JPH0369524A - Production of functional glass - Google Patents

Production of functional glass

Info

Publication number
JPH0369524A
JPH0369524A JP20276389A JP20276389A JPH0369524A JP H0369524 A JPH0369524 A JP H0369524A JP 20276389 A JP20276389 A JP 20276389A JP 20276389 A JP20276389 A JP 20276389A JP H0369524 A JPH0369524 A JP H0369524A
Authority
JP
Japan
Prior art keywords
base material
glass
porous
oxide
oxide additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20276389A
Other languages
Japanese (ja)
Inventor
Yuichi Oga
裕一 大賀
Hiroo Kanamori
弘雄 金森
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20276389A priority Critical patent/JPH0369524A/en
Publication of JPH0369524A publication Critical patent/JPH0369524A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/01433Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the porous glass preform
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers

Abstract

PURPOSE:To uniformly disperse an additive in glass at the time of impregnating a porous glass base material with a soln. contg. the oxide additive and then heat treating the base material to produce the functional glass by impregnating the base material with the soln. while applying an ultrasonic wave. CONSTITUTION:The porous glass base material 1 is impregnated with the soln. 3 contg. one or plural oxide additives or a compd. capable of being converted to an oxide additive by heat treatment, and then heat-treated (quartz furnace core tube 6 and heater 7) to produce a functional glass contg. the oxide additive. In this method, the base material is impregnated with the soln. while applying an ultrasonic wave (oscillator 5). ErCl3.6H2O, NdCl3.6H2O, SnCl3.6H2O, PrCl3.6 H2O, TmCl3.6H2O, etc., are exemplified as the oxide additive. Methanol, ethanol, etc., are preferably used as the solvent for the oxide additive. The ultrasonic wave oscillation is carried out preferably at 45kHz and room temp. for about 30min to 1hr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光フアイバレーザ、光直接増幅器等に応用され
る機能性ガラスの製造方法に関し、特に機能性をもたら
すための添加剤をガラスに含有させる新規な方法に関す
るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing functional glass that is applied to optical fiber lasers, optical direct amplifiers, etc. The present invention relates to a novel method for

〔従来の技術〕[Conventional technology]

従来の技術として、例えば特公昭58−3980号公報
に示されるように、火炎加水分解反応によって得られる
多孔質ガラス母材(以下、多孔質母材と略記することも
ある)内に、所望の酸化物添加剤あるいは熱処理により
当該酸化物添加剤に変換し得る化合物を含み、且つ前記
多孔質母材に対して化学的に実質的に不活性である物質
を含浸し、次に該含浸多孔質母材を熱処理して少なくと
も一部にわたって分散せしめられた酸化物添加剤を含有
しているガラス状物体を得る方法がある。
As a conventional technique, for example, as shown in Japanese Patent Publication No. 58-3980, a desired material is injected into a porous glass base material (hereinafter sometimes abbreviated as porous base material) obtained by a flame hydrolysis reaction. impregnating the impregnated porous material with a substance that contains an oxide additive or a compound that can be converted into the oxide additive by heat treatment and is chemically substantially inert to the porous matrix; There is a method of heat treating a matrix to obtain a glassy body containing at least a portion of the dispersed oxide additive.

この酸化物添加剤として、ガラス中に添加されたときの
吸収特性、蛍光特性等から機能性を発揮するものを選べ
ば、例えば光増幅、光レーザ、アッテネータ、各種セン
シング等の機能性を有するガラス状物体を製造できるの
で、この方法(ま光通信、光学、計測等の分野への利用
が考えられ、注目されている。
As this oxide additive, if you select one that exhibits functionality based on absorption characteristics, fluorescence characteristics, etc. when added to glass, it is possible to create a glass that has functionality such as optical amplification, optical laser, attenuator, various sensing, etc. This method is attracting attention because it can be used in fields such as optical communication, optics, and measurement because it can produce objects with a shape of

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のこの種の方法では、添加剤の母材
中への拡散は、含浸させる溶液の多孔質母材への浸透圧
にのみ依存していたので、前記酸 1 化物添加剤を多孔質母材内に会合を起こすことなく均一
に分散させることが困難であり、この点が解決すべき課
題の1つであった。特に、多孔質母材の空孔体積が小さ
くなるほど、この均一分散が困難という現象は著しかっ
た。
However, in conventional methods of this type, the diffusion of the additive into the matrix was dependent only on the osmotic pressure of the solution to be impregnated into the porous matrix. It is difficult to uniformly disperse the material without causing aggregation within the base material, and this point was one of the issues to be solved. In particular, the smaller the pore volume of the porous base material, the more difficult it was to achieve uniform dispersion.

本発明は上記した従来技術の問題点を解決し、酸化物添
加剤がガラス中に非常に均一に分散した機能性ガラスを
容易に実現できる改良された製造方法を提供することを
目的としている。
It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide an improved manufacturing method that can easily realize a functional glass in which oxide additives are very uniformly dispersed in the glass.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、多孔質ガラス母材に所望の1または複数の酸
化物添加剤あるいは熱処理により当該酸化物添加剤に変
換しうる化合物を含有させた溶液を含浸させ、次いで熱
処理することにより酸化物添加剤を含む機能性ガラスを
得る方法において、超音波をかけながら上記溶液を多孔
質母材に含浸させることを特徴とする機能性ガラスの製
造方法により前記の問題点を克服するものである。
The present invention provides a method for adding oxides by impregnating a porous glass base material with a solution containing one or more desired oxide additives or a compound that can be converted into the oxide additives by heat treatment, and then heat-treating the material. The above-mentioned problems are overcome by a method for producing functional glass, which is characterized by impregnating a porous base material with the solution while applying ultrasonic waves.

以下図面を参照して本発明を具体的に説明すると、第1
図は本発明の1例を工程順に示したもので、先ず別途製
造しておいた多孔質ガラス母材lを、溶液槽4内の、酸
化物添加剤あるいは熱処理により酸化物添加剤に変換し
うる化合物(以下、酸化物添加剤と総称する)の1又は
複数を含有している溶液3の中に浸漬し、超音波発振器
5により、超音波をかける〔第1図の(81部分〕。
The present invention will be specifically described below with reference to the drawings.
The figure shows an example of the present invention in the order of steps. First, a separately manufactured porous glass base material 1 is converted into an oxide additive using an oxide additive or heat treatment in a solution bath 4. The sample is immersed in a solution 3 containing one or more of oxidizing compounds (hereinafter collectively referred to as oxide additives), and subjected to ultrasonic waves using an ultrasonic oscillator 5 [(section 81 in FIG. 1)].

以上のように酸化物添加剤含有溶液を含浸された多孔質
ガラス母材2を次で乾燥させて、溶媒を蒸発により除去
する〔第1図の(b1部分〕。酸化物含浸母材2は次い
で、石英炉芯管6及びヒータ7を供えた加熱炉内で加熱
処理して透明化することにより、酸化物添加剤を含有す
る機能性石英ガラスを得ることができる。
The porous glass base material 2 impregnated with the oxide additive-containing solution as described above is then dried, and the solvent is removed by evaporation [(b1 part in Figure 1)].The oxide-impregnated base material 2 is Next, the functional quartz glass containing the oxide additive can be obtained by heat treatment to make it transparent in a heating furnace equipped with a quartz furnace core tube 6 and a heater 7.

〔作用〕[Effect]

以上示したように、本発明では多孔質母材に添加剤を含
む溶液を含浸させる際に、超音波をかけることにより、
添加剤を会合等を起こさせることな(均一に分散させる
ことができる。
As shown above, in the present invention, by applying ultrasonic waves when impregnating a porous base material with a solution containing additives,
Additives can be uniformly dispersed without causing any aggregation.

本発明に係る多孔質ガラス母相としては、その組成はS
i 02を主成分とし、必要に応じて、例えばGe O
x、P2O3、F 、 A I!20s等を添加したも
のを用いることができる。
The porous glass matrix according to the present invention has a composition of S
The main component is i02, and if necessary, for example, GeO2 is added as a main component.
x, P2O3, F, AI! 20s or the like can be used.

該多孔質ガラス母材の製法は特に限定されるところはな
いが、例えばVAD法、OVD法等の火炎加水分解反応
を利用して作製することができる。
The method for producing the porous glass base material is not particularly limited, but it can be produced using, for example, a flame hydrolysis reaction such as a VAD method or an OVD method.

該多孔質ガラス母材のカザ密度〔単位体積当たりのSt
 Otスス−重量(g/cn?)で定義される〕は03
〜1.5g/cal、好ましくは04〜0.9 g/c
dであり、この理由は0.3 g/cJ未満では液浸又
は乾燥時に崩れやすくなるためであり、0.9 glc
JIを越えると含浸量が少なくなる点で不都合だからで
ある。
Kaza density of the porous glass base material [St per unit volume]
Otsusu - defined in weight (g/cn?)] is 03
~1.5 g/cal, preferably 04-0.9 g/c
The reason for this is that if it is less than 0.3 g/cJ, it will easily collapse during immersion or drying, and 0.9 glc
This is because exceeding JI is disadvantageous in that the amount of impregnation decreases.

本発明において、酸化物添加剤としては、例えばHrC
fr6H20,NdCf5・6H20,5nCj’s・
6H20、PrClv6 Hz OSTmCes・6 
H20等を挙げルコとができる。
In the present invention, as the oxide additive, for example, HrC
fr6H20, NdCf5・6H20, 5nCj's・
6H20, PrClv6 Hz OSTmCes・6
H20 etc. can be used.

該酸化物添加剤の溶媒としては、例えばメタノール、エ
タノール、プロパノール等のアルコールや水等を用いる
ことができ、特に好ましいものは表面張力の点でメタノ
ール、エタノール等を挙げることかできる。
As a solvent for the oxide additive, alcohols such as methanol, ethanol, propanol, and water can be used, and methanol, ethanol, and the like are particularly preferred from the viewpoint of surface tension.

酸化物添加剤の溶液中の濃度は、一般には0001〜O
1モル/l程度であるが、これは機能性ガラスの要求特
性に対応して適宜設定すればよい。
The concentration of the oxide additive in the solution is generally between 0001 and O
The amount is about 1 mol/l, but it may be set as appropriate depending on the required characteristics of the functional glass.

超音波発振の条件としては、例えば45kllzで室温
で30分〜1時間程度といった例を挙げることができる
Examples of conditions for ultrasonic oscillation include, for example, 45 kllz and room temperature for about 30 minutes to 1 hour.

酸化物添加剤含有溶液を含浸した多孔質母材の乾燥は、
種々の公知技術によることができるか、例えば室温で2
日程度放置する等の条件で乾燥できる。
Drying of the porous matrix impregnated with the oxide additive-containing solution is
by various known techniques, e.g.
It can be dried by leaving it for about a day.

乾燥した後の含浸母材を高温に加熱して透明化するが、
例えば1も又は1tと02からなる雰囲気中で、150
0〜1600°Cで30分加熱等の条件を挙げることが
できる。
After drying, the impregnated base material is heated to a high temperature to make it transparent.
For example, in an atmosphere consisting of 1 or 1t and 02, 150
Examples of conditions include heating at 0 to 1600°C for 30 minutes.

この透明化段階で、塩化物等の化合物の形で添加された
添加剤は酸化物に変換される。そして、これらの添加剤
はO8雰囲気中で参加させることにより、例えば下記の
式 %式% のように反応して、酸化物としてガラス中に溶は込むこ
とかできる。
During this clarification step, additives added in the form of compounds such as chlorides are converted into oxides. When these additives are added in an O8 atmosphere, they react as shown in the following formula, for example, and can be dissolved into the glass as oxides.

以上のようにすることにより、本発明による機能性ガラ
スでは添加物濃度〜5000ppm程度のものが作製で
きる。この添加量は濃度分布や溶液に飽和させる時間に
より変化させることができる。
By doing as described above, a functional glass according to the present invention having an additive concentration of about 5000 ppm can be produced. The amount added can be changed depending on the concentration distribution and the time to saturate the solution.

〔実施例〕〔Example〕

実施例1 火炎加水分解法で純Si 02多孔質母材(8oIII
IIlφ×300帥)を作製した(原料5iCe* 9
00 cc/分、Hg 281 /分、0.30A/分
)。該多孔質母材を田雰囲気中、1450℃にて5分間
の熱処理を行った。熱処理後の該多孔質母材の空孔体積
は全体(43mlφx220+nm)の60%であった
Example 1 Pure Si 02 porous matrix (8oIII
(Raw material 5iCe* 9
00 cc/min, Hg 281 /min, 0.30 A/min). The porous base material was heat treated at 1450° C. for 5 minutes in a field atmosphere. The pore volume of the porous base material after heat treatment was 60% of the total (43mlφx220+nm).

別に、[irCI!*・6 H20−メタノール溶液(
Er9度0.05モル/A)を調整しておき、前記熱処
理により空孔体積を調整した多孔質母材を該溶液中に含
浸した。この状態で溶液全体に45kllzの超音波を
かけ、1時間放置した〔第1図(a)〕。次いで0r溶
液を含んた多孔質母材を引き上げ、室温にて乾燥し、溶
媒成分(メタノール)を除去した〔同図(b)〕。該E
r含浸母材は、次にヒータ温度1650°C1下降速度
2mm/分の条件で熱処理を施した。この時の炉内雰囲
気は、lie 51 /分、02Iff/分とした〔同
図(C)〕。透明ガラス化した母材は桃色を呈していた
。(サイズ、33mmφ×150mm/)。
Separately, [irCI! *・6 H20-methanol solution (
The porous base material whose pore volume had been adjusted by the heat treatment was impregnated into the solution. In this state, the entire solution was subjected to ultrasonic waves of 45 kllz and left for 1 hour [Fig. 1(a)]. Next, the porous base material containing the 0r solution was pulled out and dried at room temperature to remove the solvent component (methanol) [FIG. 6(b)]. The E
The r-impregnated base material was then heat-treated at a heater temperature of 1650° C. and a descending rate of 2 mm/min. The atmosphere in the furnace at this time was set to lie 51 /min and 02Iff/min [FIG. 4(C)]. The transparent vitrified base material had a pink color. (Size, 33mmφ x 150mm/).

以上で得られた透明ガラス母材を2 mmφに延伸し、
コア材とした。該コア材の断面を鏡面研磨した後、EP
MA(エレクトリックプローブマイクロアナライザー)
にて径方向のErlli度の分布を測定したところ、第
2図(A)に示す如く均一に添加されていることを確認
できた。
The transparent glass base material obtained above was stretched to 2 mmφ,
It was used as a core material. After mirror polishing the cross section of the core material, EP
MA (Electric Probe Micro Analyzer)
When the Erlli degree distribution in the radial direction was measured, it was confirmed that the particles were added uniformly as shown in FIG. 2(A).

また、火炎加水分解法で純Si (h多孔質母材(80
mmφX500mmA)を作製した。この母材を表1に
示す条件にて熱処理し、フッ素を1.2重量%含有する
ガラス体を作製した。
In addition, pure Si (h porous base material (80
mmφ×500mmA) was produced. This base material was heat treated under the conditions shown in Table 1 to produce a glass body containing 1.2% by weight of fluorine.

表1 得られたフッ素含有ガラス体(サイズ、35mmφx1
50mm#)に2 mmφの穴をあけ、クラット材とし
た。
Table 1 Obtained fluorine-containing glass body (size, 35 mmφ x 1
A hole of 2 mmφ was drilled in the 50 mm #) and used as a crat material.

前記Er含有St Oxコア材を内面処理を施したフッ
素含有Si○、クラッド材に挿入し、両者を加熱融着体
化合物させ、プリフォームを得た(31mmφx150
aunjり。該プリフォームを紡糸し、コア径8.1μ
、クラツド径125pのシングルモードファイバとした
。このファイバの1.535/7mにおける光増幅特性
を調べたところ、17.4 dBの利得が得られ、光増
幅器としての効果を確認した。
The Er-containing St Ox core material was inserted into the inner-surface-treated fluorine-containing Si○ and cladding material, and the two were heat-fused to form a compound to obtain a preform (31 mmφ x 150 mm).
aunjri. The preform was spun to a core diameter of 8.1μ.
, a single mode fiber with a cladding diameter of 125p. When the optical amplification characteristics of this fiber at 1.535/7 m were investigated, a gain of 17.4 dB was obtained, confirming its effectiveness as an optical amplifier.

比較例1 実施例に示したのと同様の方法にて、多孔質母相を作製
し、該多孔質母材を超音波をかけずにEr濃度0.05
モル/lのメタノール溶液中に含浸した。実施例と同条
件にて該E「含浸多孔質母材を熱処理し、桃色の透明ガ
ラス体を得た。該ガラス体を2 mmφ径を延伸し、コ
ア材料とするとともに、EPMAにてHrの径方向分布
を測定したところ、第2図(B)に示す如き分布を持っ
ていた。
Comparative Example 1 A porous matrix was prepared in the same manner as shown in the example, and the Er concentration was 0.05 without applying ultrasound to the porous matrix.
It was impregnated into a mol/l methanol solution. The E-impregnated porous base material was heat-treated under the same conditions as in the example to obtain a pink transparent glass body.The glass body was stretched to a diameter of 2 mm and used as a core material. When the radial distribution was measured, it had a distribution as shown in FIG. 2(B).

該コア材を実施例1と同様の方法にで1.2重量%のフ
ッ素含有ガラス(クラット材)と加熱融着一体化してプ
リフォームを作製し、さらに紡糸して、得られたファイ
バの1.5357Jにおける光増幅特性を調べたところ
、利得(ゲイン)は9.5 dBに止まった。なお、励
起光としては0.514 taArレーザ、50mWを
使用した。
The core material was heat-fused and integrated with 1.2% by weight fluorine-containing glass (crat material) in the same manner as in Example 1 to produce a preform, which was further spun to form one of the obtained fibers. When the optical amplification characteristics at .5357J were investigated, the gain remained at 9.5 dB. Note that a 0.514 taAr laser with a power of 50 mW was used as the excitation light.

以上の実施例1及び比較例1の結果から、本発明の方法
によれば酸化物添加剤又は熱処理により酸化物添加剤に
変換し得る化合物を多孔質ガラス体に非常に均一に分散
添加でき、しかも従来の単にに浸透圧に依存する方法に
比して大量に添加できることが分かる。
From the results of Example 1 and Comparative Example 1 above, it is clear that according to the method of the present invention, an oxide additive or a compound that can be converted into an oxide additive by heat treatment can be dispersed and added to a porous glass body very uniformly. Moreover, it can be seen that a larger amount can be added compared to the conventional method that relies solely on osmotic pressure.

実施例2 実施例1と同様の多孔質母材を用意した。原料としてN
d Cls 6 H20を用い、H20に溶かして0、
005モル/lの水溶液を調整し、P2O5SiO2ス
ートに含浸させた。このとき、45kllzの超音波を
30分間かけた。該水溶液を含浸させた母材は室温で1
日放置することにより乾燥させた後、均熱炉で○t /
 1(e−0,2の雰囲気下、1600℃、30分間加
熱処理して透明ガラス化した。
Example 2 A porous base material similar to that in Example 1 was prepared. N as a raw material
d Using Cls 6 H20, dissolve it in H20 and make 0,
An aqueous solution of 0.005 mol/l was prepared and impregnated into the P2O5SiO2 soot. At this time, ultrasonic waves of 45 kllz were applied for 30 minutes. The base material impregnated with the aqueous solution has a temperature of 1 at room temperature.
After drying by leaving it in the sun, dry it in a soaking oven.
1 (e-0,2), heat treatment was performed at 1600° C. for 30 minutes to form transparent vitrification.

以上により得られた母材中のNd”!度は300ppm
であった。このNd ”添加ガラス母材の径方向Nd”
濃度分布をSTMS(2次イオン質量分析)で測定した
ところ第3図に示すとおりで、均一に分布していること
を確認した。
The Nd content in the base material obtained above was 300 ppm.
Met. This Nd "radial direction Nd of the added glass base material"
When the concentration distribution was measured by STMS (secondary ion mass spectrometry), it was as shown in FIG. 3, and it was confirmed that the concentration distribution was uniform.

該母材を実施例1と同様の方法でファイバ化し、該ファ
イバの蛍光特性を評価(励起光Arレーザ50mW)し
たところ、1.08/sにて5. ] dBの利得が得
られた。
The base material was made into a fiber in the same manner as in Example 1, and the fluorescence characteristics of the fiber were evaluated (excitation light Ar laser 50 mW). ] A gain of dB was obtained.

実施例3 実施例1と同様の方法で製造したfir”!度300p
pmのガラス母材を外径12mmφに延伸し、2.6重
量%のフッ素を含有するSi 02からなる管状ガラス
母材(外径30+nmφ、内径1.5mmφ)に、」二
記の[ir  SiO2ガラス母材を挿入し、加熱融着
一体化させプリフォームを得た。該プリフォムの径方向
Hr”8度分布をSIMSで測定した結果を第4図に示
すが、コア部分にほぼ均一に分布していることを確認し
た。
Example 3 fir”! degree 300p manufactured by the same method as Example 1
pm glass base material was stretched to an outer diameter of 12 mmφ, and a tubular glass base material (outer diameter 30+nmφ, inner diameter 1.5 mmφ) made of SiO2 containing 2.6% by weight of fluorine was drawn with [ir SiO2 A glass base material was inserted and heat fused to form a preform. FIG. 4 shows the result of measuring the radial direction Hr"8 degree distribution of the preform by SIMS, and it was confirmed that the distribution was almost uniform in the core portion.

該プリフォームを直径1 mmφのファイバに線弓した
。該ファイバを酸で洗浄した後、夕1径30mmφ、肉
厚1.5mmの石英製パイプ内に配列してコラップスし
、13000画素のイメージファイバ用プリフォームを
得て、コア径5.5/ffn、コア間隔10−に線引し
た。1.535 戸におけるゲインを評価した(励起光
は0.514 )mArレーザ50mWを使用)ところ
、10c/Bであった。また、鮮明度も良好なものが得
られた。
The preform was bowed into a fiber having a diameter of 1 mm. After cleaning the fibers with acid, they were arranged and collapsed in a quartz pipe with a diameter of 30 mm and a wall thickness of 1.5 mm to obtain a 13,000 pixel image fiber preform, with a core diameter of 5.5/ffn. , with a core spacing of 10-. The gain at 1.535 mm was evaluated (using a 50 mW mAr laser with excitation light of 0.514 mm) and found to be 10 c/B. Also, good clarity was obtained.

実施例4 原料としてSmC136H20を用いて002モル/l
のメタノール溶液を調整し、該溶液をGe  SiO2
多孔質母材に含浸した。Sm” i!it度は500p
pmであった。実施例2と同様に操作して透明ガラス化
してコア用ロッドを得た。該コア用ガラスロットと別途
用意しておいた純Si 02のクラット部用パイプを、
いわゆるロフトインチューブ法により加熱融着一体化し
て、クラット/コア(径比)−12のプリフォームを作
製した。プリフォームの径方向Sm” 174度分布を
S IMSにて測定した結果は第5図に示すとおりで、
コア部内にほぼ均一に分布していることを確認した。
Example 4 002 mol/l using SmC136H20 as a raw material
Prepare a methanol solution of Ge SiO2
Impregnated into porous matrix. Sm”i!it degree is 500p
It was pm. The same procedure as in Example 2 was performed to obtain a transparent vitrification to obtain a core rod. The glass rod for the core and the pure Si 02 pipe for the crat part prepared separately,
A preform having a crut/core (diameter ratio) of -12 was produced by heat-sealing and integrating by a so-called loft-in-tube method. The results of measuring the radial direction Sm''174 degree distribution of the preform using SIMS are shown in Figure 5.
It was confirmed that the particles were distributed almost uniformly within the core.

該プリフォームをクラソト径125戸のファイバに線引
し、該ファイバの1.3/7mのロスを測定した(励起
光Arレーザ50mW)ところ、12dB/mであった
The preform was drawn into a fiber with a diameter of 125 mm, and the loss of 1.3/7 m of the fiber was measured (excitation light Ar laser 50 mW) and found to be 12 dB/m.

以」二、Er、 Nd、 Sm等を例にとって説明した
が、複数の添加剤を含有させた溶液を多孔質母材に含浸
させる方法においても本発明の方法は有効であった。
Second, although Er, Nd, Sm, etc. have been explained as examples, the method of the present invention is also effective in a method in which a porous base material is impregnated with a solution containing a plurality of additives.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、添加剤を母材全体
にわたって均一に添加することが可能で、特性を向上さ
せる上でも効果的である。したがって、本発明により光
フアイバレーザ、光直接増幅器等において、高品質の機
能性ガラスを得ることができる。
As explained above, according to the present invention, it is possible to uniformly add additives to the entire base material, which is also effective in improving properties. Therefore, according to the present invention, high quality functional glass can be obtained in optical fiber lasers, optical direct amplifiers, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を説明する概略図、第2図(
A)及び(B)はEPMAの分析結果を示すチャート図
であり、第2図(A)は本発明の実施例1で得たEr含
有ガラス体(超音波をかけて含浸)のもの、第2図(ロ
)は比較例1で得たIir含有ガラス体(超音波なし)
のものを示す。第3図乃至第5図は実施例2乃至4で得
られた本発明の機能性ガラス中の添加元素の径方向濃度
分布図(S IMSによる)である。 なお、第1図においてlは多孔質母材、2は添加剤を含
有した多孔質母材、3は添加剤を含む溶液、4は溶液槽
、5は超音波発振器、6は石英炉心管、7はヒーターを
表す。 4 代
Figure 1 is a schematic diagram explaining an embodiment of the present invention, Figure 2 (
A) and (B) are charts showing the results of EPMA analysis, and FIG. Figure 2 (b) shows the Iir-containing glass body obtained in Comparative Example 1 (without ultrasound)
Show things. 3 to 5 are radial concentration distribution maps (by SIMS) of additive elements in the functional glasses of the present invention obtained in Examples 2 to 4. In FIG. 1, l is a porous base material, 2 is a porous base material containing additives, 3 is a solution containing additives, 4 is a solution tank, 5 is an ultrasonic oscillator, 6 is a quartz furnace tube, 7 represents a heater. 4th generation

Claims (1)

【特許請求の範囲】[Claims] (1)多孔質ガラス母材に所望の1または複数の酸化物
添加剤あるいは熱処理により当該酸化物添加剤に変換し
うる化合物を含有させた溶液を含浸させ、次いで熱処理
することにより酸化物添加剤を含む機能性ガラスを得る
方法において、超音波をかけながら上記溶液を多孔質母
材に含浸させることを特徴とする機能性ガラスの製造方
法。
(1) Oxide additives can be added by impregnating a porous glass base material with a solution containing one or more desired oxide additives or a compound that can be converted into the oxide additive by heat treatment, and then heat-treating the material. A method for producing functional glass, which comprises impregnating a porous base material with the solution while applying ultrasonic waves.
JP20276389A 1989-08-07 1989-08-07 Production of functional glass Pending JPH0369524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20276389A JPH0369524A (en) 1989-08-07 1989-08-07 Production of functional glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20276389A JPH0369524A (en) 1989-08-07 1989-08-07 Production of functional glass

Publications (1)

Publication Number Publication Date
JPH0369524A true JPH0369524A (en) 1991-03-25

Family

ID=16462764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20276389A Pending JPH0369524A (en) 1989-08-07 1989-08-07 Production of functional glass

Country Status (1)

Country Link
JP (1) JPH0369524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104843987A (en) * 2015-03-10 2015-08-19 武汉理工大学 Preparation method of quartz rod uniformly doped with powder ions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104843987A (en) * 2015-03-10 2015-08-19 武汉理工大学 Preparation method of quartz rod uniformly doped with powder ions

Similar Documents

Publication Publication Date Title
CA1327845C (en) Optical fibre with fluorescent additive
JP2766420B2 (en) Method for producing erbium-doped quartz
CN101351934B (en) Amplifying optical fiber operating at a wavelength in the range of 1000-1700 nm, methods of fabricating the same, and fiber laser
JPH09171120A (en) Optical fiber having resistance against attenuaton induced by hydrogen and manufacture thereof
JP2002519285A (en) Method and apparatus for producing rare earth metal doped optical fiber preforms
JPS62256737A (en) Manufacture of optical fiber mother material
JPH04300219A (en) Production of quartz glass doped with rare-earth element
KR940004209B1 (en) Optical fiber component optical coupler and method of producing thereof
JPH0369524A (en) Production of functional glass
US7058269B2 (en) Reconstructed glass for fiber optic applications
JPH038744A (en) Rare earth element-doped quartz glass fiber preform and preparation thereof
JP2677871B2 (en) Manufacturing method of quartz-based doped glass
JPH03132726A (en) Rare earth element-added optical fiber
JP3188304B2 (en) Rare earth element doped silica glass based optical fiber preform and method of manufacturing the same
JP3027075B2 (en) Method for producing rare earth element-doped quartz glass fiber preform
JPH02293332A (en) Production of rare earth element-doped silica glass
JPH0492825A (en) Production of silica glass and optical waveguide using same silica glass
JP2582592B2 (en) Method for manufacturing base material for optical functional element
JPH04271329A (en) Partially erbium-added optical fiber coupler and production thereof
JPH03177328A (en) Production of optical fiber preform
JP3310159B2 (en) Method for producing transparent glass body for Co-doped optical attenuator
JPH03109229A (en) Production of optical fiber preform
JP2582592C (en)
JPH11314935A (en) Rare earth element doped glass
JPH01203236A (en) Production of fiber laser