JPH06221923A - Spectrophotometric equipment - Google Patents

Spectrophotometric equipment

Info

Publication number
JPH06221923A
JPH06221923A JP1295893A JP1295893A JPH06221923A JP H06221923 A JPH06221923 A JP H06221923A JP 1295893 A JP1295893 A JP 1295893A JP 1295893 A JP1295893 A JP 1295893A JP H06221923 A JPH06221923 A JP H06221923A
Authority
JP
Japan
Prior art keywords
fine particles
measured
laser light
substance
fluorescent dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1295893A
Other languages
Japanese (ja)
Other versions
JP3311406B2 (en
Inventor
Kenji Kamata
賢司 鎌田
Takashi Sasaki
敬司 笹木
Noboru Kitamura
▲のぼる▼ 喜多村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP01295893A priority Critical patent/JP3311406B2/en
Priority to CA002114371A priority patent/CA2114371C/en
Priority to US08/186,991 priority patent/US5469255A/en
Priority to EP94300646A priority patent/EP0610036B1/en
Priority to DE69430338T priority patent/DE69430338T2/en
Publication of JPH06221923A publication Critical patent/JPH06221923A/en
Application granted granted Critical
Publication of JP3311406B2 publication Critical patent/JP3311406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To allow the highly accurate spectrophotometric measurement of interface state even when microparticles containing a substance to be measured are present in the liquid phase by enhancing the detection sensitivity of fluorescent dye and the substance to be measured through the use of exciting signal of pulse laser and optical resonance of fine particles. CONSTITUTION:Fine particles 10 to be captured by CW laser light are added with a fluorescent dye 11 and a substance 12 to be measured and then excited by an exciting pulse laser light 13 thus producing an intermediate 4 having absorption at the resonance frequency of the fine particle 10. When it is irradiated with a pumping laser light 15 within a delay time in which the intermediate 4 is present in the fine particles 10, optical resonance of the fine particles 10 is retarded by the optical absorption of the intermediate 4 thus causing decrease of optical intensity. Consequently, transient absorbance can be measured with high sensitivity during the delay time. Furthermore, a plurality of oscillation lines can be obtained by selecting the diameter, concentration of fluorescent dye, etc., of the fine particles 10 and transient absorption spectrum can be measured based on the variation of oscillation intensity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は分光測定装置に関する
ものである。さらに詳しくは、この発明は化学、食品、
薬品、材料、エレクトロニクス等の諸分野における微粒
子表面の分光測定に有用な分光測定装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrometer. More specifically, this invention relates to chemistry, food,
The present invention relates to a spectroscopic measurement device useful for spectroscopic measurement of fine particle surfaces in various fields such as chemicals, materials, and electronics.

【0002】[0002]

【従来の技術とその課題】現在、化学、食品、薬品、材
料、エレクトロニクス等の諸分野において、微粒子とそ
の周囲媒体との界面における物性や反応機構を解析する
ことは、新技術や新製品の開発等にとって非常に重要な
問題になっている。このような界面状態を分析する方法
としては、分光測定が通常用いられているが、この分光
測定には、蛍光分光法や、過渡吸収分光法等が知られて
いる。
2. Description of the Related Art At present, in various fields such as chemistry, foods, chemicals, materials, and electronics, it is necessary to analyze the physical properties and reaction mechanism at the interface between fine particles and the surrounding medium of new technology and new products. It has become a very important issue for development. A spectroscopic measurement is usually used as a method for analyzing such an interface state, and a fluorescence spectroscopic method, a transient absorption spectroscopic method, and the like are known for the spectroscopic measurement.

【0003】しかしながら、蛍光分光法は非常に高感度
な測定を可能とする測定方法ではあるが、対象となる被
測定物質が蛍光性を有していなければならない。このた
め、蛍光分光法の適用範囲には制約がある。一方、過渡
吸光分光法については、光化学反応中間体の解析に適用
可能であるもののその検出感度は低く、たとえば、マイ
クロメートル程度の微粒子中の被測定物質に対する吸光
度の測定では、光路長が短いために十分な吸光度を得る
ことが不可能である。
However, although fluorescence spectroscopy is a measurement method that enables measurement with extremely high sensitivity, the target substance to be measured must have fluorescence. Therefore, there are restrictions on the range of application of the fluorescence spectroscopy. On the other hand, transient absorption spectroscopy is applicable to the analysis of photochemical reaction intermediates, but its detection sensitivity is low.For example, in the measurement of absorbance for a substance to be measured in microparticles of the order of micrometers, the optical path length is short. It is impossible to obtain sufficient absorbance.

【0004】従って、従来の蛍光分光法と過渡吸光法で
は、微粒子特性の高精度な解析を可能とする分光測定は
不可能であった。この発明は、上記の通りの従来技術の
課題を解決するためになされたものであり、液相中に被
測定物質を含んだ微粒子が存在する場合においても、高
精度で微粒子の界面状態の分光測定を可能とする新しい
分光測定装置を提供することを目的としている。
Therefore, conventional fluorescence spectroscopy and transient absorption spectroscopy have not been able to perform spectroscopic measurements that enable highly accurate analysis of fine particle characteristics. The present invention has been made to solve the problems of the prior art as described above, and even in the case where fine particles containing the substance to be measured are present in the liquid phase, the spectroscopy of the interface state of the fine particles is highly accurate. It is an object of the present invention to provide a new spectroscopic measurement device that enables measurement.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、蛍光色素と被測定物質とを含有
する微粒子の液相中での界面における被測定物質の過渡
吸光度および過渡吸収スペクトルを光共振現象に基づい
て測定する分光測定装置であって、(a)蛍光色素と被
測定物質とを各々励起するためのパルスレーザー発振
器、(b)このパルスレーザー発振器から発振した2種
の波長のパルスレーザー光のどちらか一方を遅延させる
ための光学的遅延装置、(c)パルスレーザー発振器か
ら発振したレーザー光を集光して試料に照射するための
顕微鏡システム、および、(d)試料の発光を検出する
ための検出器を備えてなることを特徴とする分光測定装
置を提供する。
Means for Solving the Problems The present invention is to solve the above problems by providing a transient absorbance and a transient absorption of a substance to be measured at an interface in a liquid phase of fine particles containing a fluorescent dye and a substance to be measured. A spectroscopic measurement device for measuring a spectrum based on an optical resonance phenomenon, comprising: (a) a pulse laser oscillator for exciting each of a fluorescent dye and a substance to be measured; and (b) two types of lasers oscillated from the pulse laser oscillator. An optical delay device for delaying either one of the pulsed laser beams having a wavelength, (c) a microscope system for collecting the laser beam emitted from the pulsed laser oscillator and irradiating the sample, and (d) a sample Provided is a spectroscopic measurement device comprising a detector for detecting the luminescence of.

【0006】すなわち、この発明の分光測定装置におい
ては、微粒子の光共振を利用し、過渡吸光度測定および
吸光スペクトル測定を行なうことを可能としている。こ
のため、微粒子を構成する被測定物質を励起するための
パルスレーザー光(励起用レーザー光)と微粒子に光共
振を起こさせるパルスレーザー光(ポンプ用レーザー
光)とを発振するパルスレーザー発振器を備えている。
That is, in the spectroscopic measurement device of the present invention, it is possible to perform transient absorption measurement and absorption spectrum measurement by utilizing the optical resonance of fine particles. Therefore, a pulse laser oscillator for oscillating a pulse laser beam (excitation laser beam) for exciting a substance to be measured that constitutes the fine particles and a pulse laser beam (pump laser beam) for causing optical resonance in the fine particles is provided. ing.

【0007】[0007]

【作用】さらに詳しく説明すると、この発明では、周囲
媒体よりも高い屈折率をもち、かつ、測定波長において
透明な材料で作られた微粒子は光共振器として働くとの
現象を利用している。つまり、微粒子形状および大きさ
に固有の複数の共振波長では光は共振器内に効率よく閉
じこめられ、微粒子内部を伝播し、その結果、微粒子直
径の102 倍から104 倍の光路長を得ることが可能と
なる。
Describing in more detail, the present invention utilizes the phenomenon that fine particles having a higher refractive index than the surrounding medium and made of a transparent material at the measurement wavelength act as an optical resonator. That is, at a plurality of resonance wavelengths peculiar to the particle shape and size, light is efficiently confined in the resonator and propagates inside the particle, resulting in an optical path length of 10 2 to 10 4 times the particle diameter. It becomes possible.

【0008】このように微粒子の光共振現象を利用する
と、微粒子のサイズに比べて非常に長い光路長をとるこ
とができ高感度に吸光度を測定することが可能となる。
図1はこの発明の分光測定の原理を示した概念図である
が、たとえばこの図1に例示したように、たとえばCW
レーザー光によって捕捉(トラッピング)することなど
ができる微粒子(10)にはあらかじめ蛍光色素(1
1)と被測定物質(12)とを含有させておき、被測定
物質(12)は、励起用レーザー光(13)により励起
し、微粒子の共振波長で吸収を有する中間体(14)を
生成させる。
By utilizing the optical resonance phenomenon of the fine particles as described above, it is possible to take a very long optical path length as compared with the size of the fine particles, and it is possible to measure the absorbance with high sensitivity.
FIG. 1 is a conceptual diagram showing the principle of spectroscopic measurement of the present invention. For example, as shown in FIG.
The fine particles (10) that can be trapped (trapped) by laser light are provided with a fluorescent dye (1
1) and a substance to be measured (12) are contained in advance, and the substance to be measured (12) is excited by a laser beam for excitation (13) to generate an intermediate (14) having absorption at the resonance wavelength of fine particles. Let

【0009】そして、微粒子内の蛍光色素(11)を発
光させるためのポンプ用レーザー光(15)を励起用レ
ーザー光(13)より所定の時間だけ遅延させて微粒子
(10)に照射する。微粒子(10)中に中間体(1
4)が存在している遅延時間内にポンプ用レーザー光
(15)を照射すると、微粒子の光共振はこの中間体
(14)による吸収により阻害される。その光共振が阻
害された結果は光強度の減少として現われる。従って、
ポンプ用レーザー光(15)の有無による微粒子の光共
振波長における光強度の変化により所定の遅延時間にお
ける過渡吸光度が高感度で測定されることになる。さら
に微粒子の直径や蛍光色素濃度等の条件を選ぶことによ
り複数の発振線を得ることも可能であり、発振強度の変
化から高感度で過渡吸収スペクトルを測定することも可
能となる。
The pump laser light (15) for causing the fluorescent dye (11) in the fine particles to emit light is irradiated onto the fine particles (10) with a delay of a predetermined time from the excitation laser light (13). Intermediate (1) in fine particles (10)
When the pump laser light (15) is irradiated within the delay time in which 4) is present, the optical resonance of the fine particles is hindered by absorption by this intermediate body (14). The result of the inhibition of the optical resonance appears as a decrease in light intensity. Therefore,
Due to the change in the light intensity at the optical resonance wavelength of the particles due to the presence or absence of the pump laser light (15), the transient absorbance at a predetermined delay time can be measured with high sensitivity. Furthermore, it is possible to obtain a plurality of oscillation lines by selecting conditions such as the diameter of fine particles and the concentration of fluorescent dye, and it is also possible to measure the transient absorption spectrum with high sensitivity from changes in oscillation intensity.

【0010】以下、実施例を示し、さらに詳しくこの発
明について説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0011】[0011]

【実施例】この発明の分光測定装置としては、図2に示
した構造を一つの態様として示すことができる。すなわ
ち、分光測定装置は、液相中の微粒子に含有させた蛍光
色素と被測定物質とを励起するためのパルスレーザー発
振器(2)、このパルスレーザー発振器(2)から発振
した2波長のパルスレーザーのどちらか一方を遅延させ
るための光学的遅延装置(3)、液相中の微粒子を非接
触で捕捉固定するためのCWレーザー発振器(1)、こ
れらのレーザー光を集光して試料に照射するための顕微
鏡システム(4)、そして試料の発光を検出するための
検出器(5)を備えている。これらの内、CWレーザー
発振器(1)の配備については限定的でなく、微粒子を
非接触で捕捉固定することのできる適宜な手段を任意に
採用することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As a spectroscopic measurement device of the present invention, the structure shown in FIG. 2 can be shown as one mode. That is, the spectroscopic measurement device includes a pulse laser oscillator (2) for exciting a fluorescent dye contained in fine particles in a liquid phase and a substance to be measured, and a pulse laser of two wavelengths oscillated from the pulse laser oscillator (2). An optical delay device (3) for delaying either one of them, a CW laser oscillator (1) for capturing and fixing fine particles in a liquid phase in a non-contact manner, and irradiating a sample by collecting these laser beams. A microscope system (4) for detecting light emission, and a detector (5) for detecting luminescence of the sample. Of these, the arrangement of the CW laser oscillator (1) is not limited, and any suitable means capable of capturing and fixing fine particles in a non-contact manner can be arbitrarily adopted.

【0012】また、図2に示したように、レーザー光が
試料に照射される光路において、レンズ(6)、励起用
レーザー光反射ミラー(7a)、捕捉用レーザー光反射
ミラー(7b)、およびミラー(8)を備えることがで
きる。顕微鏡システム(4)としては、励起用レーザー
光/ポンプ用レーザー光/捕捉用レーザー光の反射ミラ
ー(7c)、対物レンズ(4a)、および、試料台(4
b)を備えることができる。
As shown in FIG. 2, the lens (6), the exciting laser light reflecting mirror (7a), the capturing laser light reflecting mirror (7b), and the laser light illuminating the sample in the optical path. A mirror (8) can be provided. The microscope system (4) includes a reflection mirror (7c) for exciting laser light / pumping laser light / capturing laser light, an objective lens (4a), and a sample table (4).
b) can be provided.

【0013】微粒子捕捉用のCWレーザー発振器(1)
を用いる場合には、そのレーザー光(20)としてCW
−YAGレーザー光(波長1064nm)を使用することがで
き、被測定物質の励起用レーザー光(22)にはQスイ
ッチYAGレーザーの第3高周波を、ポンプ用レーザー
光(21)にはQスイッチレーザーの第2高周波を用い
ることができる。なお、励起用レーザー光(22)とポ
ンプ用レーザー光(21)とは同一のレーザー光を使用
した方がタイミングを合わせる上で容易であるが、もち
ろん、この発明においては、これに限定されるものでは
ない。
CW laser oscillator for capturing fine particles (1)
When using, CW is used as the laser light (20).
-YAG laser light (wavelength 1064 nm) can be used, the third high frequency of the Q switch YAG laser is used as the excitation laser light (22) for the substance to be measured, and the Q switch laser is used as the pump laser light (21). The second high frequency can be used. It should be noted that it is easier to use the same laser light for the pumping laser light (22) and the pumping laser light (21) in order to match the timing, but of course, the present invention is not limited to this. Not a thing.

【0014】また図2の例においては、励起用レーザー
光(22)に対するポンプ用レーザー光(21)の遅延
時間を所定のものとするため、ポンプ用レーザー光(2
1)の光路上に光学的遅延装置(3)が設置されている
が、もちろん、これは励起用レーザー光(22)の光路
上にあってもよい。そして液相中の微粒子試料は顕微鏡
下に置かれ、ダイクロイックミラーなどのミラーで同軸
にされた上記の3つのレーザー光は顕微鏡システム
(4)の対物レンズ(4a)で集光され試料台(4b)
上の試料に照射される。試料からの発光は対物レンズ
(4a)で集められ検出器(5)で検出される。
Further, in the example of FIG. 2, the pump laser light (2) is set to have a predetermined delay time with respect to the pump laser light (22).
The optical delay device (3) is installed on the optical path of 1), but of course, it may be on the optical path of the excitation laser light (22). Then, the fine particle sample in the liquid phase is placed under a microscope, and the three laser beams coaxially described by a mirror such as a dichroic mirror are collected by the objective lens (4a) of the microscope system (4) and the sample stage (4b). )
The sample above is irradiated. The light emitted from the sample is collected by the objective lens (4a) and detected by the detector (5).

【0015】以上の装置において、たとえはポリ(メタ
クリル酸メチル)(屈折率:1.49)からなる直径3
0μmの球形微粒子に、励起により中間体を生成する物
質として9,10−ジフェニルアントラセンを2×10
-3mol/lの濃度で、蛍光色素としてローダミンBを
9×10-3mol/lの濃度で含有させた。水中に分散
させたこの微粒子にポンプ用レーザー光(波長532n
m、パルス幅40ps、エネルギー51μJ)を顕微鏡
の対物レンズ(100倍)で直径60μm程度に集光し
て照射した。
In the above apparatus, for example, a diameter 3 made of poly (methyl methacrylate) (refractive index: 1.49)
2 × 10 of 9,10-diphenylanthracene was added to 0 μm spherical fine particles as a substance that produces an intermediate upon excitation.
Rhodamine B was contained as a fluorescent dye at a concentration of −3 mol / l at a concentration of 9 × 10 −3 mol / l. Laser light for a pump (wavelength 532n) is applied to these fine particles dispersed in water.
m, pulse width 40 ps, energy 51 μJ) was condensed and irradiated with a microscope objective lens (100 times) to a diameter of about 60 μm.

【0016】その結果を図3に示した。このとき微粒子
からは590nmを中心とする7〜8個のレーザー発振
線が見られた。ポンプ用レーザー光に数百ps先行して
励起光(波長355nm、パルス幅40ps、エネルギ
ー1.3mJ)を同じ光学系を用いて集光、照射する
と、レーザー発振強度が減衰し、従来では測定できなか
った微粒子界面のジフェニルアントラセンの励起状態の
吸収が測定できた。
The results are shown in FIG. At this time, 7 to 8 laser oscillation lines centered at 590 nm were seen from the fine particles. When pumping light (wavelength: 355 nm, pulse width: 40 ps, energy: 1.3 mJ) is collected and irradiated using the same optical system in advance of the pump laser light by several hundred ps, the laser oscillation intensity is attenuated and can be measured by the conventional method. It was possible to measure the excited state absorption of diphenylanthracene at the fine particle interface, which was not present.

【0017】[0017]

【発明の効果】以上詳しく説明した通り、この発明によ
って、液相に被測定物質を含有する微粒子が存在する場
合においても高感度で過渡吸光度および過渡吸光スペク
トルの測定が可能となる。
As described in detail above, according to the present invention, it is possible to measure the transient absorbance and the transient absorption spectrum with high sensitivity even when the fine particles containing the substance to be measured are present in the liquid phase.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の装置における測定原理を示した概略
図である。
FIG. 1 is a schematic diagram showing a measurement principle in an apparatus of the present invention.

【図2】この発明の装置を例示した概略図である。FIG. 2 is a schematic diagram illustrating the device of the present invention.

【図3】この発明の実施例として、励起光強度と発振ス
ペクトルの関係を示した図である。
FIG. 3 is a diagram showing a relationship between excitation light intensity and an oscillation spectrum as an example of the present invention.

【符号の説明】[Explanation of symbols]

1 CWレーザー発振器 2 パルスレーザー発振器 3 光学的遅延装置 4 顕微鏡システム 4a 対物レンズ 4b 試料台 5 検出器 6 レンズ 7a 励起用レーザー光反射ミラー 7b 捕捉用レーザー光反射ミラー 7c 励起用レーザー光/ポンプ用レーザー光/捕捉用
レーザー光反射ミラー 8 ミラー 10 微粒子 11 蛍光色素 12 被測定物質 13 励起用レーザー光 14 中間体 15 ポンプ用レーザー光 20 捕捉用レーザー光 21 ポンプ用レーザー光 22 励起用レーザー光
1 CW Laser Oscillator 2 Pulse Laser Oscillator 3 Optical Delay Device 4 Microscope System 4a Objective Lens 4b Specimen Stage 5 Detector 6 Lens 7a Excitation Laser Light Reflection Mirror 7b Capture Laser Light Reflection Mirror 7c Excitation Laser Light / Pump Laser Light / Capture laser light reflection mirror 8 Mirror 10 Fine particles 11 Fluorescent dye 12 Target substance 13 Excitation laser light 14 Intermediate 15 Pump laser light 20 Capture laser light 21 Pump laser light 22 Excitation laser light

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蛍光色素と被測定物質とを含有する微粒
子の液相中での界面における被測定物質の過渡吸光度お
よび過渡吸収スペクトルを光共振現象に基づいて測定す
る分光測定装置であって、(a)蛍光色素と被測定物質
とを各々励起するためのパルスレーザー発振器、(b)
このパルスレーザー発振器から発振した2種の波長のパ
ルスレーザー光のどちらか一方を遅延させるための光学
的遅延装置、(c)パルスレーザー発振器から発振した
レーザー光を集光して試料に照射するための顕微鏡シス
テム、および、(d)試料の発光を検出するための検出
器を備えてなることを特徴とする分光測定装置。
1. A spectroscopic measurement apparatus for measuring the transient absorbance and transient absorption spectrum of a substance to be measured at the interface of fine particles containing a fluorescent dye and the substance to be measured in a liquid phase, which comprises: (A) A pulse laser oscillator for exciting each of the fluorescent dye and the substance to be measured, (b)
An optical delay device for delaying either one of the pulsed laser beams of two kinds of wavelengths oscillated from this pulsed laser oscillator, (c) To collect the laser beam oscillated from the pulsed laser oscillator and irradiate it to the sample. And a detector for detecting luminescence of a sample (d).
JP01295893A 1993-01-28 1993-01-28 Spectrometer Expired - Fee Related JP3311406B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP01295893A JP3311406B2 (en) 1993-01-28 1993-01-28 Spectrometer
CA002114371A CA2114371C (en) 1993-01-28 1994-01-27 Method of spectrometry and apparatus therefor
US08/186,991 US5469255A (en) 1993-01-28 1994-01-27 Method and apparatus for spectrometric measurement of particulate surfaces
EP94300646A EP0610036B1 (en) 1993-01-28 1994-01-28 Method of spectrometry
DE69430338T DE69430338T2 (en) 1993-01-28 1994-01-28 Spectrometry method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01295893A JP3311406B2 (en) 1993-01-28 1993-01-28 Spectrometer

Publications (2)

Publication Number Publication Date
JPH06221923A true JPH06221923A (en) 1994-08-12
JP3311406B2 JP3311406B2 (en) 2002-08-05

Family

ID=11819775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01295893A Expired - Fee Related JP3311406B2 (en) 1993-01-28 1993-01-28 Spectrometer

Country Status (1)

Country Link
JP (1) JP3311406B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044768A1 (en) * 1999-12-14 2001-06-21 RUBITEC Gesellschaft für Innovation und Technologie der Ruhr-Universität Bochum mbH Optical temperature sensor
CN106645033A (en) * 2016-09-29 2017-05-10 西南科技大学 Integrated ultra-fast optical component laser damage diagnosis device
WO2017171176A1 (en) * 2016-03-31 2017-10-05 주식회사 아스타 Mass spectrometer and spectrometry, which use near infrared fluorescence

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235145B1 (en) * 2011-06-21 2013-02-20 광주과학기술원 Spectrometer using Continuous Wave Laser and Photomultiplier Tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044768A1 (en) * 1999-12-14 2001-06-21 RUBITEC Gesellschaft für Innovation und Technologie der Ruhr-Universität Bochum mbH Optical temperature sensor
WO2017171176A1 (en) * 2016-03-31 2017-10-05 주식회사 아스타 Mass spectrometer and spectrometry, which use near infrared fluorescence
US10481086B2 (en) 2016-03-31 2019-11-19 Asta Co., Ltd. Mass spectrometer and spectrometry, which use near infrared fluorescence
CN106645033A (en) * 2016-09-29 2017-05-10 西南科技大学 Integrated ultra-fast optical component laser damage diagnosis device
CN106645033B (en) * 2016-09-29 2019-05-17 西南科技大学 The ultrafast diagnostic device of optical element laser damage integration

Also Published As

Publication number Publication date
JP3311406B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
US5037200A (en) Laser-operated detector
US6865198B2 (en) Cavity ringdown spectroscopy system and method
CA1319743C (en) Area-modulated luminescence (aml)
US5469255A (en) Method and apparatus for spectrometric measurement of particulate surfaces
US10267739B2 (en) Laser system for standoff detection
CN106066317A (en) Optical chopper using method in delayed luminescence measurement system
JPS6446630A (en) None-contact sampling method and apparatus for data for local decomposition type decision of density and temperature within measuring volume
US20060022145A1 (en) Solid state multi frequency fluorometric measurements system and method
US3565567A (en) Method of and apparatus for measuring the presence and/or concentration of an element in an atomic vapor
JP2005172774A (en) Method and apparatus for measuring physical properties based on catoptric characteristics
CN205786325U (en) System is measured in the delayed luminescence of a kind of optically-based chopper
JP3311406B2 (en) Spectrometer
JP2004349582A (en) Method and device of measuring defect in solid
JP2004309458A (en) Time-resolved fluorescence microscope
JP3273815B2 (en) Spectrometry
JP2020204594A (en) Photothermal conversion spectroscope and minute amount of specimen detection method
JPH0776711B2 (en) High time resolved total internal reflection spectroscopy and measurement equipment
JP2002257629A (en) Detecting apparatus and method for electromagnetic wave
JP4355593B2 (en) Terahertz electromagnetic wave generation irradiation detector
Lakowicz et al. Fluorescence intensity decays of cyclohexane and methylcyclohexane with two‐photon excitation from a high repetition rate frequency‐doubled dye laser
JP2004527767A (en) Optical detection of chemical species in enriched media
JPH04274743A (en) Laser emission analysis method
CN209802988U (en) Multifunctional spectrum system
Rose et al. Combustion diagnostics by photo-deflection spectroscopy
Belen kii et al. Analytical monitoring devices based on combined capillary electrophoresis and fluorescence

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees