JPH0368907A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPH0368907A
JPH0368907A JP1205935A JP20593589A JPH0368907A JP H0368907 A JPH0368907 A JP H0368907A JP 1205935 A JP1205935 A JP 1205935A JP 20593589 A JP20593589 A JP 20593589A JP H0368907 A JPH0368907 A JP H0368907A
Authority
JP
Japan
Prior art keywords
alloy
package
optical fiber
semiconductor device
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1205935A
Other languages
Japanese (ja)
Inventor
Toru Kamata
徹 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1205935A priority Critical patent/JPH0368907A/en
Publication of JPH0368907A publication Critical patent/JPH0368907A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of an optical axis misalignment by fixing a package by an Sn-Sb alloy contg. prescribed % of Sn or Pb-Sb alloy contg. specific % of Pb to a holder which holds an optical fiber and a lens, thereby fixing the semiconductor device. CONSTITUTION:A laser diode element 11 is mounted on the package 12 and a laser beam is condensed through the transparent window of the package 12 by a SELFOC lens 14 and is introduced to the optical fiber 17 positioned in the central part of an optical fiber ferrule 16. The package 12, the lens 14 and an optical fiber ferrule 16 are so fixed in a cylindrical holder 15 as to align the optical axes. This package 12 and the holder 15 are joined by the Sn 3 to 10% Sb alloy or Pb 5 to 15% Sb alloy 13. A method using a high-frequency waveguide is adopted as the heating method for this joining method and the joining is executed by using a flux in order to improve the wettability of the Sn 3 to 10% Sb alloy or Pb 5 to 15% Sb alloy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光半導体装置に関し、特に厳しい環境下におい
て優れた信頼度を有する光半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical semiconductor device, and particularly to an optical semiconductor device that has excellent reliability under harsh environments.

〔従来の技術〕[Conventional technology]

光フアイバ通信の普及に伴ない、光半導体装置の使用環
境は多様化し、結果としてより厳しい環境(温度範囲)
下で、高い信頼度を保持することが要求されてきている
。従来、この種の光半導体装置はレーザダイオード素子
がパッケージ内に搭載され、このパッケージとセルフオ
フレンズ及び光ファイバが円筒状ホルダにより光学軸を
一致するように形成されている。通常円筒状ホルダへの
固定は5n−Pb半田等が使用されている。
With the spread of optical fiber communications, the environments in which optical semiconductor devices are used are diversifying, resulting in harsher environments (temperature ranges).
It has become necessary to maintain a high degree of reliability. Conventionally, in this type of optical semiconductor device, a laser diode element is mounted in a package, and this package, a self-off lens, and an optical fiber are formed by a cylindrical holder so that their optical axes coincide with each other. Usually, 5n-Pb solder or the like is used for fixing to the cylindrical holder.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の光半導体装置は、パッケージと円筒状ホ
ルダの固定に5n−Pb半田等が用いられているが、5
n−Pb半田はクリープ現象をおこし、パッケージの微
小位置変位が生じ、結果として光学軸がずれるため光フ
アイバ出力が変動低下するという不具合がする。クリー
プ現象とはある材料の降伏応力以下の応力が長時間加え
られている時、その材料が歪を生ずる現象を言う。クリ
ープ現象は通常温度依存性を有し、次の式によることが
提唱されている(ドルソルーワートマンの実験式〉。
In the conventional optical semiconductor device described above, 5n-Pb solder or the like is used to fix the package and the cylindrical holder.
The n-Pb solder causes a creep phenomenon, which causes minute positional displacement of the package, resulting in a shift in the optical axis, resulting in a problem that the optical fiber output fluctuates and decreases. Creep phenomenon refers to a phenomenon in which a material becomes distorted when a stress lower than its yield stress is applied for a long time. The creep phenomenon usually has a temperature dependence, and it has been proposed that it is based on the following formula (Dorsolu Wortman's empirical formula).

Δe=cτ”  t  exp(−E/kT)光半導体
装置の使用環境がより高温域(85℃ンを要求されてい
るので、半田のクリープ現象に起因する光フアイバ出力
変動の問題は重要となってくる。
Δe=cτ" t exp (-E/kT) Since the usage environment of optical semiconductor devices is required to be in a higher temperature range (85°C), the problem of optical fiber output fluctuations caused by solder creep has become important. It's coming.

上述した従来の光半導体装置に対し、本発明は85℃の
高温で長時間放置されても半田のクリープ現象に起因す
る光フアイバ出力の変動がほとんど生じない光半導体装
置を提供するものである。
In contrast to the above-mentioned conventional optical semiconductor device, the present invention provides an optical semiconductor device in which almost no fluctuation in optical fiber output due to solder creep occurs even if the device is left at a high temperature of 85° C. for a long time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光半導体装置は、光半導体素子を搭載したパッ
ケージと光ファイバとレンズを保持・固定した円筒状ホ
ルダとの固定にSbを3〜10%含む5n−Sb合金(
以下S n −3〜10%Sbと記す〉またはPb−5
〜15%Sbの組成を持つ低融点合金を採用している。
The optical semiconductor device of the present invention uses a 5n-Sb alloy containing 3 to 10% Sb to fix the package carrying the optical semiconductor element to the cylindrical holder that holds and fixes the optical fiber and lens.
Hereinafter referred to as S n -3 to 10% Sb〉 or Pb-5
A low melting point alloy with a composition of ~15% Sb is used.

我々は各種の低融点合金に関し、そのクリープ特性を評
価した。その結果の代表例を第3図に示す1図の縦軸は
クリープ量、横軸は時間を示し、5種類の合金に各々そ
の降伏応力の50%の引張応力を加えた時の時間とクリ
ープ量を表わしている。()内は各々の材料に加えた実
際の引張応力の大きさを示す。
We evaluated the creep properties of various low melting point alloys. A representative example of the results is shown in Figure 3. In Figure 1, the vertical axis shows the amount of creep, and the horizontal axis shows time. represents quantity. The numbers in parentheses indicate the actual tensile stress applied to each material.

この結果はAu−203n合金がクリープが極めて小さ
く、5n−5Sb、Pb−10Sb。
The results show that Au-203n alloy has extremely small creep, 5n-5Sb, and Pb-10Sb.

5n−10Au、5n−38Pbの順にクリープ性大と
なることを示している。Au−208n合金がクリープ
性は極めて良好であるが、Au−203n合金の融点が
280℃と比較的高く、接合時の温度にLDパッケージ
が耐えられないことから使用できない。
It is shown that the creep property increases in the order of 5n-10Au and 5n-38Pb. Although Au-208n alloy has extremely good creep properties, it cannot be used because the melting point of Au-203n alloy is relatively high at 280° C. and the LD package cannot withstand the temperature during bonding.

本発明の光半導体装置に用いる5n−3〜10%Sbま
たはPb−5〜15%Sb合金のSb比率はクリープ性
の程度と各々の合金の融点を考慮して決定している。
The Sb ratio of the 5n-3 to 10% Sb or Pb-5 to 15% Sb alloy used in the optical semiconductor device of the present invention is determined in consideration of the degree of creep property and the melting point of each alloy.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。第1図
は本発明の一実施例の縦断面図である。レーザダイオー
ド素子11はパッケージ12に搭載されており、レーザ
光はパッケージ12の透明窓を介してセルフオフレンズ
14により集光されて光フアイバーフェルール16の中
心部に位置する光フアイバ17に導かれる。パッケージ
12、セルフオフレンズ14及び光フアイバフェルール
16は円筒ホルダ15内で光学軸を一致するように固定
されている。パッケージ12と円筒ボルダ15は5n−
3〜10%Sb合金またはPb−5〜15%Sb合金1
3によって接合されている。接合方法は加熱方式として
高周波誘導加熱による方式が採用されており5n−3〜
10%Sb合金、Pb−5〜15%Sb合金の濡れ性を
向上させる為、フラックスを用いて接合される。
Next, the present invention will be explained with reference to the drawings. FIG. 1 is a longitudinal sectional view of an embodiment of the present invention. The laser diode element 11 is mounted on a package 12 , and the laser light is focused by a self-off lens 14 through a transparent window of the package 12 and guided to an optical fiber 17 located at the center of an optical fiber ferrule 16 . The package 12, self-off lens 14, and optical fiber ferrule 16 are fixed within the cylindrical holder 15 so that their optical axes coincide. The package 12 and the cylindrical boulder 15 are 5n-
3-10% Sb alloy or Pb-5-15% Sb alloy 1
3. The bonding method uses high-frequency induction heating as the heating method, and 5n-3~
In order to improve the wettability of the 10% Sb alloy and the Pb-5 to 15% Sb alloy, flux is used to bond them.

この光半導体装置は接合材のクリープによる光学軸ズレ
が発生しにくい。
This optical semiconductor device is less prone to optical axis misalignment due to creep of the bonding material.

第2図は本発明の実施例2の縦断面図である。FIG. 2 is a longitudinal sectional view of Example 2 of the present invention.

レーザダイオード素子11はヒートシンク22を介して
チップキャリア23に搭載されている。
The laser diode element 11 is mounted on a chip carrier 23 via a heat sink 22.

チップキャリア23と取付板25は5n−3〜10%S
bまたはPb−5〜15%Sb合金24によって接合さ
れている。
Chip carrier 23 and mounting plate 25 are 5n-3~10%S
b or Pb-5 to 15% Sb alloy 24.

この実施例は光ファイバ、セルフオフレンズとの光学結
合方法は定まっていないが、実施例1と同様クリープの
小さい5n=Sbまたは5b−Pb金合金採用している
ので取付板25に対するレーザダイオード素子11の位
置変位は起きにくくなっている。
In this embodiment, the optical coupling method with the optical fiber and self-off lens is not determined, but as in the first embodiment, 5n=Sb or 5b-Pb gold alloy with small creep is used, so the laser diode element on the mounting plate 25 is used. 11 positional displacement is less likely to occur.

尚、実施例ではレーザダイオード素子を用いた例につい
て説明したが、発光ダイオード素子、フォトダイオード
素子等他の光半導体素子を用いてもよい。
In the embodiment, an example using a laser diode element has been described, but other optical semiconductor elements such as a light emitting diode element and a photodiode element may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明はクリープの小さい5n−S
b合金またPb−Sb金合金パッケージとホルダの接合
材として用いているので光学軸ズしが85℃に於いても
発生せず、光フアイバ出力が安定した光半導体装置を提
供することができる。
As explained above, the present invention is a 5n-S with small creep.
Since the Pb alloy or the Pb--Sb gold alloy is used as a bonding material between the package and the holder, optical axis shift does not occur even at 85 DEG C., and an optical semiconductor device with stable optical fiber output can be provided.

第4図は85℃における本発明の光半導体装置の信頼度
試験結果である。デルタPf(%)は光フアイバ出力を
示すが長期にわたり安定しており、規格である±10%
を充分満足する結果が得られた。
FIG. 4 shows the reliability test results of the optical semiconductor device of the present invention at 85°C. Delta Pf (%) indicates the optical fiber output, which is stable over a long period of time and is within ±10% of the standard.
Results were obtained that fully satisfied the following.

本発明は厳しい温度環境下でも十分な耐用を持つ光半導
体装置を提供するものであり、その工業的価値は大きい
The present invention provides an optical semiconductor device that has sufficient durability even under severe temperature environments, and has great industrial value.

14・・・セルフオフレンズ、15・・・円筒ホルダ、
16・・・光フアイバフェルール、17・・・光ファイ
バ。
14... Self-off lens, 15... Cylindrical holder,
16... Optical fiber ferrule, 17... Optical fiber.

Claims (1)

【特許請求の範囲】[Claims] 光半導体素子を搭載したパッケージと光ファイバがレン
ズ形を介して光学的に結合された光半導体装置に於いて
、光ファイバとレンズを保持しているホルダにパッケー
ジが、Sbを3〜10%含むSn−Sb合金またはSb
を5〜15%含むPb−Sb合金によって固定されてい
ることを特徴とする光半導体装置。
In an optical semiconductor device in which a package carrying an optical semiconductor element and an optical fiber are optically coupled via a lens shape, the package contains 3 to 10% Sb in a holder holding the optical fiber and lens. Sn-Sb alloy or Sb
An optical semiconductor device, characterized in that it is fixed by a Pb-Sb alloy containing 5 to 15% of Pb-Sb.
JP1205935A 1989-08-08 1989-08-08 Optical semiconductor device Pending JPH0368907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1205935A JPH0368907A (en) 1989-08-08 1989-08-08 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1205935A JPH0368907A (en) 1989-08-08 1989-08-08 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH0368907A true JPH0368907A (en) 1991-03-25

Family

ID=16515168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1205935A Pending JPH0368907A (en) 1989-08-08 1989-08-08 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH0368907A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555872A2 (en) * 1992-02-14 1993-08-18 Canon Kabushiki Kaisha Optical apparatus for emitting light and automatic adjustment apparatus therefor
JP2006053183A (en) * 2004-08-09 2006-02-23 Sumitomo Electric Ind Ltd Optical receptacle and optical module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555872A2 (en) * 1992-02-14 1993-08-18 Canon Kabushiki Kaisha Optical apparatus for emitting light and automatic adjustment apparatus therefor
US5351264A (en) * 1992-02-14 1994-09-27 Canon Kabushiki Kaisha Optical apparatus for emitting light and automatic adjustment apparatus therefor
JP2006053183A (en) * 2004-08-09 2006-02-23 Sumitomo Electric Ind Ltd Optical receptacle and optical module

Similar Documents

Publication Publication Date Title
KR920010947B1 (en) Semiconductor light emitting device its component and lens position adjusting method
JPS62906A (en) Electrooptic transducer
JP2003262766A (en) Optical coupler
JPH05127050A (en) Semiconductor laser module
JPH10170769A (en) Method for packaging optical element
US6403233B1 (en) Article comprising creep-resistant and stress-reducing solder
JPH03120884A (en) Semiconductor laser module
JPH0368907A (en) Optical semiconductor device
JPH0497305A (en) Optical semiconductor coupler
JPH04359207A (en) Laser diode coupling device and its assembling method
JP2970635B2 (en) Semiconductor laser module and metal ferrule
JPH04343492A (en) Optical semiconductor module
JPH05323158A (en) Laser diode coupler and its assembling method
JPH02127605A (en) Optical component device
JPH0452636B2 (en)
JPS6365411A (en) Fixing method for lens
JPH0368906A (en) Spherical lens parts
JP3646692B2 (en) Optical semiconductor element module
JPH06289258A (en) Semiconductor laser device
JP2786325B2 (en) Optical semiconductor module
JPS5988886A (en) Photo semiconductor device
JPS6143494A (en) Semiconductor laser module
JPH11266053A (en) Carrier mounting type semiconductor laser
JPH06160672A (en) Light source module
JPS62130582A (en) Semiconductor laser module