の概略の構成を示す斜視図で、図2は衝突噴流により形成される衝突噴流領域及び壁面噴流領域の状況を示す図である。図3の(A)はスリットより吹き出した噴流が衝突噴流を形成後上方排出流となり外部へ上昇排出される状況を示す模式図で、同図(B)は伝熱面である直立平板状熱交換パネルのパネル面における噴流との間の熱交換の状況を示す平面図である。図4は本発明の噴流式熱交換器を蒸発式凝縮器として使用する場合概略構成を示す斜視図である。図5(A)は図4のV−V視図で水滴と混合した混相流がスリットに吸い込まれる状況を示す図で、(B)は図4の一部破断部分平面図でスリットより空気と水滴の混相流の噴流が熱交換パネルのパネル面へ衝突噴流を形成する状況を示す図である。
【0027】
図1に示すように、本発明の噴流式熱交換器は、冷媒を凝縮させる直立平板状熱交換パネル10、10、…と該パネル10を挟持するようにしてサンドイッチ状に並設した複数のスリット12aを持つ複数列直立スリット群12と、該スリット群12を植設させた高速冷却媒体である高速気流供給ダクト11と、高速気流をスリット12aを介して噴流を形成させる高速気流送風用ファン13と、より構成する。
【0028】
上記高速気流供給ダクト11は、前記直立平板状熱交換パネル10に対し適当距離を置いて並設された台形状の断面形状を持つ筐体よりなり、その片面ないし両面のテーパ状の傾斜面11aに直立スリット12aを適当間隔を置いて植設して、複数列直列スリット群12を形成させ、前記高速気流送風用ファン13により外気を高速気流21として高速気流供給ダクト11、11、…の下部より送り込み、図2に示すように植設されてあるスリット12aより吹き出させ噴流12bを形成するようにしてある。
なお、上記直立平板状熱交換パネル10の熱の伝達面であるパネル面10aに対し適当距離を置いてスリット12aの吐出口を直面させ、噴流12bをパネル面に対し垂直に吹き出し最適の衝突噴流15を形成するようにしてある。また、前記スリット12aは隣接するスリットの間隔を適当に設定して、後記する二次元乱流壁面噴流14による熱の授受が効率よく行われるように植設して複数列直立スリット群12を構成するようにしてある。
【0029】
なお、直立平板状熱交換パネル10と複数列直立スリット群12とは図1に示すように複数列直立スリット群12が常に直立平板状熱交換パネル10の両側のパネル面10aに対向挟持するように構成し、図3(A)、(B)に示すように隣接するスリット12a、12aの外側空間に開放空間18を形成させ、後記する上方排出流20の排出路を形成するようにしてある。
【0030】
上記構成であるので、図2に示すようにスリット12aよりパネル面10aに向け垂直に高速で吹き出された高速気流は二次元噴流12bを形成し、パネル面10aに衝突して衝突噴流15を形成する。衝突噴流15はパネル面10aとの衝突よどみ点の衝突噴流領域16で左右に分流し、その下流の壁面噴流領域17に二次元乱流壁面噴流14を形成する。
上記二次元乱流壁面噴流14における乱流境界層では壁面に垂直方向の流体運動が活発でエンタルピの輸送も大きく壁面に対する熱伝達量は熱伝導のみにたよる層流に比較し著しく大なる値を持つ。
【0031】
上記して各スリットの噴流により壁面噴流領域17で形成された二次元乱流壁面噴流14は、図3(A)(B)に示すように、隣接するスリット間ではお互い対向する対向噴流を形成して壁面噴流領域17の末端部位で衝突して上方排出流20、20…を形成し境界層17aより外側に拡散離脱する。
即ち、上記壁面噴流領域17において乱流熱伝達により充分な熱の授受を終了した二次元乱流壁面噴流14は、壁面噴流領域の適当末端位置で上方排出流20を形成して外気へ排出される。
【0032】
上記したように、また、図3(B)に見るように、本発明の噴流式熱交換器は、熱伝達に必要な部分である壁面噴流領域17のみに乱流熱伝達を形成させるべく、パネル面の適当位置、適当間隔に衝突噴流15を形成させた効率的な熱交換器である。
また、上下方向に開口されたスリット状の吐出口を横方向に多数列設けることにより伝熱面である熱交換パネル面へ高速気流を送風するようにしてあるため、前記パネル面には一定温度の気流が衝突し安定した熱交換率を得ることができる。 また、高速気流を熱交換パネル面へ衝突させることで、着霜現象を排除でき、一定能力の熱交換を可能にしている。
【0033】
図4には、図1に示す本発明の噴流式熱交換器を使用した蒸発式凝縮器の概略の構成を示してある。本発明の蒸発式凝縮器は、図4、図5(A)に見るように、図1の噴流式熱交換器の冷却媒体に空気と水の混相流を使用したもので、混相流形成用の水滴噴霧ノズル25、25、…を高速気流供給ダクト11、11、…の基部に設け、水タンク24よりポンプ28、送水管22を介して高速気流中に水滴23aを噴霧して混相流23を形成し、直立状のスリット12aより混相噴流を熱交換パネル10のパネル面10aに垂直に衝突させ、図5(B)に示す混相流による衝突噴流23bを形成させるようにしてある。
【0034】
上記構成であるので、空気とともに水が高速で熱交換パネル面に供給衝突され、熱交換するが、前記したように熱交換に必要な伝熱面にのみに空気と水が接触して乱流熱伝達が行われる。
【0035】
【発明の効果】
上記構成により、本発明の噴流式熱交換器及び蒸発式凝縮器により、乱流熱伝達を可能にして高効率の熱交換ないし凝縮を可能にする。
【図面の簡単な説明】
【図1】 本発明の噴流式熱交換器の概略の構成を示す斜視図である。
【図2】 図1の衝突噴流により形成される衝突噴流領域及び壁面噴流領域の状況を示す図である。
【図3】 (A)は図1において、スリットより吹き出した噴流が衝突噴流を形成後上方排出流となり外部へ上昇排出される状況を示す模式図である。
(B)は図1において、伝熱面である直立平板状熱交換パネルのパネル面における噴流との間の熱交換の状況を示す平面図である。
【図4】 本発明の噴流式熱交換器を蒸発式凝縮器として使用する場合概略構成を示す斜視図である。
【図5】 (A)は図4のV−V視図で水滴と混合した混相流がスリットに吸い込まれる状況を示す図である。
(B)は図4の平面図でスリットより空気と水滴の混相流の噴流が熱交換パネルのパネル面へ衝突噴流を形成する状況を示す図である。
【図6】 従来の空気凝縮器の概略の構成を示す図である。
【図7】 従来の蒸発式凝縮器の概略の構成を示す図である。
【符号の説明】
10 直立平板状熱交換パネル
10a パネル面
11 高速気流供給ダクト
11a 傾斜面
12 複数列直立スリット群
12a スリット
12b 噴流
13 高速空気送風用ファン
14 二次元乱流壁面噴流
15 衝突噴流
15a よどみ点
16 衝突噴流領域
17 壁面噴流領域
18 開放空間
20 上方排出流
21 高速気流
23 混相流
25 水滴ノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a condenser using a cooling medium such as a gas, an evaporator or a jet heat exchanger also serving as an evaporator condenser, and an evaporation condenser using the same.
[0002]
[Prior art]
Conventional heat exchangers used in condensers, evaporators, and the like have a structure in which heat flows from a refrigerant through the wall of the refrigerant pipe to water or air as a cooling medium.
For example, in the case of an air-cooled condenser, as shown in FIG. 6, heat exchange is performed between the refrigerant in the pipe of the finned coil 50 and the outside air that is a cooling medium that flows outside the intake pipe from the outside air inlet 52. In this case, a plate fin heat exchanger provided with fins 50a having a large area on the outside is used for a coil that is generally a refrigerant tank.
[0003]
Further, as shown in FIG. 7, the conventional evaporative condenser wets the outer surface of the refrigerant pipe 55 through which the refrigerant passes with the spray water 56a and takes in air as a cooling medium through the fan 57 to A coil structure that cools the refrigerant by using latent heat of vaporization is used. In this case, the spray water 56a is circulated and sprayed from the sprinkling reservoir tank 58 by the pump 59 through the spray pipe 56.
[0004]
By the way, in the case of the conventional plate fin heat exchanger, the heat transfer coefficient on the air side, which is the cooling medium, is very small compared to the heat transfer coefficient on the refrigerant side. It is necessary to add a heat area. For this reason, it is necessary to provide fins having a large area outside the refrigerant pipe, resulting in a problem of poor space efficiency.
Further, when the air temperature is lowered in the case with the fin, there is a problem that moisture in the air frosts on the fin to reduce the heat transfer area and lower the heat transfer efficiency.
Further, in the case of a finned refrigerant tube, there is a problem that the heat exchange rate is lowered if there is a temperature change in the passing airflow.
[0005]
In the case of the evaporative condenser, a large amount of water is used as spray water, and the refrigerant pipe has a coil structure, so that a large amount of refrigerant is always held in the coil. In the case of leakage, there is a downside that the amount of leakage increases.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and is mainly composed of heat conduction by laminar flow when transferring heat of the refrigerant from the pipe wall of the refrigerant pipe to the air side outside the pipe wall. In contrast to the conventional method in which the heat transfer coefficient is slightly improved by preventing the development of the temperature boundary layer by cutting up on the fin surface, in the present invention, the flow of the cooling medium on the heat transfer surface is laminar. The transition to a more unstable turbulent flow causes turbulent diffusion of enthalpy, which is a physical quantity, so as to improve the heat transfer coefficient, so that the cooling medium is made to collide with the heat transfer wall in the form of a jet. A collision jet is formed, a turbulent flow is formed in the wall jet region on the heat transfer surface, and after the right and left separation at the stagnation point between adjacent collision jets, the collision of the opposing jets is caused in the wall jet region, and the heat efficiency Is intended to promote external diffusion .
[0007]
Therefore, using a flat heat exchange panel in place of a conventional refrigerant pipe, to form air impingement jets are cooling medium to the panel surface of the panel,該噴flow on the panel surface after the collision to the panel surface A two-dimensional turbulent wall surface jet is formed in the wall surface jet region formed on the surface to enable highly efficient heat transfer.
Thus, the jet flow that has received and received the high-efficiency heat forms an opposing jet flow with the two-dimensional turbulent wall jet formed in the same manner from the adjacent slit, and forms an upward discharge flow by the collision. Thus, it is possible to provide a heat exchanger having a remarkably high heat transfer coefficient by allowing diffusion to the outside.
[0008]
Moreover, as an evaporative condenser, water is mixed into the jet air of the jet heat exchanger to achieve high efficiency utilization of the latent heat of water.
[0009]
[Means for Solving the Problems]
Therefore, the jet heat exchanger of the present invention is
An upright plate-shaped heat exchange panel, and a plurality of rows of upright slit groups that collide a jet of a high-speed cooling medium perpendicularly to the panel surface of the panel to form a collision jet, and
Furthermore, the plurality of rows of upright slit groups are planted on the inclined surface of the trapezoidal high-speed cooling medium supply duct extending in parallel with the upright flat plate heat exchange panel, and an open space is formed outside the slits. The space is used to form a discharge path for the upward discharge flow .
[0010]
Further, a plurality of rows upstanding slit groups of the present invention is to induce collision of opposing jets in the collision after wall jet region jets each other on the panel surface from adjacent slits, arranged in a suitable distance so as to form an upper discharge flow It is good.
[0011]
[0012]
In addition, it is preferable that the plural rows of upright slit groups of the present invention and the upright flat plate-like heat exchange panel surface are alternately arranged in parallel in a sandwich shape with an appropriate distance therebetween .
[0013]
The cooling medium of the present invention ing, for example, by air.
[0014]
Moreover, the evaporative condenser using the jet heat exchanger of the present invention is
As described in claim 5, and an upright plate-shaped heat exchange panel, a plurality of rows upstanding slit groups to form a collision jet to collide with jets of fast cooling medium vertically to the panel plane of the panel, and more configuration jets In the heat exchanger
The cooling medium is composed of a mixed phase flow of air and water, and a water droplet spray nozzle for forming the mixed phase flow is provided in the high-speed cooling medium,
Further, the plural rows of upright slit groups are planted on an inclined surface of a trapezoidal high-speed air flow supply duct extending in parallel to the upright flat plate heat exchange panel, and an open space is formed outside the slits. Thus, the discharge path for the upward discharge flow is formed .
[0015]
Further, the plurality of rows upright slits group to induce collision of opposing jets in the collision after wall jet region jets each other on the panel surface from adjacent slits, is to arrange a proper interval so as to form an upper discharge flow Good.
[0016]
[0017]
Further, the A plurality of rows upright slits group and the upright tabular heat exchange panel surface, facing juxtaposed to sandwich alternately at a suitable distance, preferably set to configuration.
[0018]
[Action]
Accordingly, a jet heat exchanger according to the present invention corresponding to claim 1 is an upright flat plate heat exchange panel used in place of a conventional coiled refrigerant pipe, and 2 of the cooling medium on the panel surface of the heat exchange panel. In order to form a collision jet by a three-dimensional jet, a plurality of rows of upright slits arranged in parallel at an appropriate distance from the panel surface are provided. Therefore, the high-speed cooling medium made of the cooling medium blown toward the panel surface of the upright flat plate-shaped heat exchange panel that is opposed to the multiple rows of upright slit groups forms a two-dimensional jet and is the heat transfer surface. After the collision, the separated jet is divided into left and right from the stagnation point of the collision center, and the separated jet forms a two-dimensional turbulent wall jet in the wall jet region downstream of the collision region where the stagnation point exists.
Due to the two-dimensional turbulent wall jet, turbulent heat transfer is performed between the cooling medium and the heat transfer surface, which is not as efficient as conventional laminar heat transfer.
In other words, heat transfer by laminar flow is performed only by heat conduction, but in turbulent heat transfer, in addition to heat transfer by heat conduction, enthalpy transport due to turbulent flow overlaps, so it is significantly more difficult than laminar flow. Has a large heat transfer coefficient. In addition, the high-efficiency heat transfer is performed in the wall jet region developed downstream of both sides of the stagnation point.
In addition, a plurality of rows of upright slit groups are implanted on both sides or on one side of the trapezoidal high-speed cooling medium supply duct with a cross-sectional shape extending in parallel to the upright flat plate heat exchange panel at the opposite position. An open space upward is formed outside the adjacent slits. Therefore, until the collision jet flow on the panel surface forms a two-dimensional turbulent wall jet formation countercurrent jet and the counterflow jets collide with each other, the heat transfer in the wall jet region is finished and heated. The medium becomes an upward discharge flow, diffuses to the outside of the boundary layer, rises in the open space and is discharged outside without staying in the lower part.
[0019]
In the invention of claim 2, wherein said plurality of rows upstanding slit groups of the slit spacing set appropriately in which the following upper discharge flow has to be efficiently formed. That is,
Impinging jet blown parallel to the slit each other in adjacent positions are separated on left and right from the stagnation point after impinging on the panel surface of the upright plate-shaped heat exchange panel. The two-dimensional turbulent wall jet with each other are formed on the wall jet region downstream of the collision area, collisions at the end of the wall jet region becomes opposed jet is induced. An upward discharge flow is formed by the collision.
Since the two-dimensional turbulent wall jets collide with each other to form an upper discharge flow by appropriately setting the interval between adjacent slits, the multi-stage slit structure allows the wall jet region to be previously introduced by the collision jet. The cooling medium that has exchanged heat with high efficiency can be separated and discharged outside the boundary layer of the wall surface jet region by the collision of the counterflow jet.
[0020]
[0021]
In the invention according to claim 3 ,
The plurality of rows of upright slit groups are arranged at an appropriate distance necessary for the formation of the impinging jet with respect to both sides of the panel of the upright flat plate heat exchange panel. → ... → Double-sided panel → Multi-row single-sided upright slit group and sandwiched and arranged side by side, the required heat exchange space can be set appropriately.
[0022]
In the invention described in claim 4 , for example, air is used as the cooling medium.
[0023]
Moreover, in invention of Claim 5 , it is related with the evaporative condenser using the jet-type heat exchanger of the said Claim 1 ,
In a jet heat exchanger comprising an upright flat plate heat exchange panel, and a plurality of upright slit groups that collide a jet of a cooling medium perpendicularly to the panel surface to form a collision jet,
The cooling medium is composed of a mixed phase flow of air and water, and the water droplet spray nozzle for forming the mixed phase flow is provided in a high speed air stream as a high speed medium.
In addition to the effects of nozzle-type heat exchanger of claim 1, in admixture with air and a monitor water, because you have to form a jet of from upright slit of the plurality of rows, multiphase of said air and water The sensible heat and latent heat of the flow enables high-speed heat exchange with respect to the refrigerant, and can condense the refrigerant with high efficiency.
[0024]
In the invention of claim 6, wherein said set appropriately the interval between the slits in the upright slit group, countercurrent jets together in the formation after the wall jet region collision jet at jet panel surface from the slit Is generated at an appropriate position near the end of the wall jet region to form an upward discharge flow. Optimal conditions are the transfer of heat via the sensible heat of air and the latent heat of water in the wall region. It is something that is done in.
[0025]
Further, the action of the seventh aspect of the present invention, has an action similar to the action in the invention of claim 3.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified. Absent.
FIG. 1 is a perspective view showing a schematic configuration of a jet heat exchanger according to the present invention, and FIG. 2 is a diagram showing a situation of a collision jet region and a wall surface jet region formed by a collision jet. FIG. 3A is a schematic diagram showing a state in which the jet blown out from the slit forms a collision jet and then becomes an upward discharge flow and is discharged to the outside. FIG. 3B is an upright plate-like heat that is a heat transfer surface. It is a top view which shows the condition of the heat exchange between the jets in the panel surface of an exchange panel. FIG. 4 is a perspective view showing a schematic configuration when the jet heat exchanger of the present invention is used as an evaporative condenser. 5A is a view showing a situation where a multiphase flow mixed with water droplets is sucked into the slit in the VV view of FIG. 4, and FIG. 5B is a partially broken partial plan view of FIG. It is a figure which shows the condition where the jet of the multiphase flow of a water droplet forms a collision jet on the panel surface of a heat exchange panel.
[0027]
As shown in FIG. 1, the jet heat exchanger of the present invention includes a plurality of upright flat plate heat exchange panels 10, 10,... That condense refrigerant and sandwiched so as to sandwich the panel 10. A plurality of upright slit groups 12 having slits 12a, a high-speed air flow supply duct 11 which is a high-speed cooling medium in which the slit groups 12 are implanted, and a high-speed air flow fan for forming a high-speed air flow through the slits 12a 13 and more.
[0028]
The high-speed air flow supply duct 11 is composed of a casing having a trapezoidal cross-sectional shape arranged in parallel with the upright flat plate-shaped heat exchange panel 10 at an appropriate distance, and has one or both sides of a tapered inclined surface 11a. Are arranged at appropriate intervals to form a plurality of series slit groups 12, and the high-speed air flow fan 13 is used to convert the outside air into a high-speed air flow 21 under the high-speed air supply ducts 11, 11,. As shown in FIG. 2, it blows out from the slit 12a implanted, and forms the jet 12b.
It should be noted that an optimal impingement jet that blows out the jet 12b perpendicularly to the panel surface and faces the discharge port of the slit 12a at an appropriate distance from the panel surface 10a that is the heat transfer surface of the upright flat plate heat exchange panel 10. 15 is formed. In addition, the slits 12a are set so that the interval between adjacent slits is set appropriately, and a plurality of rows of upright slits 12 are configured so as to efficiently transfer heat by a two-dimensional turbulent wall jet 14 described later. I have to do it.
[0029]
In addition, the upright flat plate heat exchange panel 10 and the multiple rows of upright slit groups 12 are such that the multiple rows of upright slit groups 12 always sandwich and face the panel surfaces 10a on both sides of the upright flat plate heat exchange panel 10 as shown in FIG. As shown in FIGS. 3A and 3B, an open space 18 is formed in the outer space of the adjacent slits 12a and 12a, and a discharge path for the upper discharge flow 20 to be described later is formed. .
[0030]
Since it is the said structure, as shown in FIG. 2, the high-speed air current blown out at high speed perpendicularly | vertically toward the panel surface 10a from the slit 12a forms the two-dimensional jet 12b, and collides with the panel surface 10a, and forms the collision jet 15 To do. The collision jet 15 is divided into left and right in the collision jet area 16 at the collision stagnation point with the panel surface 10a, and a two-dimensional turbulent wall jet 14 is formed in the wall surface jet area 17 on the downstream side.
In the turbulent boundary layer in the two-dimensional turbulent wall jet 14, the fluid motion in the direction perpendicular to the wall is active, the enthalpy transport is large, and the amount of heat transfer to the wall is significantly larger than the laminar flow due to heat conduction alone. have.
[0031]
As shown in FIGS. 3A and 3B, the two-dimensional turbulent wall jet 14 formed in the wall jet region 17 by the jets of the slits as described above forms opposed jets facing each other between adjacent slits. Then, it collides at the end portion of the wall surface jet region 17 to form an upper discharge flow 20, 20 ... and diffuses and leaves outside the boundary layer 17a.
That is, the two-dimensional turbulent wall jet 14 that has finished transferring heat by turbulent heat transfer in the wall jet region 17 forms an upper discharge flow 20 at an appropriate end position of the wall jet region and is discharged to the outside air. The
[0032]
As described above and as shown in FIG. 3B, the jet heat exchanger of the present invention is designed to form turbulent heat transfer only in the wall surface jet region 17 which is a part necessary for heat transfer. This is an efficient heat exchanger in which impinging jets 15 are formed at appropriate positions and intervals on the panel surface.
In addition, by providing a plurality of rows of slit-shaped discharge ports opened in the vertical direction in the horizontal direction, a high-speed air flow is blown to the heat exchange panel surface, which is a heat transfer surface, so that the panel surface has a constant temperature. A stable heat exchange rate can be obtained by collision of the airflow. In addition, the frosting phenomenon can be eliminated by colliding the high-speed airflow with the heat exchange panel surface, and heat exchange with a certain capacity is possible.
[0033]
FIG. 4 shows a schematic configuration of an evaporative condenser using the jet heat exchanger of the present invention shown in FIG. As shown in FIGS. 4 and 5 (A), the evaporative condenser of the present invention uses a mixed phase flow of air and water as the cooling medium of the jet flow heat exchanger of FIG. Are provided at the base of the high-speed air flow supply ducts 11, 11,..., And the water droplets 23 a are sprayed from the water tank 24 through the pump 28 and the water supply pipe 22 into the high-speed air flow. The multiphase jet is caused to collide perpendicularly with the panel surface 10a of the heat exchange panel 10 through the upright slit 12a to form a collision jet 23b by the multiphase flow shown in FIG. 5B.
[0034]
Because of the above configuration, water and air are collided at high speed with the air on the heat exchange panel surface to exchange heat, but as described above, air and water contact only the heat transfer surface necessary for heat exchange and turbulent flow occurs. Heat transfer takes place.
[0035]
【The invention's effect】
With the above configuration, the jet heat exchanger and the evaporative condenser of the present invention enable turbulent heat transfer to enable highly efficient heat exchange or condensation.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a schematic configuration of a jet heat exchanger according to the present invention.
FIG. 2 is a diagram illustrating a situation of a collision jet region and a wall surface jet region formed by the collision jet of FIG. 1;
FIG. 3A is a schematic diagram showing a state in which the jet blown out from the slit in FIG. 1 forms a collision jet and then becomes an upward discharge and is discharged upward.
(B) is a top view which shows the condition of the heat exchange between the jets in the panel surface of the upright flat plate-shaped heat exchange panel which is a heat-transfer surface in FIG.
FIG. 4 is a perspective view showing a schematic configuration when the jet heat exchanger of the present invention is used as an evaporative condenser.
5A is a view showing a state in which a multiphase flow mixed with water droplets is sucked into the slit in the VV view of FIG. 4; FIG.
(B) is the top view of FIG. 4, and is a figure which shows the condition where the jet of the multiphase flow of an air and a water droplet forms a collision jet to the panel surface of a heat exchange panel from a slit.
FIG. 6 is a diagram showing a schematic configuration of a conventional air condenser.
FIG. 7 is a diagram showing a schematic configuration of a conventional evaporative condenser.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Upright flat plate heat exchange panel 10a Panel surface 11 High-speed air flow supply duct 11a Inclined surface 12 Multiple row upright slit group 12a Slit 12b Jet 13 High-speed air blower fan 14 Two-dimensional turbulent wall jet 15 Collision jet 15a Stagnation point 16 Collision jet Region 17 Wall jet region 18 Open space 20 Upper discharge flow 21 High-speed air flow 23 Multiphase flow 25 Water droplet nozzle

Claims (7)

直立平板状熱交換パネルと、該パネルのパネル面に対し高速冷却媒体の噴流を垂直に衝突させ衝突噴流を形成させる複数列直立スリット群と、より構成し、
更に前記複数列直立スリット群は、前記直立平板状熱交換パネルに平行に延設した断面台形状の高速冷却媒体供給ダクトの傾斜面に植設され、スリット間の外側に開放空間を形成させ、該空間により上方排出流の排出路を形成する構成としたことを特徴とする噴流式熱交換器。
An upright plate-shaped heat exchange panel, and a plurality of rows of upright slit groups that collide a jet of a high-speed cooling medium perpendicularly to the panel surface of the panel to form a collision jet, and
Furthermore, the plurality of rows of upright slit groups are planted on the inclined surface of the trapezoidal high-speed cooling medium supply duct extending in parallel with the upright flat plate heat exchange panel, and an open space is formed outside the slits. A jet heat exchanger characterized in that a discharge path for an upward discharge flow is formed by the space.
前記複数列直立スリット群は、隣接スリットからの噴流同士がパネル面に衝突後壁面噴流領域において対向噴流同士の衝突を惹起させ、上方排出流を形成させるべく適当間隔に配設した、ことを特徴とする請求項1記載の噴流式熱交換器。Said plurality of rows upright slits group, characterized by induced collision of opposing jets in the collision after wall jet region jets each other on the panel surface from the adjacent slits was placed in a proper interval so as to form an upper exhaust flow, that The jet heat exchanger according to claim 1. 前記複数列直立スリット群と前記直立平板状熱交換パネル面とは、適当距離をあけて交互にサンドイッチ状に対向並設する、構成としたことを特徴とする請求項1記載の噴流式熱交換器。  The jet-type heat exchange according to claim 1, wherein the plurality of rows of upright slit groups and the upright flat plate-like heat exchange panel surface are arranged to face each other alternately in a sandwich shape with an appropriate distance therebetween. vessel. 前記冷却媒体は、空気よりなることを特徴とする請求項1記載の噴流式熱交換器。  The jet heat exchanger according to claim 1, wherein the cooling medium is made of air. 直立平板状熱交換パネルと、該パネルのパネル面に対し高速冷却媒体の噴流を垂直に衝突させ衝突噴流を形成させる複数列直立スリット群と、より構成した噴流式熱交換器において、
前記冷却媒体は空気と水との混相流より構成し、該混相流形成用の水滴噴霧ノズルを高速冷却媒体中に設け、
更に前記複数列直立スリット群は、前記直立平板状熱交換パネルに平行延設した断面台形状の高速気流供給ダクトの傾斜面に植設され、スリット間の外側に開放空間を形成させ、該空間により上方排出流の排出路を形成する構成とした、ことを特徴とする蒸発式凝縮器。
In a jet heat exchanger constituted by an upright flat plate heat exchange panel, and a plurality of rows of upright slit groups that collide a jet of a high-speed cooling medium perpendicularly to the panel surface of the panel to form a collision jet,
The cooling medium is composed of a mixed phase flow of air and water, and a water droplet spray nozzle for forming the mixed phase flow is provided in the high-speed cooling medium,
Further, the plural rows of upright slit groups are planted on an inclined surface of a trapezoidal high-speed air flow supply duct extending in parallel to the upright flat plate heat exchange panel, and an open space is formed outside the slits. An evaporative condenser characterized in that a discharge path for the upper discharge flow is formed .
前記複数列直立スリット群は、隣接スリットからの噴流同士がパネル面に衝突後壁面噴流領域において対向噴流同士の衝突を惹起させ、上方排出流を形成させるべく適当間隔に配設した、ことを特徴とする請求項記載の蒸発式凝縮器。Said plurality of rows upright slits group, characterized by induced collision of opposing jets in the collision after wall jet region jets each other on the panel surface from the adjacent slits was placed in a proper interval so as to form an upper exhaust flow, that The evaporative condenser according to claim 5 . 前記複数列直立スリット群と前記直立平板状熱交換パネル面とは、適当距離をあけて交互にサンドイッチ状に対向並設する、構成としたことを特徴とする請求項記載の蒸発式凝縮器。6. The evaporative condenser according to claim 5, wherein the plurality of rows of upright slit groups and the upright flat plate heat exchange panel surfaces are alternately arranged in parallel and sandwiched at an appropriate distance. .
JP30642197A 1997-10-21 1997-10-21 Jet heat exchanger and evaporative condenser using the heat exchanger Expired - Fee Related JP3909534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30642197A JP3909534B2 (en) 1997-10-21 1997-10-21 Jet heat exchanger and evaporative condenser using the heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30642197A JP3909534B2 (en) 1997-10-21 1997-10-21 Jet heat exchanger and evaporative condenser using the heat exchanger

Publications (2)

Publication Number Publication Date
JPH11125478A JPH11125478A (en) 1999-05-11
JP3909534B2 true JP3909534B2 (en) 2007-04-25

Family

ID=17956827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30642197A Expired - Fee Related JP3909534B2 (en) 1997-10-21 1997-10-21 Jet heat exchanger and evaporative condenser using the heat exchanger

Country Status (1)

Country Link
JP (1) JP3909534B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071227A (en) * 2000-06-13 2002-03-08 Mayekawa Mfg Co Ltd Ammonia cooling unit
JP2003185189A (en) * 2001-12-14 2003-07-03 Denso Corp Water supply device for outdoor unit

Also Published As

Publication number Publication date
JPH11125478A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
US7458416B2 (en) Heat-exchanging device
JPH05695Y2 (en)
JPH01252894A (en) Heat exchanging method in countercurrent type water cooling tower and water cooling tower
JP3909534B2 (en) Jet heat exchanger and evaporative condenser using the heat exchanger
JP2000179989A (en) Sprinkler of absorption water cooler/heater
JP3789815B2 (en) High temperature regenerator and absorption chiller / heater equipped with the same
JP2957155B2 (en) Air conditioner heat exchanger
KR101054445B1 (en) Regenerative evaporative air conditioners, air conditioning systems and their core modules
JP3612846B2 (en) Air conditioner
EP1453623B1 (en) Patterned sheets for making heat exchangers and other structures
JPS61110889A (en) Finned heat exchanger
KR20030020563A (en) Louver fin for heat exchanger
JP2000234823A (en) Fin type heat exchanger
WO2022120977A1 (en) Air conditioner indoor unit and air conditioner
JPS6143107Y2 (en)
CN211552523U (en) Closed type counter-flow cooling tower
JP3074113B2 (en) Refrigerant evaporator
JPH04313686A (en) Heat exchange unit
CN213578835U (en) Falling film heat exchange device and falling film evaporation type cooling tower
JP3780647B2 (en) Air-cooled absorption refrigeration system
JPH02290493A (en) Heat exchanger
JPH0666458A (en) Refrigerator evaporator
KR101732893B1 (en) Plume abatement condenser for cooling tower
KR100318229B1 (en) A heat exchanger of air conditioner
CN118031467A (en) Novel evaporative cooler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees