JPH037054B2 - - Google Patents

Info

Publication number
JPH037054B2
JPH037054B2 JP57088447A JP8844782A JPH037054B2 JP H037054 B2 JPH037054 B2 JP H037054B2 JP 57088447 A JP57088447 A JP 57088447A JP 8844782 A JP8844782 A JP 8844782A JP H037054 B2 JPH037054 B2 JP H037054B2
Authority
JP
Japan
Prior art keywords
laser beam
temperature
concentration
laser
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57088447A
Other languages
Japanese (ja)
Other versions
JPS58205827A (en
Inventor
Mitsuo Gomi
Shoichi Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority to JP8844782A priority Critical patent/JPS58205827A/en
Publication of JPS58205827A publication Critical patent/JPS58205827A/en
Publication of JPH037054B2 publication Critical patent/JPH037054B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は気体の速度測定用のレーザ光束と温度
および成分濃度測定のためのレーザ光束を被測定
気体内の一点に集光して同一点のこれらの測定値
を得ることの出来る測定光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention focuses a laser beam for gas velocity measurement and a laser beam for temperature and component concentration measurement onto a single point within the gas to be measured, thereby obtaining these measured values at the same point. This invention relates to a measuring optical device that can perform

従来、レーザ光束を気体内の一点に集光して気
流の速度を測定するレーザ流速計が知られてい
る。この流速計は、運動する気体内にミクロンオ
ーダーの微粒子を混入し、入射光がこの微粒子に
当つたとき、エネルギーの授受が行なわれず入射
光と同じ周波数で散乱されるいわゆる弾性散乱
光、特にミー(Mie)散乱光により、粒子の運動
で生ずるドプラー効果によるシフト周波数を検出
して気流の速度を求めるものである。
2. Description of the Related Art Conventionally, laser anemometers have been known that measure the speed of airflow by focusing a laser beam onto a single point within a gas. This current meter mixes fine particles on the order of microns into a moving gas, and when incident light hits these fine particles, so-called elastically scattered light, which is scattered at the same frequency as the incident light without giving or receiving energy, is used. (Mie) The speed of airflow is determined by detecting the shift frequency due to the Doppler effect caused by the movement of particles using scattered light.

一方、近年、強力なレーザー光線を気体内に集
光して気体の温度および濃度を測定できるラマン
散乱分光法が開発された。これは気体内に含まれ
る特定の分子、例えばN2、O2等に注目し、特定
の波長のレーザ光線を入射させ、入射光とこれら
の分子との間でエネルギーの授受が行われ入射光
と波長が異なる光が放出される非弾性散乱いわゆ
るラマン散乱が生ずるのを利用している。
On the other hand, in recent years, Raman scattering spectroscopy has been developed that can measure the temperature and concentration of a gas by focusing a powerful laser beam into the gas. This focuses on specific molecules contained in a gas, such as N 2 and O 2 , and a laser beam of a specific wavelength is incident on them, and energy is exchanged between the incident light and these molecules. It takes advantage of the phenomenon of inelastic scattering, so-called Raman scattering, in which light with different wavelengths is emitted.

これら両装置は、レーザ光束を気体内に集束さ
せる点では共通するが、測定原理が全く異なり、
したがつて使用するレーザ光の強度や性質が異な
るため、別々の装置として使われてきた。
Both of these devices have the same feature in that they focus a laser beam into a gas, but their measurement principles are completely different.
Therefore, since the intensity and properties of the laser beams used are different, they have been used as separate devices.

航空エンジンや自動車などの燃焼器、工業用炉
などにみられる燃焼現象は、化学反応、熱移動お
よび流体運動が複雑にからみ合つた現象であり、
科学的にはほとんど未解明の領域である。このた
め、これらの燃焼機器の改良開発は多分に経験に
依存するものとなつていた。
Combustion phenomena observed in aircraft engines, automobile combustors, industrial furnaces, etc. are complex phenomena involving chemical reactions, heat transfer, and fluid motion.
Scientifically, this is an area that is largely unexplored. For this reason, the development of improvements to these combustion devices has largely depended on experience.

このような燃焼現象をより科学的に解明するに
は、燃焼領域の同一点における速度、温度および
成分濃度を同時に測定し、データを解析する必要
がある。
To understand such combustion phenomena more scientifically, it is necessary to simultaneously measure velocity, temperature, and component concentration at the same point in the combustion region and analyze the data.

気体の燃焼領域中の一点における上記のような
速度、温度および成分濃度の測定には、上記のレ
ーザ流速計およびラマン散乱分光法が利用できる
が、これらを別々の装置として使う場合は、同一
点の気体速度および温度・成分濃度を測定しよう
とすれば、両装置のレーザ光の集束点を一致させ
る必要があり、両装置の調整は手間のかかる困難
な作業となる。
The above-mentioned laser velocimeter and Raman scattering spectroscopy can be used to measure velocity, temperature, and component concentration at a single point in the combustion region of a gas, but if these are used as separate devices, they cannot be measured at the same point. In order to measure the gas velocity, temperature, and component concentration of the two devices, it is necessary to match the focal points of the laser beams of both devices, and adjusting the two devices is a time-consuming and difficult task.

本発明は、レーザ流速計用のレーザ光線と、ラ
マン散乱分光装置用のレーザ光線を同一の集光レ
ンズで集束させることにより、両装置のレーザ光
を同一点に集光させ、気体内の同一点の速度およ
び温度・濃度を同時に測定できる流速及び温度・
濃度の同時測定装置を得ようとするものである。
The present invention focuses a laser beam for a laser anemometer and a laser beam for a Raman scattering spectrometer using the same condensing lens, thereby concentrating the laser beams from both devices on the same point, and converging the laser beams in the gas. Flow velocity, temperature, and concentration that can be measured simultaneously at one point
The purpose is to obtain a device for simultaneously measuring concentration.

以下図面を参照して詳細に説明する。 A detailed explanation will be given below with reference to the drawings.

第1図は本発明の光学系及びその光路の構成の
1例を示す模式図で、流速計用のレーザビーム
3,4と温度・濃度計測用のレーザビーム5,
6,7は、共通の集光レンズ1によつて被測定気
流中の一点8に集束される。測定点8からの発散
光は、非散乱光、速度情報を含むミー散乱光、温
度・濃度情報を含むラマン散乱光は、同様に共通
の集光レンズ2によつて集光されて解析器へと導
かれる。
FIG. 1 is a schematic diagram showing an example of the optical system of the present invention and its optical path configuration.
6 and 7 are focused by a common condensing lens 1 to a point 8 in the airflow to be measured. Divergent light from the measurement point 8, non-scattered light, Mie scattered light containing velocity information, and Raman scattered light containing temperature/concentration information are similarly focused by a common condensing lens 2 and sent to the analyzer. I am guided.

速度測定用レーザは例えばHe−Neレーザの連
続発振光であるが、温度・濃度測定用レーザは、
例えばYAGレーザのジヤイアントパルスであり、
ラマン散乱を起させるために焦点8で位相整合、
運動量保存などの量子力学的性質を満足させる必
要がある。
The laser for speed measurement is, for example, a continuous oscillation light of a He-Ne laser, but the laser for temperature and concentration measurement is
For example, the giant pulse of a YAG laser,
Phase matching at focal point 8 to cause Raman scattering,
It is necessary to satisfy quantum mechanical properties such as conservation of momentum.

これらの光束は共通の集光レンズ1によつて同
一の焦点8に集光するので、同一点の速度および
温度・濃度を同時に測定することが出来る。
Since these light beams are condensed at the same focal point 8 by the common condensing lens 1, the velocity, temperature, and concentration at the same point can be measured simultaneously.

第2図は別の実施例を示し、温度・濃度測定用
のレーザビーム5は、光軸に沿う1ビームのみと
した例である。第3図に示す実施例では、流速測
定用のビーム3,4を光軸からずらして配置し、
流速測定に対してラマン散乱法による信号強度を
優先させている。第4図は、逆に、ラマン散乱法
に対してミー散乱光の信号強度を優先させた例で
あり、このように測定目的に応じて適当な光束配
置とすることが出来る。
FIG. 2 shows another embodiment, in which the laser beam 5 for measuring temperature and concentration is only one beam along the optical axis. In the embodiment shown in FIG. 3, the beams 3 and 4 for measuring the flow velocity are arranged offset from the optical axis,
Priority is given to signal intensity by Raman scattering method over flow velocity measurement. On the contrary, FIG. 4 shows an example in which the signal intensity of Mie scattered light is prioritized over the Raman scattering method, and in this way, an appropriate beam arrangement can be made depending on the purpose of measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は、それぞれ本発明の光学
系におけるビーム配置の模式図である。 1,2:集光レンズ、3,4:流速計用レーザ
ビーム、5,6,7:温度・濃度測定用レーザビ
ーム。
1 to 4 are schematic diagrams of beam arrangements in the optical system of the present invention, respectively. 1, 2: Condenser lens, 3, 4: Laser beam for current meter, 5, 6, 7: Laser beam for temperature/concentration measurement.

Claims (1)

【特許請求の範囲】[Claims] 1 微粒子混入ガスの流速測定用連続発振レーザ
光束と、これとは別の温度・濃度測定用ジヤイア
ントパルスレーザ光束とを共通の集光レンズによ
つて被測定空間の一点に集光させることを特徴と
する流速及び温度・濃度の同時測定装置。
1. Converging a continuous wave laser beam for measuring the flow velocity of gas containing particulates and a separate giant pulse laser beam for measuring temperature and concentration onto one point in the measurement space using a common condensing lens. Features: Simultaneous measurement device for flow velocity, temperature and concentration.
JP8844782A 1982-05-25 1982-05-25 Optical apparatus for simultaneously measuring speed, temperature and concentration Granted JPS58205827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8844782A JPS58205827A (en) 1982-05-25 1982-05-25 Optical apparatus for simultaneously measuring speed, temperature and concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8844782A JPS58205827A (en) 1982-05-25 1982-05-25 Optical apparatus for simultaneously measuring speed, temperature and concentration

Publications (2)

Publication Number Publication Date
JPS58205827A JPS58205827A (en) 1983-11-30
JPH037054B2 true JPH037054B2 (en) 1991-01-31

Family

ID=13943050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8844782A Granted JPS58205827A (en) 1982-05-25 1982-05-25 Optical apparatus for simultaneously measuring speed, temperature and concentration

Country Status (1)

Country Link
JP (1) JPS58205827A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624561A (en) * 1985-04-25 1986-11-25 The United States Of America As Represented By The Adminstrator Of The National Aeronautics And Space Adminstration Vibration-free Raman Doppler velocimeter
AT520087B1 (en) * 2017-04-19 2019-01-15 Univ Wien Tech Method for contactless determination of flow parameters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644371A (en) * 1979-09-18 1981-04-23 Hitachi Chem Co Ltd Manufacture of field winding for motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644371A (en) * 1979-09-18 1981-04-23 Hitachi Chem Co Ltd Manufacture of field winding for motor

Also Published As

Publication number Publication date
JPS58205827A (en) 1983-11-30

Similar Documents

Publication Publication Date Title
AU2013327811B2 (en) One-dimensional global rainbow measurement device and measurement method
US6762827B2 (en) Planar light sheet probes
Mclean et al. Nebulizer diagnostics: fundamental parameters, challenges, and techniques on the horizon
US7772579B2 (en) Method and apparatus for simultaneously measuring a three dimensional position of a particle in a flow
US4397550A (en) Laser doppler velocimeter
JP2998172B2 (en) Doppler speedometer
US4624561A (en) Vibration-free Raman Doppler velocimeter
Self et al. Laser anemometry for combustion research
Chigier Instrumentation techniques for studying heterogeneous combustion
JPH037054B2 (en)
JP2004163180A (en) Simultaneous measuring method and instrument for temperature, pressure and velocity distributions in flow field
CN115436013A (en) Fluid three-dimensional vorticity measuring method based on rotary Doppler effect
JPS6244646A (en) Method and apparatus for measuring concentration and grain size of suspended particles
Rudd The laser anemometer-a review
Poplavski et al. On the peculiarities of LDA method in two-phase flows with high concentrations of particles
Ötügen et al. A new laser-based method for strain rate and vorticity measurements
JPS60243583A (en) Laser doppler speedometer
JPH09281134A (en) Laser current meter
Rose et al. Combustion diagnostics by photo-deflection spectroscopy
Wang Laser Anemometry: This powerful experimental technique uses light scattering and Doppler's principle to measure velocity components
JPS61284665A (en) Laser doppler current meter
Kammerer et al. Development of an optical particle number sensor based on continuous wave laser-induced incandescence
JPH06221923A (en) Spectrophotometric equipment
SU1656459A1 (en) Laser doppler velocity meter
SU1404900A1 (en) Method of measuring fractional particle-size composition of aerosols