JPH03120884A - Semiconductor laser module - Google Patents

Semiconductor laser module

Info

Publication number
JPH03120884A
JPH03120884A JP25785389A JP25785389A JPH03120884A JP H03120884 A JPH03120884 A JP H03120884A JP 25785389 A JP25785389 A JP 25785389A JP 25785389 A JP25785389 A JP 25785389A JP H03120884 A JPH03120884 A JP H03120884A
Authority
JP
Japan
Prior art keywords
semiconductor laser
stem
laser module
thermal expansion
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25785389A
Other languages
Japanese (ja)
Inventor
Satoshi Aoki
青木 聰
Mitsumasa Kanamori
金森 充正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25785389A priority Critical patent/JPH03120884A/en
Publication of JPH03120884A publication Critical patent/JPH03120884A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4248Feed-through connections for the hermetical passage of fibres through a package wall
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce generation of heat stress and to hold stable optical coupling efficiency by forming heat expansion coefficient difference of a holding member and a converging means at a specified value or below. CONSTITUTION:A stem 8 has a copper tungsten alloy property which is equivalent to a holding member. A semiconductor laser 1 to project laser light is mounted on a submount 2. A plate 6 of copper tungsten alloy (or ceramic) property to bond and fix a spherical lens 5 to collect laser light from the laser 1 by a low melting point glass 7, a monitoring photodiode 3 to monitor laser light projection, and a temperature detecting element 4 to detect a temperature of the stem 8 are mounted on one side of the stem 8 and a cooling side of a heat electron cooling element 9 is connected to the other thereof. The spherical lens 5 and the plate 6 are coupled by using a low melting point glass whose thermal expansion coefficient is approximately equal to them. A heat expansion coefficient difference is restrained not more than 1X10<-4>/ deg.C.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は光通信システム用光送受器に好適な半導体レー
ザモジュールに係り、特に光結合効率を安定に保つこと
ができる半導体レーザモジュールに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor laser module suitable for an optical transceiver for an optical communication system, and particularly to a semiconductor laser module that can maintain stable optical coupling efficiency.

[従来の技術] 従来技術による半導体レーザモジュールは、特開昭64
−10686号公報に記載されている様に、電流印加に
よりレーザ光を発生する半導体レーザ及び球レンズを銅
タングステム等から成るステムにハンダ付けにより接着
固定し、該半導体レーザから発するレーザ光を球面レン
ズを介して光ファイバに結合された集束レンズに出射す
る様に構成されている。
[Prior art] A semiconductor laser module according to the conventional technology is disclosed in Japanese Patent Application Laid-open No. 1983
As described in Publication No. 10686, a semiconductor laser that generates laser light by applying an electric current and a spherical lens are bonded and fixed to a stem made of copper tung stem, etc., and the laser light emitted from the semiconductor laser is transmitted through the spherical lens. The light beam is configured to be outputted to a focusing lens coupled to an optical fiber via a condenser lens.

また一般に、前記球面レンズと銅タングステン合金性の
ステムとの熱膨張係数とはほぼ同じであるが、これらと
ハンダとでは104倍の差がある。
Generally, the thermal expansion coefficients of the spherical lens and the copper-tungsten alloy stem are approximately the same, but there is a difference of 104 times between these and the solder.

[発明が解決しようとする課題] 前述の従来技術による半導体レーザモジュールは、球面
レンズと銅タングステン合金性のステムとこれらを固定
するハンダとの熱膨張係数差が大きいため、繰返しの温
度変化が加わった場合、繰返し熱応力が発生し、ハンダ
付は部に強度劣化及び微少位置ズレが発生し、光結合率
の変動を招くと言う不具合があった。
[Problems to be Solved by the Invention] The semiconductor laser module according to the above-mentioned prior art has a large difference in coefficient of thermal expansion between the spherical lens, the copper-tungsten alloy stem, and the solder that fixes them. In this case, repeated thermal stress is generated, which leads to strength deterioration and slight positional deviation in the soldered parts, resulting in fluctuations in the optical coupling ratio.

本発明の目的は前記従来技術による不具合を除去するこ
とであり、光結合効率を安定に保つことができる半導体
レーザモジュールを提供することである。
An object of the present invention is to eliminate the problems caused by the prior art, and to provide a semiconductor laser module that can maintain stable optical coupling efficiency.

[課題を解決するための手段] 前記目的を達成するために本発明は、レーザ光を照射す
る半導体レーザ及び該半導体レーザからのレーザ光を集
光して外部に出力する集光手段とを備える半導体レーザ
モジュールにおいて、前記半導体レーザ及び集光手段と
を保持する保持部材と該保持部材と集光手段を接着する
接着手段の熱膨張係数差を1×10−’以下に形成した
ことを第1の特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a semiconductor laser that irradiates laser light and a condensing means that condenses the laser light from the semiconductor laser and outputs it to the outside. In the semiconductor laser module, the difference in thermal expansion coefficient between the holding member for holding the semiconductor laser and the light focusing means and the adhesive means for bonding the holding member and the light focusing means is set to 1×10−' or less. The characteristics of

また本発明は、半導体レーザ搭載するステムと、該半導
体レーザからのレーザ光を集光する球レンズと、該球レ
ンズをステム上に搭載する平板と、該平板と球レンズと
を接着固定する接着固定手段とを備える半導体レーザモ
ジュールにおいて、前記ステムと球レンズと平板と接着
固定手段との熱膨張係数差をほぼ1×10−’以下に形
成したことを第2の特徴とする。
The present invention also provides a stem on which a semiconductor laser is mounted, a ball lens for condensing laser light from the semiconductor laser, a flat plate for mounting the ball lens on the stem, and an adhesive for adhesively fixing the flat plate and the ball lens. A second feature of the semiconductor laser module having a fixing means is that the difference in coefficient of thermal expansion between the stem, the ball lens, the flat plate, and the adhesive fixing means is approximately 1×10 −′ or less.

更に本発明は、半導体レーザからのレーザ光を集光して
出力する先球光ファイバー及び該半導体レーザを搭載し
且つ先球光ファイバーを接着固定手段により接着固定す
るステムとを備える半導体レーザモジュールにおいて、
前記ステムと先球光ファイバーと接着固定手段との熱膨
張係数差をほぼ1×10−’以下に形成したことを第3
の特徴とする。
Furthermore, the present invention provides a semiconductor laser module comprising a tipped optical fiber for condensing and outputting laser light from a semiconductor laser, and a stem on which the semiconductor laser is mounted and the tipped optical fiber is adhesively fixed by adhesive fixing means.
The third aspect is that the difference in coefficient of thermal expansion between the stem, the tip optical fiber, and the adhesive fixing means is approximately 1×10−' or less.
The characteristics of

本発明は、前記第2又は第3の特徴の半導体レーザモジ
ュールにおいて、前記ステムが銅タングステン合金によ
り形成され、前記平板がセラミック又は銅タングステン
合金により形成され、接着固定手段が低融点ガラスによ
り形成されていることを第4の特徴とする。
In the semiconductor laser module according to the second or third aspect of the present invention, the stem is formed of a copper-tungsten alloy, the flat plate is formed of ceramic or a copper-tungsten alloy, and the adhesive fixing means is formed of low-melting glass. The fourth feature is that

[作用] 前記第1の特徴である半導体レーザモジュールは、保持
部材と集光手段と接着固定手段との熱膨張係数差をほぼ
1×10−’以下に形成したことにより、光結合路を構
成する各部品の熱膨張係数差に起因する熱応力の発生を
減少して光結合効率を安定に保つことができる。
[Function] The semiconductor laser module having the first feature forms an optical coupling path by forming a difference in coefficient of thermal expansion between the holding member, the light condensing means, and the adhesive fixing means to approximately 1×10−' or less. The optical coupling efficiency can be kept stable by reducing the occurrence of thermal stress caused by the difference in the coefficient of thermal expansion of each component.

第2の特徴である半導体レーザモジュールは、ステムと
球レンズと平板と接着固定手段との熱膨張係数差をほぼ
1×10−’以下に形成したことにより、光結合路を構
成する球レンズ、ステム、平板乃至接着固定手段の熱膨
張係数差による熱応力の発生を減少して光結合効率を安
定に保つことができる。
The second feature of the semiconductor laser module is that the difference in thermal expansion coefficient between the stem, the ball lens, the flat plate, and the adhesive fixing means is approximately 1×10−' or less, so that the ball lens that forms the optical coupling path, It is possible to reduce the occurrence of thermal stress due to the difference in thermal expansion coefficient between the stem, the flat plate, or the adhesive fixing means, and thereby maintain stable optical coupling efficiency.

前記第3の特徴である半導体レーザモジュールは、前記
ステムと先球光ファイバーと接着固定手段との熱膨張係
数差をほぼ1×10−’以下に形成したことにより、ス
テム及び該ステムに先球光ファイバを接着固定する接着
固定手段との熱応力発生を減少して光結合効率を安定に
保つことができる。
The third feature of the semiconductor laser module is that the difference in coefficient of thermal expansion between the stem, the tip optical fiber, and the adhesive fixing means is approximately 1×10−' or less, so that the stem and the tip beam are attached to the stem. The optical coupling efficiency can be maintained stably by reducing the occurrence of thermal stress with the adhesive fixing means for adhesively fixing the fiber.

第4の特徴である半導体レーザモジュールは、前記第2
又は第3の特徴の半導体レーザモジュールにおいて前記
ステムを銅タングステン合金、前記平板をセラミック又
は銅タングステン合金、接着固定手段を低融点ガラスに
より形成することにより、熱膨張係数差の極めて少ない
光結合路を構成し、熱応力の発生を減少して光結合効率
を安定に保つことができる。
The fourth feature of the semiconductor laser module is that the second
Alternatively, in the semiconductor laser module according to the third feature, the stem is made of a copper-tungsten alloy, the flat plate is made of ceramic or a copper-tungsten alloy, and the adhesive fixing means is made of a low-melting point glass, thereby providing an optical coupling path with an extremely small difference in thermal expansion coefficient. The optical coupling efficiency can be kept stable by reducing the occurrence of thermal stress.

[実施例コ 以下、本発明による半導体レーザモジュールの一実施例
を図面を用いて詳細に説明する。
[Example 1] Hereinafter, an example of a semiconductor laser module according to the present invention will be described in detail with reference to the drawings.

第1図は本実施例による半導体レーザモジュールの構成
を示す図であり、このモジュールは大別して、レーザ光
を照射する半導体レーザ1を一端に搭載し他端に該レー
ザ1を冷却する熱電子冷却素子9に接続するステム8と
、前記半導体レーザ1からの出射光を集光する集束性ロ
ッドレンズ12等を搭載する保持部品14及び15と、
これらステム8及び保持部品14.15を密閉的に覆う
パッケージ11とから構成される。
FIG. 1 is a diagram showing the configuration of a semiconductor laser module according to this embodiment, and this module is roughly divided into two parts: a semiconductor laser 1 that irradiates laser light is mounted on one end, and a thermionic cooling system that cools the laser 1 is mounted on the other end. a stem 8 connected to the element 9; holding parts 14 and 15 equipped with a focusing rod lens 12 for condensing the emitted light from the semiconductor laser 1;
It is composed of a package 11 that hermetically covers the stem 8 and the holding parts 14 and 15.

前記ステム8は保持部材に相当する銅タングステン合金
性であって、高熱伝導率をもっSiCから成るサブマウ
ント2に搭載されて電流印加にょリレーザ光を出射する
半導体レーザ1と、該レーザ1からのレーザ光を集中す
るための球レンズ5と、該レンズ5を低融点ガラス7に
よって接着固定する銅タングステン合金(またはセラミ
ック)性の平板6と、レーザ光出射をモニタするための
モニタ用フォトダイオード3と、ステム8の温度を検出
する温度検出素子4とを一方に搭載し、他方に熱電子冷
却素子9の冷却側を接続している。
The stem 8 is made of a copper-tungsten alloy corresponding to a holding member, and is mounted on a submount 2 made of SiC with high thermal conductivity, and includes a semiconductor laser 1 that emits laser light by applying a current, and a semiconductor laser 1 that emits laser light by applying current. A ball lens 5 for concentrating laser light, a copper-tungsten alloy (or ceramic) flat plate 6 to which the lens 5 is adhesively fixed with a low melting point glass 7, and a monitoring photodiode 3 for monitoring laser light emission. and a temperature detection element 4 for detecting the temperature of the stem 8 are mounted on one side, and the cooling side of a thermionic cooling element 9 is connected to the other side.

またこの熱電子冷却素子9は放熱側に外部のヒートシン
ク(図示せず)に取り付けるためのフランジ10が取り
付けられている。
Further, this thermionic cooling element 9 has a flange 10 attached to the heat radiation side for attachment to an external heat sink (not shown).

前記球レンズ5を接着固定する低融点ガラス7の熱膨張
係数は7.0XIO−’10Cであり、平板6の熱膨張
係数は銅タングステン合金の場合、6.5X10−’/
″C,セラミックの場合、6.7xl(r’/’ Cで
ある。また球レンズ5の熱膨張係数は材質がBK−7の
場合、 8.7X10−’10C、材質がTaF−3の場合、7
,9X10〜610Cである。
The thermal expansion coefficient of the low melting point glass 7 to which the ball lens 5 is adhesively fixed is 7.0XIO-'10C, and the thermal expansion coefficient of the flat plate 6 is 6.5X10-'/ in the case of copper-tungsten alloy.
''C, in the case of ceramic, it is 6.7xl (r'/'C).The thermal expansion coefficient of the ball lens 5 is 8.7X10-'10C, when the material is BK-7, and when the material is TaF-3. ,7
, 9X10~610C.

また前記保持部品14及び15は球レンズ5からのレー
ザ光を集束する様に外周面にメタライズされた集束性ロ
ッドレンズ12を保持し、ウッドレンズ12からのレー
ザ光をフェルール15を介して入力する光ファイバ13
とを同軸上に保持する様にパッケージ11にレーザ溶接
又はロウ付けされている。
The holding parts 14 and 15 also hold a focusing rod lens 12 whose outer peripheral surface is metallized so as to focus the laser beam from the ball lens 5, and input the laser beam from the Wooden lens 12 through the ferrule 15. optical fiber 13
and are laser welded or brazed to the package 11 so as to hold them coaxially.

前記光結合された光学部品の位置関係は第2図に示す如
くステム8上に配置された半導体レーザ1及び球レンズ
5.集束性ロッドレンズ12.光ファイバ13が一直線
上に光結合されるものであり、これら光学部品の結合路
上の位置ズレ量による結合損失劣化量は各部品によって
異なる。
The positional relationship of the optically coupled optical components is as shown in FIG. 2, with the semiconductor laser 1 and the ball lens 5 disposed on the stem 8. Focusing rod lens 12. The optical fibers 13 are optically coupled in a straight line, and the amount of coupling loss deterioration due to the amount of positional deviation of these optical components on the coupling path differs depending on each component.

この位置ズレ量と結合損失劣化量の関係は第3図に示す
如く、半導体レーザ1に対する球レンズ5の僅かな位置
ズレによって劣化量か急速に増大する特性A、該時特性
に次いで劣化量の大きい半導体レーザ1に対する集束性
ロッドレンズ12との位置ズレによる特性B、該時特性
に次かで劣化量の大きい半導体レーザ1に対する光ファ
イバ13との位置ズレによる特性C,ステム8に搭載さ
れ一体となった半導体レーザ1と球レンズ5の集束性ロ
ッドレンズ12に対する位置ズレの許容幅が大きい特性
りとなる。
As shown in FIG. 3, the relationship between the amount of positional deviation and the amount of deterioration in coupling loss is as follows. Characteristic B due to misalignment of the focusing rod lens 12 with respect to the large semiconductor laser 1; Characteristic C due to misalignment of the optical fiber 13 with respect to the semiconductor laser 1 which has the second largest amount of deterioration; characteristic C due to misalignment of the optical fiber 13 with respect to the semiconductor laser 1; This characteristic has a large tolerance for positional deviation between the semiconductor laser 1 and the ball lens 5 with respect to the focusing rod lens 12.

即ち本半導体レーザモジュールにおける光学部品の結合
路上の位置ズレ量と劣化量との関係は、前記特性Aで示
す半導体レーザ1に対する球レンズ5、即ちレーザ光の
集光手段との位置ズレが最も結合損失劣化を招くことが
判る。
That is, the relationship between the amount of positional deviation on the coupling path of the optical components in this semiconductor laser module and the amount of deterioration is such that the positional deviation between the semiconductor laser 1 and the ball lens 5, that is, the laser beam condensing means shown in the characteristic A, is the most coupled. It can be seen that this leads to loss deterioration.

前述の従来技術による半導体レーザモジュールは、球レ
ンズと平板との結合を熱膨張係数が2.65X10−”
/’ C(PbとSnの比が60対40のハンダ)乃至
2,87xlO−”/’ C(pbとSnの比が90対
10のハンダ)と球レンズ及び平板と大きく異なるハン
ダを使用した場合、この熱膨張係数が約10’倍の差が
あるため、半導体レーザモジュールの保存温度の上下限
度値である一400C〜+85°Cの温度サイクル試験
を行なった場合、該熱膨張係数差により熱応力がハンダ
結合部に加わり、応力疲労による強度劣化や微少クラッ
クが生じて前記位置ズレによって結合損失が増大してい
た。
The semiconductor laser module according to the prior art described above has a thermal expansion coefficient of 2.65X10-'' for coupling the ball lens and flat plate.
/'C (solder with a Pb to Sn ratio of 60:40) to 2,87xlO-''/'C (solder with a Pb to Sn ratio of 90:10) and a solder that is significantly different from that of the ball lens and flat plate were used. In this case, there is a difference of about 10' in the thermal expansion coefficient, so when a temperature cycle test is performed between -400°C and +85°C, which is the upper and lower storage temperature limit of the semiconductor laser module, due to the difference in the thermal expansion coefficient. Thermal stress is applied to the solder joint, causing strength deterioration and microcracks due to stress fatigue, and the positional shift increases joint loss.

本実施例による半導体レーザモジュールは、前記球レン
ズ5と平板6との結合を、これらと熱膨張係数がほぼ等
しい低融点ガラス(熱膨張係数が7.9X10−’/’
 C乃至8.7xlO−6/’ C)を用いて結合して
いるため、熱膨張係数差が1 x 10−’/’ C以
下に抑えられて前記熱応力を1/10−’以下に低減す
ることができる。このため本実施例による半導体レーザ
モジュールは球レンズ5と平板6との位置ズレを低減し
て結合損失劣化量を減少することができる。尚、前記低
融点ガラス7は球レンズ5を平板6に接着固定する接着
固定手段に相当する。
In the semiconductor laser module according to this embodiment, the ball lens 5 and the flat plate 6 are bonded to each other using a low melting point glass (having a thermal expansion coefficient of 7.9X10-'/'
C to 8.7xlO-6/'C), the difference in thermal expansion coefficient is suppressed to 1 x 10-'/'C or less, and the thermal stress is reduced to 1/10-' or less. can do. Therefore, the semiconductor laser module according to this embodiment can reduce the positional deviation between the ball lens 5 and the flat plate 6, and reduce the amount of coupling loss deterioration. Note that the low melting point glass 7 corresponds to an adhesive fixing means for adhesively fixing the ball lens 5 to the flat plate 6.

第4図は本発明の他の実施例による半導体レーザモジュ
ールを示す図であり、半導体レーザ1との光結合に先球
光ファイバー17を適用した例である。この先球光ファ
イバー17はその球形状の先端が前記実施例の球レンズ
と同様な集光手段に相当する働きをしてレーザ光を内部
に導入するものである。
FIG. 4 is a diagram showing a semiconductor laser module according to another embodiment of the present invention, and is an example in which a tipped optical fiber 17 is used for optical coupling with the semiconductor laser 1. The spherical tip of the spherical optical fiber 17 functions as a condensing means similar to the spherical lens of the embodiment described above to introduce laser light into the interior.

即ち本実施例による半導体レーザモジュールは第4図に
示す様に大別して、レーザ光を照射する半導体レーザ1
.温度検出素子4及びモニタ用フォトダイオード3を搭
載し且つ、前記先球光ファイバー17を貫通孔18内に
成形鉛ガラス粉末7′によって接着固定したステム8′
 と、該ステム8゛の後端に接する熱電子冷却素子9の
放熱側を外部のヒートシンク(図示せず)と接続する様
に接着固定すると共に、先球光ファイバー17を貫通孔
19に成形鉛ガラス粉末7′によって接着固定するパッ
ケージ11とから構成される。
That is, the semiconductor laser module according to this embodiment is roughly divided into a semiconductor laser 1 that emits laser light, as shown in FIG.
.. A stem 8' is equipped with a temperature detection element 4 and a monitoring photodiode 3, and has the tip optical fiber 17 adhesively fixed in a through hole 18 with molded lead glass powder 7'.
Then, the heat dissipation side of the thermionic cooling element 9 in contact with the rear end of the stem 8' is adhesively fixed so as to be connected to an external heat sink (not shown), and the tip optical fiber 17 is inserted into the through hole 19 using molded lead glass. It consists of a package 11 that is adhesively fixed with powder 7'.

前記ステム8は前記実施例同様に銅タングステン合金性
であって、サブマウント2も高熱伝導率をもつSiCか
ら構成されている。またパッケージ11は熱膨張係数が
6.2X10−’/’ Cのコバールにより製造されて
いる。
The stem 8 is made of copper-tungsten alloy as in the previous embodiment, and the submount 2 is also made of SiC having high thermal conductivity. The package 11 is made of Kovar having a thermal expansion coefficient of 6.2×10-'/'C.

この半導体レーザモジュールは、先球光ファイバー17
をパッケージ11の貫通孔19及びステム8゛の貫通孔
18に貫通させて半導体レーザ1との光結合路を確保し
た状態で成形鉛ガラス粉末7′をYAGレーザ光を照射
して溶融することにより、該ファイバー17の接着固定
及び半導体レーザ1の気密封止が行なわれている。
This semiconductor laser module has a tip optical fiber 17.
By passing through the through hole 19 of the package 11 and the through hole 18 of the stem 8' to ensure an optical coupling path with the semiconductor laser 1, the molded lead glass powder 7' is irradiated with YAG laser light and melted. , the fiber 17 is adhesively fixed and the semiconductor laser 1 is hermetically sealed.

従って本実施例実施例による半導体レーザモジュールは
、光ファイバ17.成形鉛ガラス粉末7゜及びステム8
の熱膨張係数差がI X 10−’/’ C以下に抑え
られるため、該熱膨張係数差による熱応力疲労による強
度劣化や微少クラックを防止して位置ズレによる結合損
失の増大を防止することができる。尚、前記低融点ガラ
ス7′は先球光ファイバー17をステム8に接着固定す
る接着固定手段に相当するものである。
Therefore, the semiconductor laser module according to this embodiment has optical fibers 17. Molded lead glass powder 7° and stem 8
Since the difference in coefficient of thermal expansion is suppressed to less than I x 10-'/'C, strength deterioration and minute cracks due to thermal stress fatigue due to the difference in coefficient of thermal expansion are prevented, and increase in coupling loss due to positional deviation is prevented. I can do it. The low melting point glass 7' corresponds to an adhesive fixing means for adhesively fixing the tip optical fiber 17 to the stem 8.

[発明の効果] 以上述べた如く本発明による第1の特徴による半導体レ
ーザモジュールは、保持部材と集光手段と平板と接着固
定手段との熱膨張係数差をほぼ1×10′″4以下に形
成したことにより、各構成部品の熱膨張係数差に起因す
る熱応力の発生を減少して光結合効率を安定に保つこと
ができる。
[Effects of the Invention] As described above, in the semiconductor laser module according to the first feature of the present invention, the difference in coefficient of thermal expansion between the holding member, the condensing means, the flat plate, and the adhesive fixing means is approximately 1×10′″4 or less. By forming such a structure, it is possible to reduce the occurrence of thermal stress caused by the difference in the coefficient of thermal expansion of each component and to keep the optical coupling efficiency stable.

第2の特徴による半導体レーザモジュールは、ステム、
平板、乃至接着固定手段との熱膨張係数差をほぼ1×1
0””以下に形成したことにより、光結合路を構成する
球レンズ、ステム、平板乃至接着固定手段の熱膨張係数
差による熱応力の発生を減少して光結合効率を安定に保
つことができる。
The semiconductor laser module according to the second feature includes a stem,
The difference in thermal expansion coefficient between the flat plate and adhesive fixing means is approximately 1×1.
0'' or less, it is possible to reduce the occurrence of thermal stress due to the difference in thermal expansion coefficient of the ball lens, stem, flat plate, or adhesive fixing means that constitute the optical coupling path, and to keep the optical coupling efficiency stable. .

第3の特徴による半導体レーザモジュールは、前記ステ
ムと先球光ファイバーと接着固定手段との熱膨張係数差
をほぼ1×10−’以下に形成したことにより、ステム
及び該ステムに先球光ファイバを接着固定する接着固定
手段との熱応力発生を減少して光結合効率を安定に保つ
ことができる。
In the semiconductor laser module according to the third feature, the difference in coefficient of thermal expansion between the stem, the optical fiber and the adhesive fixing means is approximately 1×10 −' or less, so that the stem and the optical fiber can be connected to the stem. It is possible to maintain stable optical coupling efficiency by reducing the occurrence of thermal stress with the adhesive fixing means.

更に第4の特徴による半導体レーザモジュールは、前記
第2又は第3の特徴の半導体レーザモジュールにおいて
前記ステムを銅タングステン合金。
Further, in a semiconductor laser module according to a fourth feature, in the semiconductor laser module according to the second or third feature, the stem is made of a copper-tungsten alloy.

前記平板をセラミック又は銅タングステン合金。The flat plate is made of ceramic or copper-tungsten alloy.

接着固定手段を低融点ガラスにより形成することにより
、熱膨張係数差の極めて少ない光結合路を構成して熱応
力の発生を減少し、光結合効率を安定に保つことができ
る。
By forming the adhesive fixing means from low-melting glass, it is possible to construct an optical coupling path with an extremely small difference in thermal expansion coefficient, reduce the occurrence of thermal stress, and keep the optical coupling efficiency stable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体レーザモジュー
ルを示す図、第2図は該半導体レーザモジュールの光結
合路の位置関係を示す図、第3図はこの位置関係のズレ
量による結合損失劣化量を説明するための図、第4図は
本発明の他の実施例による半導体レーザモジュールを示
す図である。 1:半導体レーザ、2:サブマウント、3・モニタ用フ
ォトダイオード、 4:温度検出素子、5:球レンズ、 6:平板、7:低融点ガラス、8:ステム、9:熱電子
冷却素子、10:フランジ、11:パッケージ、12:
集束性ロッドレンズ、13:光ファイバ、14:保持部
品、 15;フェルール、16;保持部品、 17・先球光ファイバ、18及び19:貫通孔、20、
孔、7゛:成形鉛ガラス粉末、 8゛ステム。
FIG. 1 is a diagram showing a semiconductor laser module according to an embodiment of the present invention, FIG. 2 is a diagram showing the positional relationship of optical coupling paths of the semiconductor laser module, and FIG. 3 is a diagram showing coupling loss due to the amount of deviation in this positional relationship. FIG. 4, which is a diagram for explaining the amount of deterioration, is a diagram showing a semiconductor laser module according to another embodiment of the present invention. 1: Semiconductor laser, 2: Submount, 3. Monitor photodiode, 4: Temperature detection element, 5: Ball lens, 6: Flat plate, 7: Low melting point glass, 8: Stem, 9: Thermionic cooling element, 10 :Flange, 11:Package, 12:
Focusing rod lens, 13: Optical fiber, 14: Holding component, 15; Ferrule, 16; Holding component, 17. Tip optical fiber, 18 and 19: Through hole, 20.
Hole, 7゛: Molded lead glass powder, 8゛ stem.

Claims (4)

【特許請求の範囲】[Claims] (1)レーザ光を照射する半導体レーザ及び該半導体レ
ーザからのレーザ光を集光して外部に出力する集光手段
とを備える半導体レーザモジュールにおいて、前記半導
体レーザ及び集光手段とを保持する保持部材と該保持部
材と集光手段を接着する接着手段の熱膨張係数差を1×
10^−^4以下に形成したことを特徴とする半導体レ
ーザモジュール。
(1) A holder for holding the semiconductor laser and the focusing means in a semiconductor laser module comprising a semiconductor laser that irradiates laser light and a focusing means that collects the laser light from the semiconductor laser and outputs it to the outside. The difference in thermal expansion coefficient between the member and the adhesive means for bonding the holding member and the light condensing means is 1×
A semiconductor laser module characterized in that the semiconductor laser module is formed to have a diameter of 10^-^4 or less.
(2)レーザ光を照射する半導体レーザ搭載するステム
と、該半導体レーザからのレーザ光を集光する球レンズ
と、該球レンズをステム上に搭載する平板と、該平板と
球レンズとを接着固定する接着固定手段とを備え、前記
半導体レーザからのレーザ光を球レンズにより集光して
外部に出力する半導体レーザモジュールにおいて、前記
ステムと球レンズと平板と接着固定手段との熱膨張係数
差をほぼ1×10^−^4以下に形成したことを特徴と
する半導体レーザモジュール。
(2) A stem equipped with a semiconductor laser that irradiates laser light, a ball lens that focuses the laser light from the semiconductor laser, a flat plate on which the ball lens is mounted on the stem, and the flat plate and the ball lens are bonded together. In a semiconductor laser module comprising an adhesive fixing means for fixing the semiconductor laser, the laser beam from the semiconductor laser is focused by a ball lens and outputted to the outside, wherein a difference in thermal expansion coefficient between the stem, the ball lens, the flat plate, and the adhesive fixing means is provided. A semiconductor laser module characterized in that a semiconductor laser module is formed to have a size of approximately 1×10^-^4 or less.
(3)レーザ光を照射する半導体レーザと、該半導体レ
ーザからのレーザ光を集光して外部に出力する先球光フ
ァイバーと、前記半導体レーザを搭載し且つ先球光ファ
イバーを接着固定手段により接着固定するステムとを備
える半導体レーザモジュールにおいて、前記ステムと先
球光ファイバーと接着固定手段との熱膨張係数差をほぼ
1×10^−^4以下に形成したことを特徴とする半導
体レーザモジュール。
(3) A semiconductor laser that emits laser light, a tipped optical fiber that collects the laser beam from the semiconductor laser and outputs it to the outside, and the semiconductor laser is mounted and the tipped optical fiber is adhesively fixed by adhesive fixing means. 1. A semiconductor laser module comprising a stem, wherein the difference in coefficient of thermal expansion between the stem, the tip optical fiber, and the adhesive fixing means is approximately 1×10^-^4 or less.
(4)請求項2又は請求項3記載の半導体レーザモジュ
ールにおいて、前記ステムが銅タングステン合金により
形成され、前記平板がセラミック又は銅タングステン合
金により形成され、接着固定手段が低融点ガラスにより
形成されていることを特徴とする半導体レーザモジュー
ル。
(4) In the semiconductor laser module according to claim 2 or 3, the stem is formed of a copper-tungsten alloy, the flat plate is formed of ceramic or a copper-tungsten alloy, and the adhesive fixing means is formed of low-melting glass. A semiconductor laser module characterized by:
JP25785389A 1989-10-04 1989-10-04 Semiconductor laser module Pending JPH03120884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25785389A JPH03120884A (en) 1989-10-04 1989-10-04 Semiconductor laser module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25785389A JPH03120884A (en) 1989-10-04 1989-10-04 Semiconductor laser module

Publications (1)

Publication Number Publication Date
JPH03120884A true JPH03120884A (en) 1991-05-23

Family

ID=17312073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25785389A Pending JPH03120884A (en) 1989-10-04 1989-10-04 Semiconductor laser module

Country Status (1)

Country Link
JP (1) JPH03120884A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157990A (en) * 1991-12-05 1993-06-25 Nec Corp Optical isolator and its manufacture
US5345373A (en) * 1992-05-18 1994-09-06 Sumitomo Electric Industries, Ltd. Lens holding block enabling accurate lens positioning
JPH07140362A (en) * 1993-11-17 1995-06-02 Nec Corp Semiconductor laser module
EP0800243A2 (en) * 1996-03-29 1997-10-08 Nec Corporation Semiconductor laser module
WO1998037603A1 (en) * 1997-02-18 1998-08-27 Siemens Aktiengesellschaft Laser device
EP1220390A1 (en) * 2000-12-28 2002-07-03 Corning O.T.I. S.p.A. Low cost optical bench having high thermal conductivity
WO2002054118A2 (en) * 2000-12-28 2002-07-11 Corning O.T.I. S.P.A. Low cost optical bench having high thermal conductivity
WO2005066678A1 (en) * 2003-12-23 2005-07-21 3M Innovative Properties Company Laser submounts with standoff structures
JP2007256665A (en) * 2006-03-23 2007-10-04 Furukawa Electric Co Ltd:The Semiconductor laser module
US7561805B2 (en) 2003-10-31 2009-07-14 Fibest, Ltd. Optical transmitter, optical receiver, optical communication system, and optical transmitter and receiver
US7729402B2 (en) 2002-10-29 2010-06-01 Sharp Kabushiki Kaisha Semiconductor laser assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143494A (en) * 1984-08-08 1986-03-03 Nec Corp Semiconductor laser module
JPS61289309A (en) * 1985-06-17 1986-12-19 Nippon Telegr & Teleph Corp <Ntt> Production of optical semiconductor module
JPS62276892A (en) * 1986-05-26 1987-12-01 Hitachi Ltd Electronic component
JPS63208813A (en) * 1987-02-26 1988-08-30 Nec Corp Manufacture of semiconductor light emitting element with lens
JPS6410686A (en) * 1987-07-03 1989-01-13 Hitachi Ltd Semiconductor laser module with electronic cooling element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143494A (en) * 1984-08-08 1986-03-03 Nec Corp Semiconductor laser module
JPS61289309A (en) * 1985-06-17 1986-12-19 Nippon Telegr & Teleph Corp <Ntt> Production of optical semiconductor module
JPS62276892A (en) * 1986-05-26 1987-12-01 Hitachi Ltd Electronic component
JPS63208813A (en) * 1987-02-26 1988-08-30 Nec Corp Manufacture of semiconductor light emitting element with lens
JPS6410686A (en) * 1987-07-03 1989-01-13 Hitachi Ltd Semiconductor laser module with electronic cooling element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157990A (en) * 1991-12-05 1993-06-25 Nec Corp Optical isolator and its manufacture
US5345373A (en) * 1992-05-18 1994-09-06 Sumitomo Electric Industries, Ltd. Lens holding block enabling accurate lens positioning
JPH07140362A (en) * 1993-11-17 1995-06-02 Nec Corp Semiconductor laser module
US6101202A (en) * 1996-03-29 2000-08-08 Nec Corporation Semiconductor laser module
EP0800243A3 (en) * 1996-03-29 1998-07-01 Nec Corporation Semiconductor laser module
EP0800243A2 (en) * 1996-03-29 1997-10-08 Nec Corporation Semiconductor laser module
WO1998037603A1 (en) * 1997-02-18 1998-08-27 Siemens Aktiengesellschaft Laser device
EP1220390A1 (en) * 2000-12-28 2002-07-03 Corning O.T.I. S.p.A. Low cost optical bench having high thermal conductivity
WO2002054118A2 (en) * 2000-12-28 2002-07-11 Corning O.T.I. S.P.A. Low cost optical bench having high thermal conductivity
WO2002054118A3 (en) * 2000-12-28 2003-08-28 Corning Oti Spa Low cost optical bench having high thermal conductivity
US6888860B2 (en) 2000-12-28 2005-05-03 Corning Incorporated Low cost optical bench having high thermal conductivity
US7729402B2 (en) 2002-10-29 2010-06-01 Sharp Kabushiki Kaisha Semiconductor laser assembly
US7561805B2 (en) 2003-10-31 2009-07-14 Fibest, Ltd. Optical transmitter, optical receiver, optical communication system, and optical transmitter and receiver
WO2005066678A1 (en) * 2003-12-23 2005-07-21 3M Innovative Properties Company Laser submounts with standoff structures
JP2007256665A (en) * 2006-03-23 2007-10-04 Furukawa Electric Co Ltd:The Semiconductor laser module

Similar Documents

Publication Publication Date Title
KR920010947B1 (en) Semiconductor light emitting device its component and lens position adjusting method
US5068865A (en) Semiconductor laser module
US6659659B1 (en) High-speed optical sub-assembly utilizing ceramic substrate, direct coupling and laser welding
JP2003262766A (en) Optical coupler
JPH05127050A (en) Semiconductor laser module
JPH08250796A (en) Peltier cooler and semiconductor laser module
JPH03120884A (en) Semiconductor laser module
JPH1065273A (en) Peltier cooler and semiconductor laser module
WO2018151142A1 (en) Optical element package and optical element module
JP2001358398A (en) Semiconductor laser element unit and semiconductor laser module
JP5566647B2 (en) Piezoelectric device and manufacturing method thereof
JP4629842B2 (en) Optical module manufacturing method and optical module
JP2001215372A (en) Laser diode module
JP6593547B1 (en) Optical module
JP2007025433A (en) Optical element module and optical transmitter
JP2007173498A (en) Optical module
JP2001094191A (en) Optical semiconductor module and manufacturing method therefor
JP2003338654A (en) Semiconductor laser module
JP2586123B2 (en) Semiconductor laser module
JPH11248973A (en) Optical module
JP2003075691A (en) Optical assembly for opto-electronic package
JPH0368906A (en) Spherical lens parts
JPH0621577A (en) Semiconductor laser module
JP2940497B2 (en) Optical semiconductor module
JPH0736328Y2 (en) Optical coupler