JPH0492825A - Production of silica glass and optical waveguide using same silica glass - Google Patents
Production of silica glass and optical waveguide using same silica glassInfo
- Publication number
- JPH0492825A JPH0492825A JP21010290A JP21010290A JPH0492825A JP H0492825 A JPH0492825 A JP H0492825A JP 21010290 A JP21010290 A JP 21010290A JP 21010290 A JP21010290 A JP 21010290A JP H0492825 A JPH0492825 A JP H0492825A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- silica glass
- doped
- quartz glass
- fluorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 230000003287 optical effect Effects 0.000 title abstract description 9
- 239000011521 glass Substances 0.000 claims abstract description 26
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 21
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 18
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 16
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000011737 fluorine Substances 0.000 claims abstract description 16
- 239000002245 particle Substances 0.000 claims abstract description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 17
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 13
- 238000005253 cladding Methods 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 claims description 2
- 239000012808 vapor phase Substances 0.000 claims description 2
- 239000010419 fine particle Substances 0.000 abstract description 20
- 238000005245 sintering Methods 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 5
- 238000001308 synthesis method Methods 0.000 abstract description 2
- 239000012792 core layer Substances 0.000 abstract 2
- 239000010410 layer Substances 0.000 abstract 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 17
- 238000000034 method Methods 0.000 description 17
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 239000000835 fiber Substances 0.000 description 9
- HDGGAKOVUDZYES-UHFFFAOYSA-K erbium(iii) chloride Chemical compound Cl[Er](Cl)Cl HDGGAKOVUDZYES-UHFFFAOYSA-K 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000001307 helium Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000007496 glass forming Methods 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004017 vitrification Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/12—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/34—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
- C03B2201/36—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、ファイバ型光増幅器等に好適な石英ガラス
を製造する方法およびこれによって得られた石英ガラス
を用いた先導波路に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing quartz glass suitable for fiber-type optical amplifiers and the like, and a guiding waveguide using the quartz glass obtained thereby.
ファイバ型光増幅器として、エルビウムをドープした光
ファイバが知られている。しかし、このエルビウムドー
プ光ファイバにあっては、その動作特性に比較的大きな
波長依存性を有しており、通信用光源の波長の微かな変
動により、動作利得が大きく変化する不都合がある。Erbium-doped optical fibers are known as fiber-type optical amplifiers. However, this erbium-doped optical fiber has a disadvantage that its operating characteristics have a relatively large dependence on wavelength, and the operating gain changes greatly due to slight fluctuations in the wavelength of the communication light source.
このため、近時、アルミニウムとエルビウムとを共にド
ープした光ファイバが、波長依存性が小さく、上述の不
都合を解消しうるちのとして開発されつつある。Therefore, in recent years, optical fibers doped with both aluminum and erbium have been developed as a solution to the above-mentioned disadvantages due to their small wavelength dependence.
このようなアルミニウムとエルビウムとをドープした石
英ガラスの好ましい製造方法として、本発明者らは、先
に特願平2−49100号を提案している。The present inventors have previously proposed Japanese Patent Application No. 2-49100 as a preferable method for producing quartz glass doped with aluminum and erbium.
しかしながら、アルミニ−ラムをドープした石英ガラス
では、溶融粘度が高(なり、石英ガラス微粒子集合体(
スート)を焼結して透明ガラス化する際の焼結温度を高
くせねばならず、通常の石英マフフルを用いた焼結炉で
は、焼結温度の上限からアルミニウムの添加量は0 、
5 vt%以下に限られることになる。また、アルミニ
ウムの添加量を0.5wt%以下としても、焼結温度が
上述のように高いため、石英マツフルの寿命が短くなる
不都合もある。However, silica glass doped with aluminum has a high melt viscosity (
The sintering temperature must be high when sintering the soot to make it transparent, and in a sintering furnace using a normal quartz muffle, the amount of aluminum added is 0, due to the upper limit of the sintering temperature.
It will be limited to 5 vt% or less. Further, even if the amount of aluminum added is 0.5 wt % or less, the sintering temperature is high as described above, which causes the disadvantage that the life of the quartz matsufuru is shortened.
よって、この発明における課題は、エルビウムとアルミ
ニウムとを共添加した石英ガラスを製造する際、その焼
結温度を低減できる製法を提供することにある。Therefore, an object of the present invention is to provide a manufacturing method that can reduce the sintering temperature when manufacturing quartz glass co-doped with erbium and aluminum.
かかる課題は、石英ガラス微粒子集合体にアルミニウム
とエルビウムをドープし、ついでこの微粒子集合体をフ
ッ素雰囲気中で焼結することで解決される。This problem can be solved by doping a quartz glass fine particle aggregate with aluminum and erbium, and then sintering this fine particle aggregate in a fluorine atmosphere.
以下、この発明の詳細な説明する。The present invention will be described in detail below.
まず、母体となるべき石英ガラス微粒子集合体を用意す
る。この石英ガラス微粒子集合体は、VAD法、OVD
法などの周知の気相合成法によって得られるもので、熱
酸化反応や火炎加水分解反応によって合成された酸化ケ
イ素あるいは酸化ケイ素と酸化ゲルマニウム、酸化ホウ
素などのドーパントとの混合酸化物からなる微粒子を堆
積させてなる多孔質体である。First, a silica glass fine particle aggregate to serve as a matrix is prepared. This quartz glass fine particle aggregate can be produced by VAD method, OVD method,
It is obtained by a well-known gas phase synthesis method such as the method, and is made of fine particles made of silicon oxide or a mixed oxide of silicon oxide and a dopant such as germanium oxide or boron oxide synthesized by thermal oxidation reaction or flame hydrolysis reaction. It is a porous body made by depositing.
この石英ガラス微粒子集合体の形状は、VAD法による
ものであれば、棒状の出発母材の先端にその軸方向に石
英ガラス微粒子が堆積した棒状であり、またOVD法に
よるものであれば棒状の出発母材の外周面にその半径方
向に石英ガラス微粒子を堆積させたのち、出発母材を引
き抜いた筒状となっているが、これらに限られることは
ない。The shape of this quartz glass fine particle aggregate is a rod-like shape in which quartz glass fine particles are deposited in the axial direction at the tip of a rod-shaped starting base material if the VAD method is used, and a rod-like shape if it is made by the OVD method. The cylindrical shape is obtained by depositing silica glass fine particles on the outer peripheral surface of the starting base material in the radial direction and then pulling out the starting base material, but the present invention is not limited to this.
この石英ガラス微粒子集合体は、その嵩密度が0.4〜
0.7g/am’の範囲にあることが望ましく、かつそ
の中心部分と表面部分とで嵩密度が均一であることが好
ましい。嵩密度が0.4g/cs”未満では機械的強度
が不足し、次工程での塩化アルミニウムと塩化エルビウ
ムのアルコール溶液の浸透操作などの取扱いに耐えられ
ず、0.7g/cIsを越えると上記アルコール溶液の
集合体中心部分への浸透が速やかにかつ十分に行われな
くなる。嵩密度が0.4g/c11未満であれば、ヘリ
ウム、アルゴンなどの不活性雰囲気中で、加熱処理する
ことによって0.4〜0.7g/cm″の範囲内に高め
ることができる。このための加熱温度は、石英ガラス微
粒子集合体を構成するガラスの種類によって異なり、石
英ガラスのみから構成されたものでは1200〜130
0℃の範囲で、石英ガラスに酸化ゲルマニウムや酸化ホ
ウ素などが添加されたガラスから構成されたものでは7
00〜1100℃の範囲で熱処理される。この加熱処理
により、石英ガラス微粒子集合体をなすガラス微粒子の
表面が溶融し、ガラス微粒子間の間隙が縮まったものと
なり、これに伴いその嵩密度も0.4〜0.7g/am
”程度に増加する。This quartz glass fine particle aggregate has a bulk density of 0.4 to
The bulk density is preferably in the range of 0.7 g/am', and the bulk density is preferably uniform between the center portion and the surface portion. If the bulk density is less than 0.4 g/cs, the mechanical strength will be insufficient and it will not be able to withstand handling such as permeation with an alcohol solution of aluminum chloride and erbium chloride in the next process, and if it exceeds 0.7 g/cs, the above-mentioned The alcohol solution will not penetrate quickly and sufficiently into the center of the aggregate.If the bulk density is less than 0.4 g/c11, heat treatment in an inert atmosphere such as helium or argon will reduce the It can be increased within the range of .4 to 0.7 g/cm''. The heating temperature for this differs depending on the type of glass constituting the silica glass fine particle aggregate, and is 1200 to 130
In the temperature range of 0°C, glass made of quartz glass with germanium oxide, boron oxide, etc.
Heat treatment is performed in the range of 00 to 1100°C. Through this heat treatment, the surfaces of the glass particles constituting the silica glass particle aggregate are melted, and the gaps between the glass particles are reduced, and the bulk density is also reduced to 0.4 to 0.7 g/am.
``Increases to a certain degree.
また、通常のVAD法で得られた石英ガラス微粒子集合
体にあっては、その中心部分の嵩密度が高< (0,4
〜0.45g/cm”程度)、表面部分のそれが低い(
0,25g/c++”程度)ものとなる傾向がある。し
たがって、上記アルコール溶液の均一な浸透を行ううえ
で、良い結果を持たらさない。このため、石英ガラス微
粒子集合体の嵩密度が中心部と表面部とで差がないもの
を得ることのできるVAD法が好ましく、例えば石英ガ
ラス微粒子集合体の形成時、該集合体のガラス微粒子堆
積部位における中心部分の温度と表面部分の温度との温
度差を、追加の加熱用バーナなどを用いるなどして、1
00°C以内とする方法などを採用することで、嵩密度
が均一な石英ガラス微粒子集合体が得られる。また、通
常のVAD法で得られた石英ガラス微粒子集合体をその
ガラスの溶融温度に近い温度で短時間、複数回加熱する
ことで、その表面部分のみの嵩密度を高める方法も可能
である。In addition, in the case of the silica glass fine particle aggregate obtained by the ordinary VAD method, the bulk density of the central part is high < (0,4
~0.45g/cm”), and the surface area is lower (about 0.45g/cm”).
0.25g/c++"). Therefore, it does not give good results in uniformly penetrating the alcohol solution. For this reason, the bulk density of the silica glass fine particle aggregate tends to be The VAD method is preferable because it can obtain a result with no difference between the surface and the surface.For example, when forming a silica glass particle aggregate, the temperature at the center and the surface of the aggregate at the glass particle deposition site is preferably The temperature difference can be reduced by 1 by using an additional heating burner, etc.
By adopting a method of keeping the temperature within 00°C, a silica glass fine particle aggregate with a uniform bulk density can be obtained. It is also possible to increase the bulk density of only the surface portion of a silica glass fine particle aggregate obtained by a normal VAD method by heating it multiple times for a short period of time at a temperature close to the melting temperature of the glass.
一方、これとは別に塩化アルミニウムと塩化エルビウム
を混合して溶解したアルコール溶液を用意する。塩化ア
ルミニウムーとしては、三塩化物の無水塩あるいは含水
塩が用いられる。また、塩化エルビウムとしては、三塩
化物の無水塩が用いられる。さらに、アルコールとして
は、メタノール、エタノール、イソプロピルアルコール
、ブタノールなどが用いられる、好ましくは炭素数が2
〜5の一価アルコールが用いられる。塩化アルミニウム
および塩化エルビウムの濃度は、ドーパント添加量によ
って定められ、限定されないが通常塩化アルミニウムで
は1〜30重置%、塩化エルビウムでは0.1〜1重量
%程度とされる。また、塩化アルミニウムと塩化エルビ
ウムとを同一または別種のアルコールにそれぞれ溶解し
、この2種の溶液を適宜の混合割合で混合してもよい。Separately, an alcohol solution in which aluminum chloride and erbium chloride are mixed and dissolved is prepared. As aluminum chloride, an anhydrous trichloride salt or a hydrated salt is used. Further, as erbium chloride, an anhydrous trichloride salt is used. Further, as the alcohol, methanol, ethanol, isopropyl alcohol, butanol, etc. are used, preferably having 2 carbon atoms.
~5 monohydric alcohols are used. The concentration of aluminum chloride and erbium chloride is determined by the amount of dopant added, and is usually about 1 to 30% by weight for aluminum chloride and 0.1 to 1% by weight for erbium chloride, although it is not limited. Alternatively, aluminum chloride and erbium chloride may be dissolved in the same or different alcohols, and the two solutions may be mixed at an appropriate mixing ratio.
ついで、このようにして得られた塩化アルミニウムと塩
化エルビウムとの混合アルコール溶液を石英ガラス微粒
子集合体中に浸透させる。この浸透操作としては、集合
体を混合アルコール溶液中に0.5〜24時間程度浸漬
する方法が最も簡単である。また、混合アルコール溶液
を集合体上に滴下したり、塗布したり、あるいは霧状に
して吹き付けたりすることも可能である。さらに浸透操
作前に集合体を真空中で放置して集合体の空隙中の気体
、水分等を吸引、排除して混合アルコール溶液の浸透を
促進してもよい。Next, the thus obtained mixed alcoholic solution of aluminum chloride and erbium chloride is allowed to permeate into the silica glass fine particle aggregate. The simplest method for this infiltration operation is to immerse the aggregate in a mixed alcohol solution for about 0.5 to 24 hours. It is also possible to drop, apply, or spray the mixed alcohol solution onto the aggregate. Furthermore, before the infiltration operation, the aggregate may be left in a vacuum to suck out and eliminate gas, moisture, etc. in the voids of the aggregate to promote the infiltration of the mixed alcohol solution.
このようにして、混合アルコール溶液が浸透された集合
体は、ついで、不活性ガス雰囲気中において、70〜1
00℃で96時間以上加熱され、十分にアルコールが取
り除かれる。勿論、減圧乾燥を併用することもできる。The mass impregnated with the mixed alcohol solution in this way is then heated in an inert gas atmosphere at 70 to 1
The alcohol is thoroughly removed by heating at 00°C for 96 hours or more. Of course, reduced pressure drying can also be used together.
ついで、この乾燥された集合体を電気炉などの加熱炉中
で塩素ガスを流しながら加熱処理し、集合体中に残留す
る水分(水酸基)を除去する。Next, this dried aggregate is heat-treated in a heating furnace such as an electric furnace while flowing chlorine gas to remove moisture (hydroxyl groups) remaining in the aggregate.
次に、この集合体をフッ素雰囲気中で加熱処理して、石
英ガラス微粒子内にフッ素をドープするとともにこの石
英ガラス微粒子を溶融して透明ガラス化して、エルビウ
ム、アルミニウムおよびフッ素をドープした石英ガラス
からなる石英ガラス体を得る。Next, this aggregate is heat-treated in a fluorine atmosphere to dope fluorine into the quartz glass particles and melt the quartz glass particles to make transparent glass. A quartz glass body is obtained.
フッ素雰囲気を形成するためのフッ素化合物としては、
S iFm、CF、、SFa、CtCOtF*などが用
いられ、これらの1種または混合物をそのままあるいは
アルゴンやヘリウムなどの不活性ガスで希釈して加熱炉
内に導入することでフッ素雰囲気を形成することができ
る。加熱温度は1400〜1500℃の範囲で十分であ
り、1500℃を越える温度にしなくとも透明ガラス化
が可能である。Fluorine compounds for forming a fluorine atmosphere include:
SiFm, CF, SFa, CtCOtF*, etc. are used, and a fluorine atmosphere is created by introducing one or a mixture of these into the heating furnace as is or diluting with an inert gas such as argon or helium. I can do it. A heating temperature in the range of 1,400 to 1,500°C is sufficient, and transparent vitrification is possible even if the temperature does not exceed 1,500°C.
このような石英ガラスの製法では、エルビウムとアルミ
ニウムとが添加された石英ガラス微粒子集合体をフッ素
雰囲気中で加熱処理してフッ素を添加してガラスの溶融
粘度を下げているため、透明ガラス化のための焼結温度
を低くすることができる。In this method of manufacturing quartz glass, quartz glass fine particle aggregates doped with erbium and aluminum are heat-treated in a fluorine atmosphere to add fluorine to lower the melt viscosity of the glass, making it difficult to make transparent glass. The sintering temperature for this purpose can be lowered.
ところで、このようにして得られたエルビウム、アルミ
ニウム、フッ素ドープ石英ガラスは、フッ素のドープに
よってそのドープ量に応じてその屈折率が低下する。こ
のため、この石英ガラスをコアとし、フッ素ドープ石英
ガラスをクラッドとする光ファイバでは、比屈折率差を
大きくすることができなくなり、したがって高効率、高
利得のファイバ型光増幅器を得るうえで必要とされる小
さなモードフィールド径(MFD)を得ることが困難と
なる。By the way, the refractive index of the erbium-, aluminum-, or fluorine-doped quartz glass obtained in this way is reduced by fluorine doping in accordance with the doping amount. For this reason, in an optical fiber with a core made of silica glass and a cladding made of fluorine-doped silica glass, it is no longer possible to increase the relative refractive index difference, which is necessary to obtain a high-efficiency, high-gain fiber-type optical amplifier. It becomes difficult to obtain a small mode field diameter (MFD) that is assumed to be small.
このため、本発明の請求項(2)に記載の先導波路では
、かかる不都合を解決するため、アルミニウムとエルビ
ウムとフッ素とをドープした石英ガラスから内部コア体
を形成し、この内部コア体の外周に前記三成分ドープ石
英ガラスよりも高い屈折率を有するガラスからなる外部
コア体を設け、この外部コア体の外周に外部コア体をな
すガラスよりも屈折率の低いガラスからなるクラッド体
を設けている。Therefore, in the guiding waveguide according to claim (2) of the present invention, in order to solve this problem, the inner core body is formed from quartz glass doped with aluminum, erbium, and fluorine, and the outer periphery of this inner core body is an outer core body made of glass having a higher refractive index than the three-component doped quartz glass, and a cladding body made of glass having a lower refractive index than the glass forming the outer core body around the outer periphery of the outer core body. There is.
具体的には、上述のようにして得られたアルミニウム、
エルビウム、フッ素ドープ石英ガラス体を延伸して延伸
ロッドとし、この延伸ロッド上に外付は法などによって
外部コア体となる屈折率の高いガラス、例えば純粋石英
ガラスなどを設ける。Specifically, aluminum obtained as described above,
An erbium- or fluorine-doped quartz glass body is stretched to form a stretched rod, and a glass having a high refractive index, such as pure quartz glass, is provided on the stretched rod by a method or the like.
ついで、この外部コア体上に同様に外付は法などでクラ
ッド体となる屈折率の低いガラス、例えばフッ素ドープ
石英ガラスな−どを設ける。ついで、このウッドを常法
により紡糸してファイバとする。Next, on this outer core body, a glass having a low refractive index, such as fluorine-doped quartz glass, etc., is provided on the outer core body by a similar method to form a cladding body. This wood is then spun into a fiber using a conventional method.
第1図はこのような方法で得られたファイバの屈折率分
布の例を示すものであり、符号1はアルミニウム、エル
ビウム、フッ素ドープ石英ガラスからなる内部コアを、
符号2は純粋石英ガラスからなる外部コアを、符号3は
フッ素ドープ石英ガラスからなるクラッドをそれぞれ示
し、内部フ71と外部コア2との比屈折率差は−0,2
%であり、外部コア2とクラ・;ド3との比屈折率差は
−0,7%となっている。Figure 1 shows an example of the refractive index distribution of a fiber obtained by such a method, where reference numeral 1 indicates an inner core made of aluminum, erbium, and fluorine-doped silica glass.
Reference numeral 2 indicates an outer core made of pure silica glass, and reference numeral 3 indicates a cladding made of fluorine-doped quartz glass.The relative refractive index difference between the inner core 71 and the outer core 2 is -0,2.
%, and the relative refractive index difference between the outer core 2 and the cladding 3 is -0.7%.
このようなファイバでは、実効的なコアとクラッドとの
比屈折率差を大きくとることが可能となって、高効率で
高利得のファイバ型光増幅器を構成することができる。In such a fiber, it is possible to have a large effective relative refractive index difference between the core and the cladding, and a highly efficient and high gain fiber type optical amplifier can be constructed.
以下、具体例を示す。A specific example will be shown below.
(実施例)
石英ガラス微粒子堆積用バーナと加熱用バーナとを用い
たVAD法によって、全体の嵩密度が0.45g/cm
”と均一な石英ガラス微粒子集合体(重量208g)を
得た。次に、AσC1!、20wt%のエタノール溶液
200gとErC(lso、54vt%のエタノール溶
液250gとを混合した溶液中に前述の石英ガラス微粒
子集合体を浸漬したところ、141gの混合溶液が吸収
された。ついで、このものを常温で30ト一ル程度に減
圧し、3日間放置して乾燥した。これを加熱炉に入れ、
炉内を塩素ガス0.5%濃度のヘリウム雰囲気として9
00℃に加熱して脱水したのち、5iF410%濃度の
ヘリウム雰囲気中で1500℃に加熱し、焼結して透明
ガラス化を行ったところ、透明ガラス体が得られた。こ
の透明ガラス体中のErは0.1vt%で、Affは2
vt%であった。この透明ガラス体を延伸して延伸ロッ
ドとし、この延伸ウッド上に外付は法で純粋石英ガラス
からなる外部コア体と、フッ素ドープ石英ガラスからな
るクラッド体とを設け、常法により紡糸して第1図に示
すような屈折率分布を有するファイバを得た。(Example) The overall bulk density was 0.45 g/cm by the VAD method using a silica glass fine particle deposition burner and a heating burner.
A uniform silica glass particle aggregate (weight 208 g) was obtained.Next, the above-mentioned quartz was added to a solution of 200 g of AσC1!, 20 wt% ethanol solution and 250 g of ErC (lso, 54 wt% ethanol solution). When the glass particle aggregate was immersed, 141 g of the mixed solution was absorbed.Then, the pressure was reduced to about 30 torr at room temperature and left to dry for 3 days.This was placed in a heating furnace.
The inside of the furnace is a helium atmosphere with a chlorine gas concentration of 0.5%9
After heating to 00° C. to dehydrate, the material was heated to 1,500° C. in a helium atmosphere containing 10% concentration of 5iF4, and sintered to obtain a transparent glass body. Er in this transparent glass body is 0.1vt%, and Aff is 2
It was vt%. This transparent glass body is stretched to form a stretched rod, and an external core body made of pure silica glass and a cladding body made of fluorine-doped quartz glass are provided on the stretched wood, and the fibers are spun using a conventional method. A fiber having a refractive index distribution as shown in FIG. 1 was obtained.
このファイバに、ポンプ光として1.48μ舅45mW
のレーザ光を、また信号光として一40dBmの光を入
力したところ、波長1.5324zにおいては1.7i
/mWの高い効率で光増幅が行われていることがわかっ
た。また、1.552μlを中心として25n■の範囲
で利得変動を3dB以内に抑えることができた。この際
の利得は30.5dBであった。Into this fiber, as a pump light, 1.48μ 45mW
When inputting a laser beam of
It was found that optical amplification was performed with a high efficiency of /mW. Further, the gain fluctuation could be suppressed to within 3 dB within a range of 25 n■ centered around 1.552 μl. The gain at this time was 30.5 dB.
(従来例)
実施例において、透明ガラス化の際の雰囲気として10
0%ヘリウム雰囲気として行ったところ、焼結温度を1
550℃(石英マツフルの限界温度)まで上昇させても
透明ガラス体を得ることはできなかった。(Conventional example) In the example, the atmosphere during transparent vitrification was 10
When carried out in a 0% helium atmosphere, the sintering temperature was 1
Even if the temperature was raised to 550°C (limit temperature of quartz matzuru), a transparent glass body could not be obtained.
(比較例)
実施例で得られた延伸ロッド上に直接クラッド体となる
フッ素ドープ石英ガラスを外付けし、これを常法によっ
て紡糸し、第2図に示すような屈折率分布を持つファイ
バを得た。第2図生得号1】はコアを、符号12はクラ
ッドを示す。このファイバを実施例と同様に光増幅動作
させたところ、利得は0.8dB/mWと低いものであ
った。(Comparative example) A fluorine-doped quartz glass serving as a cladding body was attached externally directly onto the drawn rod obtained in the example, and this was spun using a conventional method to obtain a fiber having a refractive index distribution as shown in Fig. 2. Obtained. In Fig. 2, reference number 1] indicates the core, and reference number 12 indicates the cladding. When this fiber was operated for optical amplification in the same manner as in the example, the gain was as low as 0.8 dB/mW.
以上説明したように、この発明の石英ガラスの製法は、
気相合成法によって得られた石英ガラス微粒子集合体に
、アルミニウムとエルビウムをドープし、ついでこの微
粒子集合体をフッ素雰囲気中で焼結するものであるので
、透明ガラス化時の加熱温度(焼結温度)を低くするこ
とができ、加熱炉の寿命を延ばすことが可能であるとと
もにアルミニウムのドープ量を増加させることが可能で
ある。As explained above, the method for manufacturing quartz glass of this invention is as follows:
The silica glass fine particle aggregate obtained by vapor phase synthesis is doped with aluminum and erbium, and then this fine particle aggregate is sintered in a fluorine atmosphere. It is possible to lower the temperature), extend the life of the heating furnace, and increase the amount of aluminum doped.
また、この発明の導波路は、アルミニウムとエルビウム
とフッ素とをドープした石英ガラスからなる内部コア体
と、この内部コア体の外側に設けられ、内部コア体をな
す石英ガラスよりも高い屈折率を有するガラスよりなる
外部コア体と、この外部コア体の外側に設けられ、外部
コア体をなすガラスよりも低い屈折率を有するクラッド
体からなるものであるので、実効的な比屈折率差を大き
くすることができ、高効率な光増幅を行うことが可能と
なる。Furthermore, the waveguide of the present invention has an inner core made of quartz glass doped with aluminum, erbium, and fluorine, and is provided on the outside of this inner core, and has a refractive index higher than that of the quartz glass forming the inner core. It consists of an outer core body made of glass, and a cladding body provided outside the outer core body and having a lower refractive index than the glass forming the outer core body, so that the effective relative refractive index difference can be increased. This makes it possible to perform highly efficient optical amplification.
Claims (2)
合体に、アルミニウムとエルビウムをドープし、ついで
この微粒子集合体をフッ素雰囲気中で焼結して、アルミ
ニウムとエルビウムとフッ素とをドープした石英ガラス
を得ることを特徴とする石英ガラスの製法。(1) A quartz glass particle aggregate obtained by vapor phase synthesis is doped with aluminum and erbium, and then this particle aggregate is sintered in a fluorine atmosphere to produce quartz glass doped with aluminum, erbium, and fluorine. A method for producing quartz glass characterized by obtaining glass.
た石英ガラスからなる内部コア体と、この内部コア体の
外側に設けられ、内部コア体をなす石英ガラスよりも高
い屈折率を有するガラスよりなる外部コア体と、この外
部コア体の外側に設けられ、外部コア体をなすガラスよ
りも低い屈折率を有するクラッド体からなる光導波路。(2) An inner core made of quartz glass doped with aluminum, erbium, and fluorine, and an outer core made of glass that is provided outside of this inner core and has a higher refractive index than the quartz glass that makes up the inner core. and a cladding body provided outside the outer core body and having a lower refractive index than the glass constituting the outer core body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21010290A JP3157000B2 (en) | 1990-08-08 | 1990-08-08 | Optical waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21010290A JP3157000B2 (en) | 1990-08-08 | 1990-08-08 | Optical waveguide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0492825A true JPH0492825A (en) | 1992-03-25 |
JP3157000B2 JP3157000B2 (en) | 2001-04-16 |
Family
ID=16583850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21010290A Expired - Fee Related JP3157000B2 (en) | 1990-08-08 | 1990-08-08 | Optical waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3157000B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0691715A1 (en) * | 1994-06-10 | 1996-01-10 | Alcatel SEL Aktiengesellschaft | Optical waveguide for fibre-optic amplifier for wavelengths around 1550 nm |
US6077799A (en) * | 1999-03-12 | 2000-06-20 | Corning Inc. | SPCVD silicate glasses |
JP2008056533A (en) * | 2006-08-31 | 2008-03-13 | Shinetsu Quartz Prod Co Ltd | Quartz glass and method of manufacturing the same |
-
1990
- 1990-08-08 JP JP21010290A patent/JP3157000B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0691715A1 (en) * | 1994-06-10 | 1996-01-10 | Alcatel SEL Aktiengesellschaft | Optical waveguide for fibre-optic amplifier for wavelengths around 1550 nm |
US5710852A (en) * | 1994-06-10 | 1998-01-20 | Alcatel Nv | Optical waveguide for fiber-optic amplifiers for the wavelength region around 1550 nm |
US6077799A (en) * | 1999-03-12 | 2000-06-20 | Corning Inc. | SPCVD silicate glasses |
WO2000055101A1 (en) * | 1999-03-12 | 2000-09-21 | Corning Incorporated | Spcvd silicate glasses |
JP2008056533A (en) * | 2006-08-31 | 2008-03-13 | Shinetsu Quartz Prod Co Ltd | Quartz glass and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3157000B2 (en) | 2001-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU652351B2 (en) | Quartz glass doped with rare earth element and production thereof | |
EP0565439B1 (en) | Manufacturing method for erbium-doped silica glass optical fibre preforms | |
JP3202919B2 (en) | Single mode optical transmission fiber and method of manufacturing the same | |
JP2599511B2 (en) | Method for producing rare earth element doped quartz glass | |
JPWO2003033422A1 (en) | Manufacturing method of rare earth element doped glass and optical amplification fiber using the same | |
EP2108624B1 (en) | Rare-earth-doped optical fiber, optical fiber amplifier, and method of manufacturing a preform for such a fiber | |
JPH0492825A (en) | Production of silica glass and optical waveguide using same silica glass | |
JP2931026B2 (en) | Method for producing rare earth element doped glass | |
JPH0425213B2 (en) | ||
JP3027075B2 (en) | Method for producing rare earth element-doped quartz glass fiber preform | |
JP2677871B2 (en) | Manufacturing method of quartz-based doped glass | |
JPH038744A (en) | Rare earth element-doped quartz glass fiber preform and preparation thereof | |
JP2604466B2 (en) | Method for producing rare earth element doped quartz glass | |
JP3475109B2 (en) | Rare earth element doped glass | |
JPH03252320A (en) | Production of quartz glass | |
JPH03177328A (en) | Production of optical fiber preform | |
JP2766995B2 (en) | Manufacturing method of optical fiber preform | |
JP2628944B2 (en) | Manufacturing method of rare earth element doped optical fiber | |
JP4080792B2 (en) | Manufacturing method of optical fiber core preform | |
JPH0421536A (en) | Preparation of rare earth element-doped glass | |
JPH03218936A (en) | Rare earth element-doped quartz glass and its production | |
JPH03218947A (en) | Rare-earth element and halogen element-doped quartz glass-based optical fiber preform and its production | |
JPH03218935A (en) | Rare earth element-doped quartz glass and its production | |
JPH06305761A (en) | Production of rare earth element-doped quartz glass fiber preform | |
JPH0990145A (en) | Production of multicore optical fiber with addition of rare earth element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090209 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100209 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |