JPH0368927B2 - - Google Patents

Info

Publication number
JPH0368927B2
JPH0368927B2 JP1331987A JP1331987A JPH0368927B2 JP H0368927 B2 JPH0368927 B2 JP H0368927B2 JP 1331987 A JP1331987 A JP 1331987A JP 1331987 A JP1331987 A JP 1331987A JP H0368927 B2 JPH0368927 B2 JP H0368927B2
Authority
JP
Japan
Prior art keywords
temperature
steel
sec
ultra
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1331987A
Other languages
Japanese (ja)
Other versions
JPS63145718A (en
Inventor
Kazuo Koyama
Kaoru Kawasaki
Takahito Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPS63145718A publication Critical patent/JPS63145718A/en
Publication of JPH0368927B2 publication Critical patent/JPH0368927B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、優れた加工性と100Kgf/mm2以上の
引張強度を有する超高強度冷延鋼板の製造法に係
わる。 (従来の技術) 自動車用鋼板の高強度化は自動車のエネルギ
ー、安全性の観点より益々進み、引張強度100Kg
f/mm2級を越えるところまで実用化されている。
超高強度冷延鋼板の使用例としては米国連邦安全
基準に基づくドアーの補強材やバンパーの強化材
がその代表である。しかし一般に材料は高強度化
に伴い延性は劣化し、成形が困難になる。そして
引張強度が100Kgf/mm2級を越える超高強度級に
なるとプレス成形は極めて困難であり、大抵はロ
ールフオーミングによつて成型している。ロール
フオーミングは多段の成型ロールにより徐々に所
定の断面形状を得るもので難成型材の加工に適し
ている反面、生産性が低いことや複雑な形状が出
しにくいなどの欠点を有する。 このような使われ方をされる超高強度冷延鋼板
の製造法の現状については、鉄と鋼、第68年
(1982)第9号1348〜1354ページ記載の資料に詳
述されている。また、代表的な製造方法としては
特公昭59−42052号公報や特公昭61−8125号公報
記載の方法がある。前者は噴流水中で急冷しマル
テンサイト体積率を高めることで、また後者は未
再結晶フエライトマトリツクスにマルテンサイト
を分散させた組織により超高強度を得ている。い
ずれもある程度の加工性を付与させることは目的
の一部とはなつているものの複雑なプレス成型性
を有するものではない。 このような現状であつたが、自動車会社での生
産性向上および新デザイン追求の動きは激しく、
超高強度鋼板も生産性が高く複雑な形状が取り易
いプレス成型にて加工するという要求が高まつ
た。一方、このような超高強度鋼板におけるプレ
ス成型性を支配する因子は軟鋼板のそれとは異質
なもので軟鋼板の経験が当てはまらない。たとえ
ば単純な引張試験における破断伸びと成形性とは
単純な正相関が付けられない。 なお、従来技術ではないが本発明の鋼成分と類
似の成分が特公昭53−47331号公報に記載されて
いるが、この技術は超高強度冷延鋼板に関するも
のではなく、また、熱・冷延条件も大幅に異な
る。 (発明の目的) このような現状に鑑み、実際のプレス成型の尺
度から見てプレス成型に耐える、引張強度100Kg
f/mm2以上の超高強度冷延鋼板の製造方法を提示
することが本発明の目的である。 (発明の構成) 本発明の要旨とするところは、C:0.10超〜
0.20%、Si:0.6%以下、Mn:2.2〜3.0%、S:
0.008%以下、Al:0.01〜0.1%、残部不可避的不
純物元素からなる鋼を、熱延後平均冷却速度:30
〜100℃/secで冷却し、500〜630℃にて巻取り、
続いて、冷延した後、〔Ac3変態点−20℃〕以上、
930℃以下の温度でかつ、次式で示される時間以
上熱処理し、引き続き5〜30℃/secの平均冷却
速度で冷却し、250〜450℃で1〜10分保定するこ
とからなる加工性の優れた超高強度冷延鋼板の製
造方法にある。 logt≧(1070−T)/130 ここに、t:時間(秒) T:温度(℃) すなわち、成分的にはTi、Nbを含まない鋼
で、従来技術に比して高めのMn量に限定したC
−Mnアルミキルド鋼を用い、特定の熱延を行な
つた後これに温度・時間の下限を特定した一段目
熱処理を施し、続いて特定の連続冷却を行ない、
連続冷却を途中で中止し特定の二段目熱処理を行
うことを特徴とする。 本発明の対象鋼の化学成分の限定理由を説明す
る。 本発明にあつては安定して引張強度を100Kg
f/mm2以上とするためにCは0.10%超を必要とす
る。一方、Cは0.20%を越すと成型性を劣化さ
せ、かつ溶接性不良をもたらす。スポツト溶接に
おいて良好な溶接部強度を得るためにはCは0.16
%以下とすることが好ましい。 Siは固溶体強化の効果を有し、延性劣化も少な
いので高強度鋼板にはよく使われるが、本発明に
あつては鋼のAc3変態点を上げ、かつまたα/γ
分離を促進するので0.6%以内の添加量とする。
好ましくは0.3%以内とすべきである。 次に、Mnは本発明にあつては重要な元素であ
る。すなわちMnは鋼のAc3変態点を下げ一段目
熱処理で均一なγ相を得やすくし、また鋼の焼き
入れ性を高め、適度な一次冷却速度にて粗大パー
ライト等の組織生成を防ぶ効果がある。。このよ
うな効果を奏するにはMnは最低2.2%必要であ
る。上限は3.0%とする。この値付近で効果は飽
和し、これ以上増すことはいたずらに鋼を高価な
ものとするだけであるからである。 Sは硫化物系介在物を形成し、鋼の成型性阻害
因子となる有害物である。そこで上限を0.008%
と定めた。最近の極低硫化技術を駆使して0.004
%以下とすることは好ましい。 さらに、必要に応じてCaを0.0005〜0.0050%添
加して硫化物の組成を変えることはより好まし
い。 Alは鋼の脱酸材として必要である。0.01%未満
では十分な脱酸が行なわれず、0.1%を越えると
かえつて鋼中介在物が増す。 鋼は通常、連続鋳造にてスラブとされ直接、あ
るいは加熱後熱延される。加熱する場合、加熱温
度は普通1000〜1300℃であるが熱延前の結晶粒の
粗大化を防ぐ意味で直送熱延あるいは1100℃以下
の低温加熱熱延が好ましい。熱延終了温度は800
〜950℃でよいが低過ぎるとバンド状組織を呈し
易く鋼の成形性を劣化させるので850℃以上で終
了することが好ましい。熱延後該ストリツプを平
均冷却速度:30〜100℃/secで冷却し、500〜630
℃で巻取る必要がある。30℃/sec未満の冷却速
度ではバンド状組織が生成し易く、また、630℃
超で巻取ると粗大なパーライトが生成しいずれも
冷延焼鈍後良好な組織が得られない。冷却速度は
現状ホツトストリツプミルでは100℃/sec程度が
上限であり、これ以上高める必要もないので100
℃/sec以下とした。巻取温度が低過ぎるとマル
テンサイト等の硬い組織が増し冷間圧延が困難に
なるので下限を500℃と定めた。得られた熱延鋼
板はスケール除去後冷延されるが冷却率は通常と
同じ40〜80%でよい。 続く熱処理条件は本発明にあつては極めて重要
である。冷延ストリツプはまず、〔Ac3変態点−
20℃〕以上、930℃以下の温度に加熱されなけれ
ばならない。この加熱は鋼の再結晶焼鈍、炭化物
の十分な溶体化、組織の均一化、オーステナイト
粒度の調整等の役割りを担つており、そのために
は〔Ac3変態点−20℃〕未満の温度では難しく、
Ac3点以上の温度で加熱することが好ましい。ま
た、930℃を越えると組織が粗大に成り過ぎてや
はり十分な特性が得られない。ここで、Ac3変態
点は次式で定義される温度である。 Ac3(℃)=879−346〔C(%)〕+65〔Si(%)〕 −18〔Mn(%)〕+544〔Al(%)〕 この熱処理後、5〜30℃/secの平均冷却速度
で250〜450℃まで冷却し、この温度で1〜10分保
定する。5℃/sec未満の平均冷却速度では冷却
途中でパーライト変態が生じ、強度低下のみなら
ず、成形性も損なう。また、30℃/sec超の平均
冷却速度では焼き入れ歪が高くなり鋼中にボイド
が生じたりして成形性が劣化する。本発明にあつ
ては主たる組織は均一なベイナイト組織である
が、保定が250℃、1分未満ではマルテンサイト
生成量が増大し、また、450℃超ではパーライト
生成量が増大しいずれも成形性がよくない。ま
た、保定時間は10分程度で効果が飽和するので上
限を10分とした。なお、この保定は必ずしも一定
温度に保つ場合に限定するものではなく、この温
度範囲内であれば多生の傾斜を持たせたり、階段
状に冷却する場合をも含むものである。 さらに、本発明では一段目熱処理時間が重要で
ある。このことを明らかにするために第1図に示
すような実物のプレス成形に近い成形試験を行つ
た。試験片の幅及び長さはそれぞれ200mmで、ポ
ンチおよびダイの幅はそれぞれ50mmおよび54mm、
ポンチおよびダイの肩半径はそれぞれ5mmであ
る。しわ押えは60トンとした。第2図はその時の
成形可能高さを熱処理温度、時間の関係で示した
ものである。素材成分および履歴は次の通りで、
いずれも本発明範囲内である。 成分:0.15%C−0.21%Si−2.60%Mn−0.0010%
S−0.07%Al 熱延 終了温度:860℃、平均冷却速度:45℃/sec、
巻取温度:550℃、冷延率:66%(3.5mm→1.2mm) この素材を750〜950℃で時間を10〜1000秒と変
化させて熱処理し、直ちに15℃/secの平均冷却
速度で360℃まで冷却し、この温度で6分保定し
た。0.8%の調質圧延後成形試験に供した。この
素材のAc3変態点は808℃である。 図中、数字は成形高さを示す(mm)。型は5mm
ピツチで35mmまで用意した。数値よりもう一段高
い型で破断したことを示す。≧は40mmの試験を行
つていないのでこう表現した。 第2図より明らかなように〔Ac3変態点−20
℃〕〜930℃の範囲では成形性は保定時間と強い
相関を持ち、低温ほど長時間を要する。この条件
は通常の冷延鋼板の連続焼鈍で採られる条件より
高温長時間側に位置する。また、上記の温度範囲
を外れた場合、時間に拠らず成形性は悪い。以上
の理由は明確ではないが上述のような組織の均一
化、炭化物の溶体化、オーステナイト結晶粒度調
整等の点からこのような条件が生じるものと推定
される。図より、安定して30mm以上の成形高さを
得る実験式として次式を得た。 logt≧(1070−T)/130 ここに、t:時間(秒) T:温度(℃) これが数値限定した根拠である。 この熱処理を行う設備としては上述の条件を満
たすものであればいかなるものでもよいが、大量
生産が可能で表面酸化が防がれ、過時効炉を有す
る冷延鋼板の連続焼鈍設備が好ましい。また、第
一段目熱処理への昇温速度や第二段目熱処理後の
冷却速度も特に問うところではなく、前者では2
〜20℃/sの冷却速度が、後者では水冷が通常採
られる。 (実施例) 第1表に示す成分の鋼を溶製し連続鋳造にてス
ラブとした。符号a、bおよびgは本発明に従つ
た鋼であるが、符号c〜eの鋼はいずれかの成分
において本発明と異なる。なお、各鋼のAc3変態
点を同じく第1表に示した。
(Industrial Application Field) The present invention relates to a method for producing an ultra-high strength cold-rolled steel sheet having excellent workability and a tensile strength of 100 Kgf/mm 2 or more. (Conventional technology) Strengthening of automotive steel sheets is progressing more and more from the viewpoint of energy and safety of automobiles, and tensile strength of 100 kg has been achieved.
It has been put into practical use to the extent that it exceeds f/mm class 2 .
Typical examples of the use of ultra-high-strength cold-rolled steel sheets are door reinforcements and bumper reinforcements based on U.S. federal safety standards. However, as the strength of the material increases, its ductility generally deteriorates, making it difficult to form. When the tensile strength exceeds 100 Kgf/mm 2 class, press molding is extremely difficult, and roll forming is usually used. Roll forming gradually obtains a predetermined cross-sectional shape using multiple forming rolls, and while it is suitable for processing difficult-to-form materials, it has drawbacks such as low productivity and difficulty in producing complex shapes. The current state of the manufacturing method for ultra-high strength cold-rolled steel sheets used in this manner is detailed in the materials listed in Tetsu-to-Hagane, No. 68 (1982), No. 9, pages 1348-1354. Typical manufacturing methods include those described in Japanese Patent Publication No. 59-42052 and Japanese Patent Publication No. 61-8125. The former achieves ultra-high strength by rapidly cooling in jet water to increase the martensite volume fraction, and the latter achieves ultra-high strength through a structure in which martensite is dispersed in an unrecrystallized ferrite matrix. Although imparting a certain degree of workability is part of the purpose of all of them, they do not have complicated press moldability. Despite this current situation, there was a strong movement among automobile companies to improve productivity and pursue new designs.
There has been an increasing demand for ultra-high-strength steel plates to be processed by press forming, which is highly productive and easy to form into complex shapes. On the other hand, the factors governing the press formability of such ultra-high strength steel plates are different from those of mild steel plates, and experience with mild steel plates does not apply. For example, there is no simple positive correlation between elongation at break and formability in a simple tensile test. Although it is not a conventional technology, a composition similar to the steel composition of the present invention is described in Japanese Patent Publication No. 53-47331, but this technology does not relate to ultra-high strength cold-rolled steel sheets, and The extension conditions are also significantly different. (Purpose of the invention) In view of the current situation, a tensile strength of 100 kg, which can withstand press molding based on the actual press molding scale, has been developed.
It is an object of the present invention to provide a method for producing an ultra-high strength cold rolled steel sheet having f/mm 2 or more. (Structure of the invention) The gist of the present invention is that C: more than 0.10
0.20%, Si: 0.6% or less, Mn: 2.2-3.0%, S:
Average cooling rate after hot rolling of steel consisting of 0.008% or less, Al: 0.01 to 0.1%, and the remainder unavoidable impurity elements: 30
Cool at ~100℃/sec, wind at 500~630℃,
Subsequently, after cold rolling, [A c3 transformation point -20℃] or higher,
Processability, which consists of heat treatment at a temperature of 930℃ or less and for a period of time shown by the following formula, followed by cooling at an average cooling rate of 5 to 30℃/sec, and holding at 250 to 450℃ for 1 to 10 minutes. The method lies in the production of superior ultra-high strength cold-rolled steel sheets. logt≧(1070−T)/130 Where, t: Time (seconds) T: Temperature (°C) In other words, it is a steel that does not contain Ti or Nb, and has a higher Mn content than conventional technology. limited C
-Using Mn aluminum killed steel, after carrying out a specific hot rolling process, it is subjected to a first stage heat treatment with a specified lower limit of temperature and time, followed by a specific continuous cooling,
It is characterized by stopping continuous cooling midway through and performing a specific second-stage heat treatment. The reason for limiting the chemical composition of the target steel of the present invention will be explained. In the present invention, the tensile strength is stably 100Kg.
C exceeds 0.10% in order to achieve f/mm 2 or more. On the other hand, if C exceeds 0.20%, it deteriorates formability and causes poor weldability. In order to obtain good weld strength in spot welding, C is 0.16.
% or less. Si has the effect of solid solution strengthening and has little ductility deterioration, so it is often used in high-strength steel sheets.
Since it promotes separation, the amount added should be within 0.6%.
It should preferably be within 0.3%. Next, Mn is an important element in the present invention. In other words, Mn has the effect of lowering the Ac 3 transformation point of the steel, making it easier to obtain a uniform γ phase in the first heat treatment, increasing the hardenability of the steel, and preventing the formation of structures such as coarse pearlite at an appropriate primary cooling rate. There is. . Mn needs to be at least 2.2% to produce such an effect. The upper limit shall be 3.0%. This is because the effect is saturated around this value, and increasing it any further will only make the steel unnecessarily expensive. S is a harmful substance that forms sulfide inclusions and inhibits the formability of steel. Therefore, the upper limit is 0.008%
It was determined that 0.004 by making full use of the latest ultra-low sulfide technology
% or less is preferable. Furthermore, it is more preferable to add 0.0005 to 0.0050% of Ca to change the sulfide composition as needed. Al is necessary as a deoxidizing agent for steel. If it is less than 0.01%, sufficient deoxidation will not be achieved, and if it exceeds 0.1%, inclusions in the steel will increase. Steel is usually cast into a slab by continuous casting and then hot rolled either directly or after heating. When heating, the heating temperature is usually 1000 to 1300°C, but direct hot rolling or low temperature heating hot rolling at 1100°C or less is preferred in order to prevent coarsening of crystal grains before hot rolling. Hot rolling finish temperature is 800
The temperature may be up to 950°C, but if it is too low, a band-like structure tends to occur and the formability of the steel deteriorates, so it is preferable to finish at 850°C or higher. After hot rolling, the strip is cooled at an average cooling rate of 30 to 100°C/sec to a temperature of 500 to 630°C.
It is necessary to wind it at ℃. If the cooling rate is less than 30℃/sec, a band-like structure is likely to be formed;
If the steel is rolled with ultra-high strength, coarse pearlite will be produced and a good structure will not be obtained after cold rolling and annealing. Currently, the upper limit of the cooling rate for hot strip mills is about 100℃/sec, and there is no need to increase it any higher.
℃/sec or less. If the coiling temperature is too low, hard structures such as martensite will increase, making cold rolling difficult, so the lower limit was set at 500°C. The obtained hot-rolled steel sheet is cold-rolled after removing scale, and the cooling rate may be 40 to 80%, which is the same as usual. The conditions of the subsequent heat treatment are extremely important for the present invention. The cold-rolled strip is first processed at [Ac 3 transformation point -
It must be heated to a temperature of 20°C] or higher and 930°C or lower. This heating plays the role of recrystallization annealing of the steel, sufficient solutionization of carbides, homogenization of the structure, and adjustment of austenite grain size. difficult,
It is preferable to heat at a temperature of Ac 3 or higher. Furthermore, if the temperature exceeds 930°C, the structure becomes too coarse and sufficient properties cannot be obtained. Here, the Ac 3 transformation point is a temperature defined by the following equation. Ac 3 (°C) = 879-346 [C (%)] + 65 [Si (%)] -18 [Mn (%)] + 544 [Al (%)] After this heat treatment, average cooling at 5 to 30 °C/sec Cool at speed to 250-450°C and hold at this temperature for 1-10 minutes. If the average cooling rate is less than 5° C./sec, pearlite transformation occurs during cooling, which not only reduces strength but also impairs formability. Furthermore, if the average cooling rate exceeds 30° C./sec, the quenching strain increases and voids occur in the steel, resulting in poor formability. In the present invention, the main structure is a uniform bainite structure, but if the holding temperature is 250°C for less than 1 minute, the amount of martensite formed increases, and if the holding temperature exceeds 450°C, the amount of pearlite formed increases, both of which result in poor formability. is not good. In addition, the retention time was set at 10 minutes as the effect was saturated in about 10 minutes. Note that this holding is not necessarily limited to the case where the temperature is maintained at a constant temperature, but also includes cases where the temperature is kept at a constant temperature, and where the temperature is kept at a constant temperature. Furthermore, in the present invention, the first stage heat treatment time is important. In order to clarify this, a molding test similar to the actual press molding as shown in FIG. 1 was conducted. The width and length of the specimen are 200 mm, and the width of the punch and die are 50 mm and 54 mm, respectively.
The punch and die shoulder radii are each 5 mm. The weight of the wrinkle presser was 60 tons. FIG. 2 shows the moldable height at that time in relation to the heat treatment temperature and time. The material composition and history are as follows.
All are within the scope of the present invention. Ingredients: 0.15%C-0.21%Si-2.60%Mn-0.0010%
S-0.07%Al hot rolling Finish temperature: 860℃, average cooling rate: 45℃/sec,
Coiling temperature: 550℃, cold rolling rate: 66% (3.5mm → 1.2mm) This material was heat treated at 750 to 950℃ for varying times from 10 to 1000 seconds, and immediately cooled at an average cooling rate of 15℃/sec. The mixture was cooled to 360°C and held at this temperature for 6 minutes. It was subjected to a forming test after 0.8% temper rolling. The Ac 3 transformation point of this material is 808°C. In the figure, the numbers indicate the molding height (mm). The mold is 5mm
Available in pitch up to 35mm. This indicates that the rupture occurred at a type that was one step higher than the numerical value. ≧ is expressed like this because we have not conducted a 40mm test. As is clear from Figure 2, [Ac 3 transformation point −20
In the range of 930°C to 930°C, formability has a strong correlation with retention time, and the lower the temperature, the longer it takes. These conditions are located at higher temperatures and for longer periods of time than those normally adopted for continuous annealing of cold-rolled steel sheets. Furthermore, when the temperature is outside the above range, moldability is poor regardless of the time. Although the reason for the above is not clear, it is presumed that such conditions arise from the above-mentioned homogenization of the structure, solutionization of carbides, adjustment of austenite crystal grain size, etc. From the figure, the following formula was obtained as an experimental formula to stably obtain a molding height of 30 mm or more. logt≧(1070−T)/130 where t: time (seconds) T: temperature (° C.) This is the basis for limiting the numerical values. Although any equipment may be used for this heat treatment as long as it satisfies the above-mentioned conditions, a continuous annealing equipment for cold-rolled steel sheets that allows mass production, prevents surface oxidation, and has an overaging furnace is preferred. Also, there is no particular question about the temperature increase rate for the first stage heat treatment or the cooling rate after the second stage heat treatment;
Cooling rates of ˜20° C./s are usually employed in the latter case water cooling. (Example) Steel having the components shown in Table 1 was melted and made into a slab by continuous casting. Steels a, b and g are according to the invention, while steels c to e differ from the invention in one of their components. The Ac 3 transformation points of each steel are also shown in Table 1.

【表】 このスラブを1050〜1100℃に加熱後第2表に示
す条件で熱延および熱処理を行つた。なお、表に
記載していない条件は以下に示す。 熱延終了温度:850〜880℃、熱延厚み:3.5mm、
冷延率:66%、製品板厚:1.2mm、調質圧延率:
0.6〜0.8% 第2表において、符号4、5、7、14および16
は本発明に従つた製造法であるがその他の符号の
鋼は破線で囲つた条件において本発明と相違す
る。 各鋼の機械試験および成形試験の結果を第3表
に示す。引張試験はJIS Z 2201 5号試験片
(長手方向が圧延方向)を用い、同2241記載の方
法に従つた。また、曲げ試験はJIS 2204 3号試
験片(長手方向が圧延方向に直角、端面機械仕上
げ)を用い、同2248記載のVブロツク法によつて
行つた。内側半径は0.5mm、曲げ角度は90度であ
る。OKは割れのないことを表わす。また、U成
形は記述の方法に従つた。
[Table] After heating this slab to 1050 to 1100°C, it was hot rolled and heat treated under the conditions shown in Table 2. Note that conditions not listed in the table are shown below. Hot rolling end temperature: 850-880℃, hot rolling thickness: 3.5mm,
Cold rolling rate: 66%, product thickness: 1.2mm, temper rolling rate:
0.6-0.8% In Table 2, codes 4, 5, 7, 14 and 16
is a manufacturing method according to the present invention, but steels with other symbols differ from the present invention in the conditions enclosed by broken lines. Table 3 shows the results of mechanical tests and forming tests for each steel. The tensile test was carried out using a JIS Z 2201 No. 5 test piece (longitudinal direction is the rolling direction) according to the method described in JIS Z 2241. The bending test was conducted using a JIS 2204 No. 3 test piece (longitudinal direction perpendicular to rolling direction, end surface machined) according to the V-block method described in JIS 2248. The inner radius is 0.5mm and the bending angle is 90 degrees. OK means no cracks. Further, U-forming was performed according to the method described.

【表】【table】

【表】【table】

【表】 第3表から明らかなように、本発明方法に従つ
た鋼は100Kgf/mm2以上の引張強度と高い降伏強
度を有し、r=0.5mmの曲げ試験で割れが認めら
れず、また、U成形高さも十分に大きい。 (発明の効果) プレス成形は大量生産・高生産性を必須とする
自動車産業にあつては中心となる生産方法であ
る。一方、安全性・省エネルギーの観点からの超
高強度冷延鋼板の採用はこれもまた社会的に必須
である。 本発明によれば、優れた加工性を有する超高強
度冷延鋼板を提供しうるので、前記した二つのニ
ーズに十分対応できる産業上有用な発明であると
言える。 また、本発明は単に自動車用のみならず電気、
建材等プレス成形を行う材料の高強度化にも勿論
有用であり、その適用の広さからも本発明の意義
は大きい。
[Table] As is clear from Table 3, the steel produced according to the method of the present invention has a tensile strength of 100 Kgf/mm 2 or more and a high yield strength, and no cracks were observed in the bending test at r = 0.5 mm. Moreover, the U-forming height is also sufficiently large. (Effects of the Invention) Press molding is a central production method in the automobile industry, which requires mass production and high productivity. On the other hand, the adoption of ultra-high strength cold-rolled steel sheets is also socially essential from the standpoint of safety and energy conservation. According to the present invention, it is possible to provide an ultra-high strength cold-rolled steel sheet having excellent workability, so it can be said that the present invention is an industrially useful invention that can fully meet the above two needs. Furthermore, the present invention is applicable not only to automobiles but also to electric,
Of course, it is also useful for increasing the strength of press-molded materials such as building materials, and the present invention has great significance from its wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はプレス成形に対応した成形試験方法を
示す説明図、第2図は第1段目熱処理において温
度・時間を変化させた時の成形高さを示す図表で
ある。
FIG. 1 is an explanatory diagram showing a molding test method corresponding to press molding, and FIG. 2 is a chart showing the molding height when the temperature and time are varied in the first stage heat treatment.

Claims (1)

【特許請求の範囲】 1 C:0.10超〜0.20%、Si:0.6%以下、Mn:
2.2〜3.0%、S:0.008%以下、Al:0.01〜0.1%、
残部不可避的不純物元素からなる鋼を、熱延後平
均冷却速度:30〜100℃/secで冷却し、500〜630
℃にて巻取り、続いて、冷延した後、〔Ac3変態
点−20℃〕以上、930℃以下の温度でかつ、次式
で示される時間以上熱処理し、引き続き5〜30
℃/secの平均冷却速度で冷却し、250〜450℃で
1〜10分保定することからなる加工性の優れた超
高強度冷延鋼板の製造方法。 logt≧(1070−T)/130 ここに、t:時間(秒) T:温度(℃)
[Claims] 1 C: more than 0.10 to 0.20%, Si: 0.6% or less, Mn:
2.2-3.0%, S: 0.008% or less, Al: 0.01-0.1%,
After hot rolling, the steel consisting of the remaining unavoidable impurity elements is cooled at an average cooling rate of 30 to 100℃/sec, and
After winding at ℃, followed by cold rolling, heat treatment at a temperature of [Ac 3 transformation point - 20℃] or higher and 930℃ or lower for a period of time expressed by the following formula, followed by 5~30℃.
A method for producing an ultra-high strength cold rolled steel sheet with excellent workability, which comprises cooling at an average cooling rate of °C/sec and holding at 250 to 450 °C for 1 to 10 minutes. logt≧(1070−T)/130 where, t: time (seconds) T: temperature (°C)
JP1331987A 1986-07-05 1987-01-24 Production of ultra-high-strength cold rolled steel sheet having excellent workability Granted JPS63145718A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-157181 1986-07-05
JP15718186 1986-07-05

Publications (2)

Publication Number Publication Date
JPS63145718A JPS63145718A (en) 1988-06-17
JPH0368927B2 true JPH0368927B2 (en) 1991-10-30

Family

ID=15643958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1331987A Granted JPS63145718A (en) 1986-07-05 1987-01-24 Production of ultra-high-strength cold rolled steel sheet having excellent workability

Country Status (1)

Country Link
JP (1) JPS63145718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017363A2 (en) 2002-06-14 2009-01-21 JFE Steel Corporation High strength cold-rolled steel sheet and method for manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU205393B (en) * 1988-06-22 1992-04-28 Gyoergy Vizi Process for producing corner element of steel container from hot rolled steel plate
JPH075970B2 (en) * 1989-12-18 1995-01-25 住友金属工業株式会社 High carbon steel sheet manufacturing method
KR100573587B1 (en) * 2003-12-23 2006-04-24 주식회사 포스코 Method for manufacturing Ultra High Strength Steel Sheet Having Excellent Bending Formability
EP2216422B1 (en) * 2007-11-22 2012-09-12 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet
CN107354385B (en) * 2017-07-11 2018-11-06 北京科技大学 A kind of preparation method of automobile superhigh-strength hot forming steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017363A2 (en) 2002-06-14 2009-01-21 JFE Steel Corporation High strength cold-rolled steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JPS63145718A (en) 1988-06-17

Similar Documents

Publication Publication Date Title
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
EP0120976A1 (en) Process for manufacturing cold-rolled steel for deep drawing
US20130160889A1 (en) High-strength electric resistance welded steel tube and production method therefor
US4188241A (en) Method for producing high tensile strength, high ductility, low yield ratio hot rolled steel sheet
US4316753A (en) Method for producing low alloy hot rolled steel strip or sheet having high tensile strength, low yield ratio and excellent total elongation
JPS5927370B2 (en) High strength cold rolled steel plate for press working
JPH07188834A (en) High strength steel sheet having high ductility and its production
JP2652539B2 (en) Method for producing composite structure high strength cold rolled steel sheet with excellent stretch formability and fatigue properties
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JPH0368927B2 (en)
JPH09143612A (en) High strength hot rolled steel plate member low in yield ratio
JPH0790488A (en) Ultrahigh strength cold rolled steel sheet excellent in hydrogen brittlement resistance and its production
JPS6144122B2 (en)
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP2005206920A (en) High-tensile-strength hot-dip galvanized hot-rolled steel sheet with low yield ratio and composite structure superior in extension flange, and manufacturing method therefor
JP3616472B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent workability
JPH0557332B2 (en)
JP3870840B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP3330207B2 (en) Ultra-high strength cold rolled steel sheet with excellent hydrogen embrittlement resistance and method for producing the same
RU2784908C1 (en) Method for producing hot-rolled sheet structural steel
JP3831057B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent workability
EP0494448A1 (en) Method for manufacturing electric-resistance-welded steel pipe with high strength
JPH08100214A (en) Production of high strength seamless steel tube

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term