JPH0370131A - Ashing - Google Patents
AshingInfo
- Publication number
- JPH0370131A JPH0370131A JP20759989A JP20759989A JPH0370131A JP H0370131 A JPH0370131 A JP H0370131A JP 20759989 A JP20759989 A JP 20759989A JP 20759989 A JP20759989 A JP 20759989A JP H0370131 A JPH0370131 A JP H0370131A
- Authority
- JP
- Japan
- Prior art keywords
- ashing
- gas flow
- wafer
- plasma
- reaction gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004380 ashing Methods 0.000 title claims abstract description 51
- 230000005284 excitation Effects 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 30
- 239000011368 organic material Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 abstract description 22
- 239000012495 reaction gas Substances 0.000 abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Drying Of Semiconductors (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
アッシング方法の改善に関し、
ガス流を一層均一にして、アッシングの不均一性を改善
することを目的とし、
反応ガスをプラズマ励起して有機物質をアッシング処理
するアッシング方法において、横方向にやや斜め下向き
の開口を有する複数の流入口から反応ガスを流入させ、
被処理体の上部で渦巻き状のガス流をつくり、該ガス流
をプラズマ励起して前記被処理体面の有機物質をアッシ
ング処理するようにしたことを特徴とする。[Detailed Description of the Invention] [Summary] Regarding the improvement of the ashing method, the purpose of the present invention is to make the gas flow more uniform and improve the non-uniformity of ashing. In the ashing method, a reaction gas is introduced laterally through a plurality of inlets having slightly diagonally downward openings,
The present invention is characterized in that a spiral gas flow is created above the object to be processed, and the gas flow is excited by plasma to ash the organic material on the surface of the object to be processed.
本発明はフォトプロセスなどに使用されるアッシング(
Ashing ;灰化)方法の改善に関する。The present invention is applied to ashing (ashing) used in photo processing, etc.
This invention relates to improvements in ashing methods.
ICなどの半導体装置を製造する工程においてはフォト
プロセスが主要工程の一つとなっており、その際、レジ
ストの除去には乾式のアッシング処理がおこなわれてい
る。しかし、アッシング処理はウェハー全面で均一に処
理されることが望ましく、そのようなアッシング方法に
関している。A photo process is one of the main steps in the process of manufacturing semiconductor devices such as ICs, and at that time, a dry ashing process is performed to remove the resist. However, it is desirable that the ashing process be performed uniformly over the entire surface of the wafer, and the present invention relates to such an ashing method.
従来、ウェハー(被処理体)面のレジスト(有機物りを
除去する乾式のアッシング方法としては、高周波電源か
ら13.56MH2程度の高周波を導入して酸素ガスを
プラズマ化し、その酸素プラズマによってアッシングす
る方式やマイクロ波電源から2.45GIIZのマイク
ロ波を導入してマイクロ波プラズマ化した酸素プラズマ
によってアッシング処理する方式が用いられている。Conventionally, as a dry ashing method for removing resist (organic material) from the surface of a wafer (object to be processed), a high frequency wave of approximately 13.56 MH2 is introduced from a high frequency power source to turn oxygen gas into plasma, and ashing is performed using the oxygen plasma. A method is used in which ashing processing is performed using oxygen plasma that is converted into microwave plasma by introducing microwaves of 2.45 GIIZ from a microwave power source.
第3図はそのうちのマイクロ波プラズマ化するアッシン
グ方法に適用する従来のアッシング装置の要部断面図を
示しており、lはマイクロ波導入口、2はマイクロ波透
過窓、3はアソシング処理室、4は排気0.5は反応ガ
ス流入口、6はウェハー(被処理体)、7はウェハース
テージである。Figure 3 shows a cross-sectional view of the main parts of a conventional ashing device applied to the microwave plasma ashing method. 0.5 is a reaction gas inlet, 6 is a wafer (object to be processed), and 7 is a wafer stage.
処理方法はアッシング処理室3内を排気口4より真空排
気し、反応ガス流入口5から酸素(02)ガスを流入さ
せて処理室内をQ、l Torr〜数Torrの減圧に
し、導入したマイクロ波で酸素ガスをプラズマ励起させ
てウェハー6面のレジスト61をアッシング除去するも
のである。その際、一般には反応ガスを反応ガス流入口
5からウェハー6面に向かって垂直に一様に流入させて
アッシング処理する方法が採られており、かくして、ウ
ェハー全面のアッシング処理の均一化を図っている。The processing method is to evacuate the inside of the ashing processing chamber 3 through the exhaust port 4, introduce oxygen (02) gas through the reaction gas inlet 5 to reduce the pressure inside the processing chamber to Q, l Torr to several Torr, and then use the introduced microwave. The resist 61 on the surface of the wafer 6 is removed by ashing by plasma-exciting oxygen gas. At this time, a method is generally adopted in which the ashing process is performed by uniformly flowing the reaction gas vertically toward the wafer surface from the reaction gas inlet 5, thereby making the ashing process uniform over the entire surface of the wafer. ing.
なお、反応ガスには酸素(02)ガス単体の他に、スル
ープットを高めるために酸素ガスに四弗化炭素(フレオ
ン、CF、)と窒素(N2)を混合したガスなどを用い
ることもある。Note that, in addition to oxygen (02) alone, the reaction gas may include a mixture of oxygen gas, carbon tetrafluoride (freon, CF), and nitrogen (N2) in order to increase throughput.
ところで、第3図に示すような従来のアッシング装置を
用いたアッシング方法においては、上記のように、アッ
シング処理を均一におこなうために、反応ガスをウェハ
ー6面に向かって重直に流入させているが、最近、装置
自体が改善されて高周波電源やマイクロ波電源のパワー
が強力になり、プラズマ励起効率が向上してくると、ウ
ェハー全面におけるアッシング処理の均一化が困難にな
ってきた。それはプラズマ励起効率が悪くて長時間の処
理をおこなう従来の処理方法では余り問題にはならなか
ったが、プラズマ励起効率が向上して高スループツトで
短時間処理ができるようになると、今まで不明であった
ガス流の不均一化が露見してきたものと思はれる。By the way, in the ashing method using the conventional ashing apparatus as shown in FIG. 3, in order to perform the ashing process uniformly, the reaction gas is caused to flow vertically toward the 6 surfaces of the wafer, as described above. However, recently, as the equipment itself has been improved and the power of high-frequency power sources and microwave power sources has become stronger, and the plasma excitation efficiency has improved, it has become difficult to uniformize the ashing process over the entire surface of the wafer. This did not pose much of a problem with conventional processing methods, which had poor plasma excitation efficiency and required long processing times, but if the plasma excitation efficiency improved and it became possible to perform short processing times with high throughput, it would be possible to It seems that the non-uniformity of the gas flow has become apparent.
本発明はそのようなガス流を一層均一にして、アッシン
グの不均一性を改善することを目的としたアッシング方
法を提案するものである。The present invention proposes an ashing method that aims to improve the non-uniformity of ashing by making the gas flow more uniform.
その課題は、第1図に示しているように、やや斜め下向
きの横方向に開口を有する複数の流入口51.52.5
3から反応ガスを流入させ、被処理体6の上部で渦巻き
状のガス流をつくり、該ガス流をプラズマ励起して前記
被処理体面の有機物質61をアッシング処理するように
したアッシング方法によって解決される。The problem is that, as shown in FIG.
The problem is solved by an ashing method in which a reactive gas is introduced from 3 to create a spiral gas flow above the object to be processed 6, and the gas flow is excited with plasma to ash the organic substance 61 on the surface of the object to be processed. be done.
即ち、本発明はアッシング処理室内において渦巻き状の
ガス流をつくり、その流れをプラズマ励起して被処理体
(ウェハー)の有機物質(レジスト)61に反応させる
。そうすれば、従来より一層均一にウェハー面にプラズ
マを反応させて、均一に処理することができる。That is, in the present invention, a spiral gas flow is created in the ashing processing chamber, and the flow is excited by plasma to react with the organic material (resist) 61 of the object to be processed (wafer). In this way, the plasma can react more uniformly on the wafer surface than in the past, and the wafer can be processed more uniformly.
以下に図面を参照して実施例によって詳細に説明する。 Examples will be described in detail below with reference to the drawings.
第1図は本発明にかかるアッシング方法を適用するアッ
シング装置の要部断面図、第2図は第1図の透視平面図
を示している。図中の記号は両図に共通して、■はマイ
クロ波導入口、2はマイクロ波透過窓、3はアソシング
処理室、4は排気口。FIG. 1 is a sectional view of a main part of an ashing device to which an ashing method according to the present invention is applied, and FIG. 2 is a perspective plan view of FIG. 1. The symbols in the figure are common to both figures, ■ is a microwave inlet, 2 is a microwave transmission window, 3 is an associating processing chamber, and 4 is an exhaust port.
6はウェハー、7はウェハーステージ、 51.52゜
53は反応ガス流入口、61はレジストである。6 is a wafer, 7 is a wafer stage, 51.52°, 53 is a reaction gas inlet, and 61 is a resist.
本例ではL型ガス流入管に3つの反応ガス流入口を設け
、やや斜め下向きに横方向に開口して開口径をそれぞれ
変え、反応ガスがアッシング処理室3の中で処理室の側
壁に沿って流れて次第に中心に至り、ガスの流れがウェ
ハー6の上で渦巻き状になるようにする。且つ、その間
にマイクロ波を受けてプラズマ励起してウェハー6の面
に達し、ウェハー面のレジスト61に反応させる。そう
すれば、プラズマがウェハー全面に均一に接触してアッ
シング処理され、従って、アッシング処理のスループッ
トも向上する。In this example, three reactive gas inlets are provided in the L-shaped gas inlet pipe, and the openings are opened slightly diagonally downward and laterally, and the diameter of each opening is changed, so that the reactive gas flows inside the ashing processing chamber 3 along the side wall of the processing chamber. The gas flow gradually reaches the center so that the gas flow forms a spiral above the wafer 6. During this time, the plasma is excited by receiving microwaves, reaches the surface of the wafer 6, and reacts with the resist 61 on the wafer surface. By doing so, the plasma uniformly contacts the entire surface of the wafer and performs the ashing process, thereby improving the throughput of the ashing process.
アッシング方法の具体例を説明すると、5インチφの被
処理ウェハーを直径10インチのアッシング処理室に収
容して、酸素ガス0.5〜3.O1!/分を流入して減
圧度をI Torrに保持しつつ、アッシング処理室に
マイクロ波を投入してプラズマ状態を作り出して処理す
る。そうすると、数分間の処理時間によって膜厚3.0
〜3.2μmのレジストを均一に除去することができた
。従って、本発明によればスループットの向上および被
処理体の高品質化が図れるものである。To explain a specific example of the ashing method, a wafer to be processed with a diameter of 5 inches is accommodated in an ashing processing chamber with a diameter of 10 inches, and an oxygen gas of 0.5 to 3. O1! The ashing processing chamber is injected with microwaves to create a plasma state and perform processing while maintaining the degree of vacuum at I Torr by inflowing the ashing chamber. In this case, the film thickness will be 3.0 with a processing time of several minutes.
It was possible to uniformly remove resist with a thickness of ~3.2 μm. Therefore, according to the present invention, it is possible to improve throughput and improve the quality of objects to be processed.
なお、上記例はマイクロ波励起によるアッシング方法で
説明したが、高周波励起によるアッシング方法にも適用
できることは当然である。Note that although the above example has been explained using an ashing method using microwave excitation, it is of course applicable to an ashing method using high frequency excitation.
以上の説明から明らかなように、本発明にかかるアッシ
ング方法によればアッシング処理のスループットが向上
して、しかも、被処理体の高信頼化にも寄与するもので
ある。As is clear from the above description, the ashing method according to the present invention improves the throughput of the ashing process, and also contributes to high reliability of the object to be processed.
第1図は本発明にかかるアッシング方法を適用するア・
シシング装置の要部断面図、
第2図は第1図の透視平面図、
第3図は従来のアッシング装置の要部断面図である。
図において、
1はマイクロ波導入口、
2はマイクロ波透過窓、
3はアッシング処理室、
4は排気口、
5、5L 52.53は反応ガス流入口、6はウェハー
7はウェハーステージ、
61はレジスト
を示している。
!! 1 図
従朱/17ツシユ7・ゑ1バ啼断面の
第3図
才子間0透q乎而国
!I!2 図FIG. 1 shows an example of an application to which the ashing method according to the present invention is applied.
FIG. 2 is a perspective plan view of FIG. 1, and FIG. 3 is a sectional view of essential parts of a conventional ashing device. In the figure, 1 is a microwave inlet, 2 is a microwave transmission window, 3 is an ashing processing chamber, 4 is an exhaust port, 5, 5L 52.53 is a reaction gas inlet, 6 is a wafer 7 is a wafer stage, 61 is a resist It shows. ! ! 1 Figure 3 of the cross-section of 17 Tsushiyu 7 and E1 Ba! I! 2 Figure
Claims (1)
するアッシング方法において、 横方向にやや斜め下向きの開口を有する複数の流入口か
ら反応ガスを流入させ、被処理体の上部で渦巻き状のガ
ス流をつくり、該ガス流をプラズマ励起して前記被処理
体面の有機物質をアッシング処理するようにしたことを
特徴とするアッシング方法。[Claims] In an ashing method for ashing an organic substance by plasma excitation of a reactive gas, the reactive gas is introduced from a plurality of inlets having slightly downwardly diagonal openings in the lateral direction, and the reactive gas is injected into the upper part of the object to be processed. An ashing method characterized in that a spiral gas flow is created and the gas flow is excited with plasma to ash the organic material on the surface of the object to be processed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20759989A JPH0370131A (en) | 1989-08-09 | 1989-08-09 | Ashing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20759989A JPH0370131A (en) | 1989-08-09 | 1989-08-09 | Ashing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0370131A true JPH0370131A (en) | 1991-03-26 |
Family
ID=16542442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20759989A Pending JPH0370131A (en) | 1989-08-09 | 1989-08-09 | Ashing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0370131A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100300834B1 (en) * | 1998-04-07 | 2001-10-19 | 다니구찌 이찌로오, 기타오카 다카시 | Cvd apparatus for and method of forming thin film having high dielectric constant |
-
1989
- 1989-08-09 JP JP20759989A patent/JPH0370131A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100300834B1 (en) * | 1998-04-07 | 2001-10-19 | 다니구찌 이찌로오, 기타오카 다카시 | Cvd apparatus for and method of forming thin film having high dielectric constant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06188229A (en) | Posttreatment of etching | |
JP3275043B2 (en) | Post-treatment method of etching | |
KR0175688B1 (en) | Plasma ashing method with oxygen pretreatment | |
JPH03241830A (en) | Plasma etching process | |
JPH06177088A (en) | Method and apparatu for ashing | |
JPH04233734A (en) | Fluorization silicon nitride adhesion method | |
WO2020013014A1 (en) | Cleaning method and substrate processing device | |
JP3222859B2 (en) | Plasma processing equipment | |
JPH0370131A (en) | Ashing | |
JPS6015931A (en) | Reactive ion etching process | |
JP2967681B2 (en) | Microwave plasma processing equipment | |
JPS6210308B2 (en) | ||
JPS61130493A (en) | Dry etching method | |
JPH03232981A (en) | Treating device and treatment of substrate | |
JPH01140723A (en) | Plasma treatment apparatus by means of microwaves | |
JPS6386436A (en) | Lamp annealing device | |
JPH03129821A (en) | Manufacture of semiconductor device | |
JP2003133290A (en) | Apparatus for stripping resist, method for stripping resist, and method for manufacturing semiconductor device | |
JP2718092B2 (en) | Ashing apparatus and method for manufacturing semiconductor device | |
JPH05136097A (en) | Method and apparatus for fine processing | |
JPS6019139B2 (en) | Etching method and mixture gas for plasma etching | |
JPS593929A (en) | Etching of thin-film | |
JPS59145530A (en) | Plasma processing device | |
JPH06163466A (en) | Thin film removing method | |
JPH03120822A (en) | Manufacture of semiconductor device |