JPH0368415A - Production of element for gas sorbing machine - Google Patents
Production of element for gas sorbing machineInfo
- Publication number
- JPH0368415A JPH0368415A JP1205053A JP20505389A JPH0368415A JP H0368415 A JPH0368415 A JP H0368415A JP 1205053 A JP1205053 A JP 1205053A JP 20505389 A JP20505389 A JP 20505389A JP H0368415 A JPH0368415 A JP H0368415A
- Authority
- JP
- Japan
- Prior art keywords
- paper
- water glass
- sulfate
- matrix
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 51
- 235000019353 potassium silicate Nutrition 0.000 claims abstract description 50
- 239000011159 matrix material Substances 0.000 claims abstract description 29
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims abstract description 26
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 21
- 239000000835 fiber Substances 0.000 claims abstract description 21
- 239000012784 inorganic fiber Substances 0.000 claims abstract description 21
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims abstract description 20
- 229910052938 sodium sulfate Inorganic materials 0.000 claims abstract description 20
- 235000011152 sodium sulphate Nutrition 0.000 claims abstract description 20
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000000017 hydrogel Substances 0.000 claims abstract description 11
- 239000000919 ceramic Substances 0.000 claims abstract description 9
- 238000010030 laminating Methods 0.000 claims abstract description 5
- 239000000853 adhesive Substances 0.000 claims description 29
- 230000001070 adhesive effect Effects 0.000 claims description 29
- 239000007864 aqueous solution Substances 0.000 claims description 27
- 238000001179 sorption measurement Methods 0.000 claims description 22
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 19
- 239000006227 byproduct Substances 0.000 claims description 13
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 10
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000004964 aerogel Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 238000005470 impregnation Methods 0.000 claims description 3
- 238000003475 lamination Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000005416 organic matter Substances 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- 239000000243 solution Substances 0.000 claims description 2
- 229920000049 Carbon (fiber) Polymers 0.000 claims 1
- 239000004917 carbon fiber Substances 0.000 claims 1
- 239000003365 glass fiber Substances 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 238000001035 drying Methods 0.000 abstract description 8
- 238000005406 washing Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 235000002639 sodium chloride Nutrition 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 8
- 230000008929 regeneration Effects 0.000 description 7
- 238000011069 regeneration method Methods 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 239000004115 Sodium Silicate Substances 0.000 description 4
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 239000010425 asbestos Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 4
- 229920002689 polyvinyl acetate Polymers 0.000 description 4
- 239000011118 polyvinyl acetate Substances 0.000 description 4
- 229910052895 riebeckite Inorganic materials 0.000 description 4
- 235000010344 sodium nitrate Nutrition 0.000 description 4
- 239000004317 sodium nitrate Substances 0.000 description 4
- 229910052911 sodium silicate Inorganic materials 0.000 description 4
- 239000004111 Potassium silicate Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 159000000003 magnesium salts Chemical class 0.000 description 3
- 229910052913 potassium silicate Inorganic materials 0.000 description 3
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000007791 dehumidification Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 239000000391 magnesium silicate Substances 0.000 description 2
- 229910052919 magnesium silicate Inorganic materials 0.000 description 2
- 235000019792 magnesium silicate Nutrition 0.000 description 2
- ZADYMNAVLSWLEQ-UHFFFAOYSA-N magnesium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[Mg+2].[Si+4] ZADYMNAVLSWLEQ-UHFFFAOYSA-N 0.000 description 2
- 229910052914 metal silicate Inorganic materials 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 2
- 229910052939 potassium sulfate Inorganic materials 0.000 description 2
- 235000011151 potassium sulphates Nutrition 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002594 sorbent Substances 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000549556 Nanos Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 108091006629 SLC13A2 Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 235000012791 bagels Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003230 hygroscopic agent Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 210000002425 internal capsule Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- -1 that is Chemical compound 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
- F24F3/1423—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1004—Bearings or driving means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1032—Desiccant wheel
- F24F2203/1036—Details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1048—Geometric details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1056—Rotary wheel comprising a reheater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1068—Rotary wheel comprising one rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1084—Rotary wheel comprising two flow rotor segments
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Drying Of Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は多数の小透孔を有するブロックを湿気その他活
性ガスを可逆的に吸着する固体吸着剤によって成形し、
該小道孔内に処理気体と再生用気体とを交互に通し連続
的に活性ガスを除去された気体たとえば乾き空気を得る
ガス収着機用素子を連続的に製造する方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention involves forming a block with a large number of small holes using a solid adsorbent that reversibly adsorbs moisture and other active gases.
The present invention relates to a method for continuously manufacturing an element for a gas sorption machine, in which a process gas and a regeneration gas are passed alternately through the passage hole to continuously obtain a gas, such as dry air, from which an active gas has been removed.
従来の技術
本件特許出願人は昭和60年特許願第86969号にお
いて、セラミックス繊維等無機繊維を用いて低密度に抄
造した紙をfpI層して多数の小透孔を有する湿気交換
用または全熱交換用素子の形状に成形し、該成形工程の
前または後において該無機繊維紙に水ガラスを含浸し、
成形後アルミニウム塩またはマグネシウム塩またはカル
シウム塩の水溶液に浸漬して珪酸塩のヒドロゲルを生成
せしめ、水洗乾燥して無機繊維紙をマトリックスとし珪
酸塩エロゲルを主成分とした湿気交換用または全熱交換
用素子を得る方法を提案した。Conventional technology In Patent Application No. 86969 filed in 1985, the applicant of this patent proposed a paper made with low density paper made from inorganic fibers such as ceramic fibers with fpI layer, which has many small perforations for moisture exchange or total heat. Molding into the shape of a replacement element, impregnating the inorganic fiber paper with water glass before or after the molding process,
After molding, it is immersed in an aqueous solution of aluminum salt, magnesium salt, or calcium salt to produce a silicate hydrogel, which is then washed and dried with inorganic fiber paper as a matrix for moisture exchange or total heat exchange with silicate hydrogel as the main component. A method to obtain the device was proposed.
発明が解決しようとする問題点およびその問題点を解決
するための手段
上記先願においては例として水ガラス(珪酸ソーダ)お
よび硫酸アルミニウム浸漬におI、Xで同一の硫酸アル
ミニウム溶液に水ガラス浸漬後のマトリックスを次々に
浸漬し、同時にこの母液に次々に硫酸アルミニウムを補
充して連続生産する場合、副生物の硫酸ナトリウムが増
加しても得られた除湿機用素子の性能に影響を与える心
配がないことを述べた。Problems to be Solved by the Invention and Means for Solving the Problems In the above-mentioned earlier application, as an example, water glass (sodium silicate) and aluminum sulfate were immersed in I and X, and water glass was immersed in the same aluminum sulfate solution. In case of continuous production by immersing the subsequent matrix one after another and simultaneously replenishing this mother liquor with aluminum sulfate one after another, there is a concern that an increase in the by-product sodium sulfate will affect the performance of the obtained dehumidifier element. I mentioned that there is no.
しかし上記の硫酸アルミニウムの補充と珪酸塩生成反応
を繰返えせば副生物の硫酸ナトリウムは飽和に達し晶析
するととちに硫酸アルミニウムの溶解度は減少し、満足
に珪酸塩生成反応を行ない得なくなるので、副生物の硫
酸ナトリウムは硫酸アルミニウムの母液から時々取除か
なければならない。However, if the above-mentioned aluminum sulfate replenishment and silicate production reaction are repeated, the by-product sodium sulfate reaches saturation and crystallizes, and the solubility of aluminum sulfate decreases, making it impossible to perform the silicate production reaction satisfactorily. Therefore, the by-product sodium sulfate must be removed from the aluminum sulfate mother liquor from time to time.
先願で例示した水ガラスと反応して珪酸塩ゲルを生成し
得る水溶性のアルミニウム塩、マグネシウム塩、カルシ
ウム塩のうち ′−1妥当な価格で
入手し得る水溶性のアルミニウム塩およびマグネシウム
塩を選び、水ガラス即ち珪酸ソーダとの反応を見ると
Na*5iOs + Alt(SO4)s =
Alt(SiOs)s+ Na5SO4//
Al (lIxPo41 a = //
Na5PO4〃 Al(:ls
−4tt NaC1// Al
(NOx) s ” /7 NBNOs/
/ M g S Oa = MgS i
Ox ◆Na5SO4〃MgC1*→//
Na1l
// Mg (NOal * −tl
NaNOsとなる。燐酸マグネシウムは水に不溶性で上
記反応には使用できず、また上記のうち燐酸アルミニウ
ムはやや高価で好ましくないので以下検討しないことに
する。Among the water-soluble aluminum salts, magnesium salts, and calcium salts that can react with water glass to form a silicate gel as exemplified in the previous application, '-1 Water-soluble aluminum salts and magnesium salts that can be obtained at reasonable prices are used. Looking at the reaction with water glass, that is, sodium silicate, Na*5iOs + Alt(SO4)s =
Alt(SiOs)s+ Na5SO4//
Al (lIxPo41 a = //
Na5PO4〃 Al(:ls
-4tt NaC1//Al
(NOx)s”/7 NBNOs/
/ MgS Oa = MgS i
Ox ◆Na5SO4〃MgC1*→//
Na1l // Mg (NOal * -tl
It becomes NaNOs. Magnesium phosphate is insoluble in water and cannot be used in the above reaction, and among the above, aluminum phosphate is rather expensive and undesirable, so it will not be discussed below.
残った6 +!i類の金属塩と水ガラスとの反応により
生成する副生物は硫酸ナトリウム、食塩および硝酸ナト
リウムであるが、これ等副生物と原料の金属塩との混合
水溶液から温度差による溶解度の差を利用して副生塩を
晶析により分離するのが最も簡便である。6+ left! The by-products produced by the reaction between the metal salts of class I and water glass are sodium sulfate, common salt, and sodium nitrate, and the difference in solubility due to the temperature difference can be used to create a mixed aqueous solution of these by-products and the raw metal salt. The simplest method is to separate the by-product salt by crystallization.
上記6 fil Hの金属塩と水ガラスとを60℃で反
応せしめ、その後0℃まで冷却して副生塩を晶析により
除去するものとして、60℃および0℃における上記金
属塩と副生塩との水に対する溶解度(重量%)を見ると
60℃ 0℃
硫酸アルミニウム 31.0 27.5硫酸マ
グネシウム 35.3 18.0硫酸ナトリウ
ム 31.1 4.3塩化ア、ルミニウム
32.3 30.5塩化マグネシウム
37.9 34.6食 塩
27.1 26.3硝酸アルミニウム
51.5 37.5硝酸マグネシウム
47.7 38.4硝酸ナトリウム 55.
4 42.2となる。たとえば塩化アルミニウムと食
塩との混合水溶液においては塩化アルミニウムと食塩と
の水に対する溶解度は温度によって殆んど変化せず、塩
化マグネシウムと食塩、硝酸アルミニウムと硝酸ナトリ
ウム、硝酸マグネシウムと硝酸ナトリウムの各組合せに
おいても同様であり、上記4組の混合水溶液を冷却する
ことによってその一成分のみを純粋に近い形で晶析によ
り除去することはできない。これに対し硫酸アルミニウ
ムと硫酸ナトリウムとの混合水溶液においては硫酸アル
ミニウムは高温でも低温でも溶解度が大きく、硫酸ナト
リウムは低温における溶解度が著しく小さく温度差によ
る溶解度の変化が大きいので、高温の濃厚な混合水溶液
を冷却すると硫酸アルミニウムを殆ど含有しない硫酸ナ
トリウムが析出するのでこれ酸ナトリウムを分離析出さ
せることができる。The above metal salt and by-product salt at 60° C. and 0° C. are reacted with water glass at 60° C., and then cooled to 0° C. to remove the by-product salt by crystallization. Looking at the solubility (wt%) in water of magnesium chloride
37.9 34.6 Salt
27.1 26.3 Aluminum nitrate
51.5 37.5 Magnesium nitrate
47.7 38.4 Sodium nitrate 55.
4 42.2. For example, in a mixed aqueous solution of aluminum chloride and salt, the solubility of aluminum chloride and salt in water hardly changes depending on the temperature, and in each combination of magnesium chloride and salt, aluminum nitrate and sodium nitrate, magnesium nitrate and sodium nitrate, Similarly, by cooling the above-mentioned four sets of mixed aqueous solutions, only one component thereof cannot be removed by crystallization in an almost pure form. On the other hand, in a mixed aqueous solution of aluminum sulfate and sodium sulfate, aluminum sulfate has a high solubility at both high and low temperatures, while sodium sulfate has a significantly low solubility at low temperatures and its solubility changes greatly due to temperature differences, so a concentrated mixed aqueous solution at a high temperature is When cooled, sodium sulfate containing almost no aluminum sulfate is precipitated, so that sodium sulfate can be separated and precipitated.
水ガラスには上記の珪酸ソーダの他に珪酸カリウムがあ
り、珪酸カリウムとアルミニウム塩、マグネシウム垣と
を反応させた場合の副生物の水に対する溶解度(重量%
)を見ると
60℃ 0℃
硫酸カリウム 15.4 7.2塩化カ
リウム 31.4 21.9硝酸カリウム
52.2 11.7であり、硫酸カリウ
ムのみは一応硫酸アルミニウ与
ム、硫酸マグネシウムと晶析分離ができるが、珪酸カリ
ウムは珪酸ソーダに比し可成り高価であり、大量生産用
としては好ましくない。Water glass contains potassium silicate in addition to the above-mentioned sodium silicate, and the solubility of the by-product in water (wt%) when potassium silicate is reacted with aluminum salt and magnesium
) is 60℃ 0℃ Potassium sulfate 15.4 7.2 Potassium chloride 31.4 21.9 Potassium nitrate 52.2 11.7, and only potassium sulfate is separated by crystallization from aluminum sulfate and magnesium sulfate. However, potassium silicate is considerably more expensive than sodium silicate and is not preferred for mass production.
適するものと云える。It can be said that it is suitable.
先願における今一つの問題点は除湿機使用上の安全性で
ある。素子製造の原材料として使用する紙は無機繊維紙
であるが、この場合抄紙を容易にするために数%の有機
繊維たと・えば木材バルブ、有機合成繊維を混入する。Another problem with the prior application is the safety of using the dehumidifier. The paper used as a raw material for manufacturing elements is inorganic fiber paper, but in this case, several percent of organic fibers such as wood bulbs and organic synthetic fibers are mixed in to facilitate paper making.
この紙を使用して製造した素子により除湿する場合高温
低湿の再生空気(入口における温度120〜180℃)
を素子に通すので、この高温再生空気により上記の有機
繊維が燃焼し素子を損傷するおそれがある。このよ焼成
して紙に含有される有機物を除去する。紙を積層してマ
トリックスを得るに当り接着剤として有機物たとえばポ
リ酢酸ビニール、エポキシ樹脂。When dehumidifying with an element manufactured using this paper, high-temperature, low-humidity recycled air (temperature at the inlet of 120-180°C)
Since this high-temperature regeneration air passes through the element, there is a risk that the above-mentioned organic fibers will burn and damage the element. This baking process removes organic substances contained in the paper. Organic materials such as polyvinyl acetate and epoxy resin are used as adhesives when laminating papers to obtain a matrix.
エチレン酢酸ビニール共重合体等を使用する場合にはこ
の有機接着剤も同時に除去する。この焼成工程により紙
の見掛は比重即ち重厚は更に減少し、空隙率が大きくな
るので、紙の面積に対する金属珪酸塩ゲルの量即ち除湿
能力は更に大きくなる。If ethylene vinyl acetate copolymer or the like is used, this organic adhesive is also removed at the same time. This firing process further reduces the paper's apparent specific gravity, ie, its thickness, and increases its porosity, thereby further increasing the amount of metal silicate gel relative to the area of the paper, ie, its dehumidification capacity.
また紙の積層に使用する接着剤とし、反応後の有機接着
剤に代え水ガラスを使用すれば、この水ガラスがマトリ
ックス全体に含浸した水ガラスとともに硫酸塩との反応
によりマトリックス中における無機繊維紙相互間の接着
力を低下せしめるおそれなく、素子の吸湿その他ガス収
着の性能をおよそio〜20%向上せしめる。In addition, if water glass is used as the adhesive used for laminating paper, and instead of the organic adhesive after reaction, this water glass will react with the sulfate together with the water glass impregnated throughout the matrix, and the inorganic fiber paper will be absorbed into the matrix. The moisture absorption and other gas sorption performance of the device can be improved by about io~20% without fear of reducing the mutual adhesive strength.
紙の主成分は上記の如く燃焼性のない無機繊維を使用す
る。無機繊維としてはセラミックス繊維。As mentioned above, non-combustible inorganic fibers are used as the main component of the paper. Ceramic fibers are inorganic fibers.
ガラス、1RH1、カーボン#!維等何れを使用しても
よく、また上記無機繊維の211類以上を混合して使用
してもよい。無機繊維としては上記以外にアスベスト繊
維があるが、アスベスト繊維は低密度に抄紙することが
できず、またアスベスト繊維は永年取扱っていると石綿
沈着症となり稀には肺癌を生じ更4こ胸部または腹膜に
特殊な腫脹(原始内被細胞層)を生ずるおそれがあるの
で使用し得ない。Glass, 1RH1, carbon #! Any of the above-mentioned inorganic fibers may be used, or a mixture of 211 or more of the above inorganic fibers may be used. Other inorganic fibers include asbestos fibers, but asbestos fibers cannot be made into low-density paper, and if asbestos fibers are handled for a long time, they can lead to asbestos deposits, which can rarely cause lung cancer, and can cause cancer in the chest or chest. It cannot be used because it may cause special swelling in the peritoneum (primitive internal capsule layer).
マトリックスに含浸した水ガラスと硫酸塩との反応によ
り金fI!4珪酸塩のゲルを生成させるに当っては、硫
酸塩水溶液の含浸に先立ってマトリックスを加熱し水ガ
ラスを含水率3〜30%の和水水ガラス状即ち半固形状
になるまで濃縮し、水ガラスおよび生成した金属珪酸塩
ゲルの硫酸塩水溶液中への溶出または流出による損失を
防止する。The reaction of water glass impregnated into the matrix with sulfate produces gold fI! In producing the 4-silicate gel, prior to impregnation with the sulfate aqueous solution, the matrix is heated and the water glass is concentrated until it becomes a hydrous water glass with a water content of 3 to 30%, that is, a semi-solid state. Prevents loss of water glass and formed metal silicate gel due to elution or leakage into the sulfate aqueous solution.
以上により本発明の要旨をまとめると、セラミックス繊
維、ガラス#Im、カーボン1RHIまたは上記繊維2
種以上の混合物より選んだ無機繊維を主成分とする低密
度の平面紙と波形紙とを交互に積層して多数の小透孔を
有するハニカムマトリックスを成形し、該マトリックス
を
#毒裁記ハ→焼成して紙および接着剤に含まれる有機物
を除去して紙の密度を更に低くし、該焼成ツクスを浸漬
し水ガラスとの反応により珪酸塩ヒドロゲルを紙の繊維
間隙および表面に生成結合せしめ、洗浄乾燥して紙の無
機繊維を骨組とし珪酸塩エロゲルを主成分とするガス収
着借用素子を得、該硫酸塩水溶液を冷却して反応副生物
として生成し硫酸塩水溶液中に溶解している硫酸ナトリ
ウムを晶析除去し、含浸後の水ガラス水溶液に水ガラス
を補給し、反応後の硫酸塩水溶液に該硫酸塩を補給し、
反応後の一ガス収着機用素子の製造を繰返すものである
。To summarize the gist of the present invention as described above, ceramic fiber, glass #Im, carbon 1RHI or the above fiber 2
A honeycomb matrix with many small pores is formed by alternately laminating low-density plane paper and corrugated paper mainly composed of inorganic fibers selected from a mixture of more than 1,000 species. →The density of the paper is further lowered by firing to remove organic matter contained in the paper and adhesive, and the fired tux is immersed to form and bond silicate hydrogel to the fiber gaps and surface of the paper through reaction with water glass. After washing and drying, a gas sorption element having a framework of paper inorganic fibers and silicate aerogel as a main component was obtained, and the sulfate aqueous solution was cooled to produce a reaction by-product, which was dissolved in the sulfate aqueous solution. crystallizing out the sodium sulfate present, replenishing the water glass aqueous solution after impregnation with water glass, replenishing the sulfate aqueous solution after the reaction,
After the reaction, the production of gas sorption device elements is repeated.
以下実施例を図面について詳細に説明する。Embodiments will be described in detail below with reference to the drawings.
実施例
第1図は本発明の第1工程である成形工程に使用する装
置の一例を示し、図中1.2は所望の歯型を有する一対
の成形ギアで互いに噛合い、一方の成形ギア2は圧着ロ
ーラ3と相接し、両者の面速はほぼ同一とする。4.5
は接着塗布装置で夫々接着剤容器4a、5a、接着剤塗
布ローラ4b。Embodiment FIG. 1 shows an example of an apparatus used in the molding process, which is the first step of the present invention. 2 is in contact with the pressure roller 3, and the surface speeds of both are approximately the same. 4.5
1 is an adhesive applicator having adhesive containers 4a, 5a and an adhesive applicator roller 4b, respectively.
5bよりなり、接着剤容器4a、5aにはポリ酢酸ビニ
ールまたは水ガラスを主成分とする接着剤6.6を入れ
接着剤塗布ローラ4b、5bの一部を浸漬させ、接着剤
塗布ローラ4bは成形ギア2に近接して設ける。5b, an adhesive 6.6 whose main component is polyvinyl acetate or water glass is put into the adhesive containers 4a, 5a, and a part of the adhesive application rollers 4b, 5b is immersed in the adhesive container 4a, 5a. It is provided close to the forming gear 2.
セラミックス1i70〜90%、木材パルプ5〜20%
、バインダー5〜10%よりなり厚さ0.1〜0.5m
m、密度0.5g/cm’以下(紙の厚さ0.2mmの
場合100 g / m’以下)の非常に多孔質な紙7
,8を図に示す如くロール状に捲いて用意し、一方の紙
7は成形ギア1.2の噛合せ部に導いて波形紙7aとな
し、つづいて成形ギア2と接着剤塗布ローラ4bとの接
触部に導き接着剤6を波形紙7aの波頂部に塗布後、他
方の紙8とともに成形ギア2と圧着ローラ3との間に通
して両者を接着し、得られた片波成形体9の波形紙7a
の波頂部に接着剤塗布装置5の接着剤塗布ローラ5bに
より接着剤6を塗布後志10に捲取って第2図に示す如
く両端面間に多数の小透孔が貫通した円筒状のハニカム
マトリックス11を得る。Ceramics 1i 70-90%, wood pulp 5-20%
, 5-10% binder, thickness 0.1-0.5m
m, a very porous paper with a density of less than 0.5 g/cm' (less than 100 g/m' for a paper thickness of 0.2 mm) 7
. After applying the adhesive 6 to the crest of the corrugated paper 7a, the adhesive 6 is passed between the forming gear 2 and the pressure roller 3 together with the other paper 8 to bond them together, resulting in a single-corrugated molded article 9. corrugated paper 7a
After applying adhesive 6 to the crest of the wave by the adhesive application roller 5b of the adhesive application device 5, the adhesive 6 is rolled up to form a cylindrical honeycomb matrix with a large number of small holes penetrating between both end faces as shown in FIG. Get 11.
得られたハニカムマトリックス11を炉に入れ200〜
500℃の空気により焼成して紙および接着剤に含まれ
る有機物を除去して紙の密度を更に低くし、冷却後1号
水ガラス(酸化珪素対酸化ナトリウム2.に1)の20
〜35%水溶液中に浸漬し80〜100℃で約1時間乾
燥し、この浸漬・乾燥の工程をもう一度繰返す。かくし
てマトリックス重量の2〜2.5倍量の和木水ガラスが
付着浸潤したハニカム体を形成せしめ、次いで硫酸アル
ミニウムまたは硫酸マグネシウムの20〜30%水溶液
に浸漬振盪して珪酸アルミニウムまたは珪酸マグネシウ
ムのとドロゲルを生成せしめ、液から引上げて副生物の
硫酸ナトリウムおよび余剰の硫酸塩の水溶液並にマトリ
ックスに固着していない珪酸塩ヒドロゲルを水洗除去し
加熱乾燥して珪酸アルミニウムまたは珪酸マグネシウム
のエロゲルを主体としたガス収着借用素子を得る。The obtained honeycomb matrix 11 is put into a furnace and heated to 200~
The paper is baked in air at 500°C to remove organic matter contained in the paper and adhesive, further lowering the density of the paper.
It is immersed in a ~35% aqueous solution and dried at 80-100°C for about 1 hour, and the immersion/drying process is repeated once again. In this way, a honeycomb body is formed in which 2 to 2.5 times the weight of the matrix is adhered and infiltrated with Japanese water glass, and then immersed and shaken in a 20 to 30% aqueous solution of aluminum sulfate or magnesium sulfate to form a honeycomb body of aluminum silicate or magnesium silicate. Drogel is generated, pulled up from the liquid, washed with water to remove the by-product sodium sulfate and excess sulfate aqueous solution, and the silicate hydrogel that is not fixed to the matrix, and heated and dried to form the erogel mainly made of aluminum silicate or magnesium silicate. A gas sorption borrowing element is obtained.
水ガラス水溶液および硫酸塩水溶液には適宜水ガラスお
よび硫酸塩を追加し、反応後の操作を繰返す。硫酸塩水
溶液は60〜70℃に保持してこの中に水ガラス処理後
のマトリックスを浸漬し、この操作を繰返して硫酸塩水
溶液中に成る程度の量の硫酸ナトリウムが蓄積した段階
で水溶液を5℃前後まで冷却し硫酸ナトリウムを畢析し
濾別除去する。第3図に示す如く硫酸アルミニウムおよ
び硫酸マグネシウムの水に対する溶解度は硫酸ナトリウ
ムの水に対する溶解度と低温において大きな差があり、
また硫酸アルミニウムと硫酸ナトリウムとの複塩である
明界の水に対する溶解度は硫酸アルミニウムの溶解度と
ほぼ同一であり、硫酸ナトリウムは硫酸アルミニウムま
たは硫酸マグネシウムを殆んど含まない結晶として晶析
し得る。Water glass and sulfate are appropriately added to the water glass aqueous solution and sulfate aqueous solution, and the post-reaction operation is repeated. The sulfate aqueous solution is maintained at 60 to 70°C, and the matrix after the water glass treatment is immersed in it. This operation is repeated, and when an amount of sodium sulfate has accumulated to the extent that it becomes the sulfate aqueous solution, the aqueous solution is Cool to around ℃, precipitate sodium sulfate, and remove by filtration. As shown in Figure 3, the solubility of aluminum sulfate and magnesium sulfate in water is significantly different from the solubility of sodium sulfate in water at low temperatures.
Furthermore, the solubility of Meikai, which is a double salt of aluminum sulfate and sodium sulfate, in water is almost the same as that of aluminum sulfate, and sodium sulfate can be crystallized as crystals containing almost no aluminum sulfate or magnesium sulfate.
上記実施例においてはマトリックス11を成形した後に
200〜500℃の空気で焼成する例を述べたが、無機
繊維紙7.8を先ず焼成した後に水ガラスを含浸し、水
ガラスが僅かに粘着性を残す程度まで乾燥した後に紙8
を波形に型付けし紙7.8を積層してマトリックスを形
成してもよい。In the above embodiment, an example was described in which the matrix 11 was molded and then fired in air at 200 to 500°C, but the inorganic fiber paper 7.8 was first fired and then impregnated with water glass, so that the water glass became slightly sticky. After it dries to the extent that it leaves paper 8
The matrix may be formed by patterning the paper into a corrugated shape and stacking papers 7 and 8.
また上記マトリックス従ってガス収着借用素子は第2図
に示す円筒形即ちロータリー型のみならず、第4図に示
す並行流型、第5図に示す直交流型に成形して使用する
こともできる。Further, according to the above matrix, the gas sorption borrowing element can be used not only in a cylindrical or rotary type as shown in FIG. 2, but also in a parallel flow type as shown in FIG. 4, or a cross flow type as shown in FIG. .
発明の作用
第6図は和水水ガラスに硫酸アルミニウムおよび硫酸マ
グネシウムを60〜70℃に加熱して反応させて得られ
た珪酸塩エロゲルおよび市販のシリカバゲルの常温(2
5℃)における平衡吸湿量(重量%)を示す。相対湿度
75%における各種エロゲルの平衡吸湿量は
硫酸アルミニウム使用 37.6%市市販シリカ
ケゲル 31 %硫酸マグネシウム使用
23.5%であった。Effect of the Invention Figure 6 shows the reaction of silicate erogel obtained by reacting aluminum sulfate and magnesium sulfate with hydrohydrate glass by heating it to 60 to 70°C and commercially available silica bagel at room temperature (2
The graph shows the equilibrium moisture absorption amount (% by weight) at 5°C. Equilibrium moisture absorption of various Erogels at relative humidity of 75% is: 37.6% using aluminum sulfate, 37.6% using commercially available silica gel, 31% using magnesium sulfate.
It was 23.5%.
第7図は実施例で述べたセラミックス繊維紙に同様の方
法で水ガラスを含浸し、60〜70℃の硫酸アルミニウ
ムおよび硫酸マグネシウムの19〜21%水溶液を含浸
してガス収着剤ゲルをセラミックス紙に定着させた場合
の25℃におけるセラミックス紙1rn’当り水蒸気の
平衡吸着量を示す。Figure 7 shows that ceramic fiber paper is impregnated with water glass in the same manner as described in the example, and then impregnated with a 19-21% aqueous solution of aluminum sulfate and magnesium sulfate at 60-70°C to form a gas sorbent gel into a ceramic material. The equilibrium adsorption amount of water vapor per rn' of ceramic paper at 25° C. when fixed on paper is shown.
第8図は実施例に従い60〜70℃の硫酸アルミニウム
および硫酸マグネシウムの19〜21%水溶液を使用し
、紙積層用の接着剤としてポリ酢酸ビニル(PVAc)
および水ガラス(WG)を使用して製造したガス収着様
用素子の25℃における平衡吸湿量を示す。Figure 8 shows the use of polyvinyl acetate (PVAc) as an adhesive for paper lamination using a 19-21% aqueous solution of aluminum sulfate and magnesium sulfate at 60-70°C according to the example.
and the equilibrium moisture absorption amount at 25° C. of a gas sorption element manufactured using water glass (WG).
尚実施例に従い毎回浸漬後に硫酸アルミニウムの水溶液
より硫酸ナトリウムを除去し、水ガラス、硫酸アルミニ
ウムを補給し、各毎回に得られたガス収着様用素子の2
5℃、相対湿度75%における平衡吸湿量を第9図に示
す。According to the example, after each immersion, sodium sulfate was removed from the aqueous solution of aluminum sulfate, and water glass and aluminum sulfate were replenished.
The equilibrium moisture absorption amount at 5° C. and 75% relative humidity is shown in FIG.
第10図は第2図に示したガス収着様用素子11により
除湿機を組立てた状態を示すもので、ガス収着様用素子
11をケーシング12内に回転可能に保持しセパレータ
13により処理ゾーン14と再生ゾーン15とに分離し
、ギヤドモータ16、駆動ベルト17により素子11を
回転させ、高湿度の処理空気18を処理ゾーン14に高
温低湿度の再生空気19を再生ゾーン15に送入し、処
理空気18を除湿して乾燥空気20を得る。尚図中21
はプーリー、22はテンションプーリー、23はゴムシ
ール、24は再生空気加熱器である。FIG. 10 shows a dehumidifier assembled with the gas sorption element 11 shown in FIG. It is separated into a zone 14 and a regeneration zone 15, and the element 11 is rotated by a geared motor 16 and a drive belt 17, and high-humidity treatment air 18 is sent to the treatment zone 14, and high-temperature and low-humidity regeneration air 19 is sent to the regeneration zone 15. , the treated air 18 is dehumidified to obtain dry air 20. 21 in the figure
is a pulley, 22 is a tension pulley, 23 is a rubber seal, and 24 is a regenerated air heater.
実施例に従い厚さ0.2mm、坪ff180 g/dの
セラミックスm雑紙により第2図の直径320mm、厚
さ200 m m、波形紙7aの波長3mm、波高2m
mのマトリックスに成形し、ma用接接着剤して水ガラ
ス(WG)を使用し、水ガラスル硫酸アルミニウム(A
I )処理して得たガス収着様用素子と、同一条件に
より製造した先願の湿気交換用素子と、同一のセラミッ
クス繊維紙により同一サイズに成形し、吸湿剤としてマ
トリックスE1mの8%の塩化リチウムを含浸付着させ
た従来の除湿機用素子とを使用して第10図の除湿機を
組立て、素子前面における処理空気18および再生空気
19の風速を2m/sec、、一定時間に送入する再生
空気量と処理空気量との比をl:3、素子の回転数を1
8r、p、h、、処理空気の入口における温度を20℃
、再生空気の入口における温度を140℃、再生空気の
入口における絶対湿度を処理空気の入口における絶対湿
度と同一とした場合の処理空気の入口と出口とにおける
絶対湿度[g/kg]の関係を第11図に示す。According to the example, the diameter of the corrugated paper 7a is 320 mm, the thickness is 200 mm, the wavelength is 3 mm, and the wave height is 2 m as shown in FIG.
Water glass (WG) was used as the adhesive for ma, and water glass aluminum sulfate (A
I) The gas sorption-like element obtained by the treatment and the moisture exchange element of the previous application manufactured under the same conditions were molded to the same size using the same ceramic fiber paper, and 8% of the matrix E1m was used as a moisture absorbent. The dehumidifier shown in Fig. 10 was assembled using a conventional dehumidifier element impregnated with lithium chloride, and the treated air 18 and regenerated air 19 were fed at a speed of 2 m/sec in front of the element at a constant time. The ratio of the amount of regenerated air to the amount of processed air is 1:3, and the number of rotations of the element is 1.
8r, p, h, the temperature at the inlet of the processing air is 20°C.
, the relationship between the absolute humidity [g/kg] at the inlet and outlet of the processing air when the temperature at the inlet of the regeneration air is 140°C and the absolute humidity at the inlet of the regeneration air is the same as the absolute humidity at the inlet of the processing air. It is shown in FIG.
以上のデータより明らかな如く本発明により得られたガ
ス収着様用素子は従来の塩化リチウム含浸による除湿機
用素子に比し著しく優れた除湿性能を得られるのは勿論
、焼成工程のない先願の除湿機用素子に比べても性能が
向上し、特に積層用接着剤として水ガラスを使用した場
合にその性能の向上が著しいことがわかる。As is clear from the above data, the gas sorption device obtained according to the present invention not only has significantly superior dehumidification performance compared to the conventional dehumidifier device impregnated with lithium chloride, but also has the ability to It can be seen that the performance is improved even compared to the dehumidifier element of the present invention, and the performance is particularly improved when water glass is used as the lamination adhesive.
発明の効果
本発明は上記の如く構成したので、水ガラスは無機繊維
と親和性が大きく無機繊維紙の表面をよく濡らすのみな
らず無8I繊維紙内部の繊維間隙にもよく浸透し、この
水ガラスを加熱乾燥して含水率5〜45%の和水水ガラ
ス状乃至半固形状にな生成させるので、このヒドロゲル
乃至それより得られるエロゲルは紙の繊維間隙および表
面に強固に結合し、先願の場合と同様素子の使用中また
は保管中に素子から脱落するおそれは全くない。また上
記ヒドロゲルの含水率は40〜50%程度の極めて少量
になっているので乾燥前においてもゲルの強度が大で無
機繊維紙に対する結合力も大きく、反応後の水洗によっ
てヒドロゲルが紙から脱落するおそれはない。更にこの
ヒドロゲルは乾燥によってその含水f1140〜50%
程度に相当する微細な空孔な残したエロゲルになるため
、乾燥時の収縮は殆どなくエロゲルに亀裂を生じまたは
微度の高いエロゲルが得られる。4
本発明は更に水ガラス含浸に先立ってマトリックスを2
00〜500℃の空気によって焼成し、紙および接着剤
に含まれる有機成分をすべて除去しているので、得られ
た素子は燃焼し得ない無機質のみより成り、高温の再生
用空気を使用する除湿操作においても発火燃焼による事
故のおそれは全くなく、また無機繊維紙は低密度のもの
を使用しているので素子全体におけるガス収着剤即ち珪
酸塩エロゲルの割合が極めて大きく従って素子重量に対
するガス収着能力も極めて高くなり、マトリックス成形
において水ガラスを接着剤として使用するときは更にガ
ス収着能力が高くなる。Effects of the Invention Since the present invention is constructed as described above, water glass has a high affinity with inorganic fibers and not only wets the surface of the inorganic fiber paper well, but also penetrates well into the fiber gaps inside the 8I fiber paper, and this water glass Since the glass is heated and dried to produce a hydrogel-like or semi-solid form with a water content of 5 to 45%, this hydrogel or the aerogel obtained from it is strongly bonded to the paper fiber gaps and surface, and As in the case of the above application, there is no risk of the device falling off during use or storage. In addition, since the water content of the above hydrogel is extremely small, about 40 to 50%, the gel is strong even before drying and has a strong binding force to the inorganic fiber paper, so there is a risk that the hydrogel will fall off from the paper when washed with water after the reaction. That's not it. Furthermore, this hydrogel loses its water content f1140 to 50% by drying.
Since the Erogel leaves minute pores corresponding to the degree of drying, there is almost no shrinkage during drying, and an Erogel with a high degree of cracking or fineness can be obtained. 4 The present invention further provides that the matrix is
Since all organic components contained in the paper and adhesive are removed by firing with air at a temperature of 00 to 500 degrees Celsius, the resulting element consists only of inorganic materials that cannot be combustible, and can be dehumidified using high-temperature recycled air. There is no risk of accidents due to ignition and combustion during operation, and since the inorganic fiber paper used is of low density, the proportion of the gas sorbent, that is, silicate aerogel, in the entire element is extremely large, and therefore the gas absorption relative to the weight of the element is small. The gas sorption capacity is also very high, and when water glass is used as an adhesive in matrix molding, the gas sorption capacity is even higher.
また本発明により得られるガス収着様用素子はガス収着
剤として珪酸塩エロゲルよりなる吸着剤を使用するので
、塩化リチウム等旧来の潮解性のある吸収型吸湿剤と異
なり過剰吸湿およびこれに伴なうキャリーオーバーのお
それなく、素子の使用中塵埃が付着した場合には水洗に
よりこれを除去し得る。In addition, since the gas sorption device obtained by the present invention uses an adsorbent made of silicate aerogel as a gas sorption agent, unlike conventional absorbent hygroscopic agents with deliquescent properties such as lithium chloride, it is difficult to absorb excess moisture. If dust adheres to the device during use, it can be removed by washing with water without the risk of carryover.
を生成させるので、60〜70℃の高温でこの複分解反
応を進め、反応終了後10℃程度以下の低温まで冷却す
ることにより副生物の硫酸ナトリウを行ない得るため、
原材料を有効に利用することができ、何等特殊の熟練を
要せず廉価に製造し得る効果を有するものである。By proceeding with this double decomposition reaction at a high temperature of 60 to 70°C and cooling it to a low temperature of about 10°C or less after the reaction is completed, the by-product sodium sulfate can be produced.
It has the effect that raw materials can be used effectively, and it can be manufactured at a low cost without requiring any special skill.
【図面の簡単な説明】
図は本発明の実施例を示し、第1図は本発明の第1工程
を示す断面説明図、第2図は第1図の工程により得られ
たマトリックス乃至本発明により得られたガス収着様用
素子の一例を示す斜視図、第3図は硫酸アルミニウム、
硫酸マグネシウム。
硫酸ナトリウムの溶解度曲線を示すグラフ、第4図およ
び第5図は本発明により得られたガス収着様用素子の他
の例を示す斜視説明図、第6図乃至第9図″および第1
1図は本発明により得られたガス収@機用素子の除湿性
能を示すグラフ、第1O図は第2図の素子により除湿機
を組立てた態様を示す一部欠截説明図である。
図中1.2は成形ギア、3は圧着ローラ、4゜5は接着
剤塗布装置、7,8は低密度の無alII維紙、18は
処理空気、19は再生空気、20は乾−9゜
算Z口
算3呂[BRIEF DESCRIPTION OF THE DRAWINGS] The drawings show examples of the present invention, FIG. 1 is a cross-sectional explanatory diagram showing the first step of the present invention, and FIG. 2 shows the matrix obtained by the process of FIG. 1 or the present invention. A perspective view showing an example of a gas sorption-like element obtained by using aluminum sulfate,
Magnesium sulfate. Graphs showing the solubility curve of sodium sulfate, FIGS. 4 and 5 are perspective explanatory views showing other examples of gas sorption elements obtained by the present invention, and FIGS.
FIG. 1 is a graph showing the dehumidifying performance of the element for a gas collector obtained according to the present invention, and FIG. In the figure, 1 and 2 are forming gears, 3 is a pressure roller, 4.5 is an adhesive coating device, 7 and 8 are low-density Al II fiber-free paper, 18 is processing air, 19 is recycled air, and 20 is a dryer-9゜Calculation Z Account 3ro
Claims (1)
は上記繊維2種以上の混合物より選んだ無機繊維を主成
分とする低密度の平面紙と波形紙とを交互に積層して多
数の小透孔を有するハニカムマトリックスを成形し、該
マトリックスを焼成して紙および接 着剤に含まれる有機物を除去して紙の密度を更に低くし
、該焼成マトリックスに水ガラスを含浸し、加熱乾燥し
て水ガラスを濃縮して和水水ガラスまたは半固形状とし
、硫酸アルミニウムまたは硫酸マグネシウム等金属硫酸
塩の水溶液に該マトリックスを浸漬し水ガラスとの反応
により珪酸塩ヒドロゲルを紙の繊維間隙および表面に生
成結合せしめ、洗浄乾燥して紙内の無機繊維を骨組とし
珪酸塩エロゲルを主成分とするガス収着機用素子を得、
該金属硫酸塩水溶液を冷却して反応副生物として生成し
金属硫酸塩水溶液中に溶解している硫酸ナトリウムを晶
析除去し、含浸後の水ガラス水溶液に水ガラスを補給し
、反応後の金属硫酸塩水溶液に該金属硫酸塩を補給して
上記のガス収着機用素子の製造を繰返すことを特徴とす
るガス収着機用素子の製造法。 2、上記積層工程の前または後に紙に水ガラスを含浸す
る特許請求の範囲第1項記載のガス収着機用素子の製造
法。 3、平面紙と波形紙に水ガラスを含浸し、紙の横腹の前
または後に200〜500℃の空気により焼成する特許
請求の範囲第1項記載のガス収着機用素子の製造法。 4、水ガラスを片波成形体成形用および積層用接着剤と
して使用し、該水ガラスと金属硫酸塩との反応により接
着力を保持したまま吸着活性を有する珪酸塩エロゲルを
生成せしめる特許請求の範囲第1項記載のガス収着機用
素子の製造法。[Scope of Claims] 1. A large number of low-density plane papers and corrugated papers, each consisting mainly of inorganic fibers selected from ceramic fibers, glass fibers, carbon fibers, or a mixture of two or more of the above-mentioned fibers, are alternately laminated. A honeycomb matrix with small pores is formed, the matrix is fired to remove organic matter contained in the paper and adhesive, and the density of the paper is further lowered, the fired matrix is impregnated with water glass, and then heated and dried. The matrix is immersed in an aqueous solution of a metal sulfate such as aluminum sulfate or magnesium sulfate, and the silicate hydrogel is formed between the paper fibers and into the spaces between the paper fibers by reaction with the water glass. The material is bonded to the surface, washed and dried to obtain an element for a gas sorption device whose main component is silicate erogel, with the inorganic fibers in the paper as the framework.
The metal sulfate aqueous solution is cooled to crystallize and remove the sodium sulfate produced as a reaction by-product and dissolved in the metal sulfate aqueous solution, water glass is replenished to the water glass aqueous solution after impregnation, and the metal after the reaction is removed. A method for producing an element for a gas sorption machine, which comprises repeating the above-described production of the element for a gas sorption machine by replenishing the metal sulfate to an aqueous sulfate solution. 2. The method for producing an element for a gas sorption machine according to claim 1, wherein the paper is impregnated with water glass before or after the lamination step. 3. The method for producing an element for a gas sorption machine as claimed in claim 1, wherein flat paper and corrugated paper are impregnated with water glass and fired in air at 200 to 500°C before or after the sides of the paper. 4. A patent claim in which water glass is used as an adhesive for forming and laminating a single wave molded body, and a silicate aerogel having adsorption activity while maintaining adhesive strength is produced by the reaction between the water glass and a metal sulfate. A method for producing an element for a gas sorption machine according to scope 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1205053A JP2707330B2 (en) | 1989-08-07 | 1989-08-07 | Continuous production method of elements for gas adsorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1205053A JP2707330B2 (en) | 1989-08-07 | 1989-08-07 | Continuous production method of elements for gas adsorber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0368415A true JPH0368415A (en) | 1991-03-25 |
JP2707330B2 JP2707330B2 (en) | 1998-01-28 |
Family
ID=16500666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1205053A Expired - Lifetime JP2707330B2 (en) | 1989-08-07 | 1989-08-07 | Continuous production method of elements for gas adsorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2707330B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6352578B1 (en) * | 1998-05-26 | 2002-03-05 | Takasago Thermal Engineering Co., Ltd. | Air cleaning filter, process for preparing the same, and high-level cleaner |
CN105339083A (en) * | 2013-04-30 | 2016-02-17 | 三菱日立电力系统株式会社 | Denitration catalyst and method for producing same |
CN111408338A (en) * | 2020-03-17 | 2020-07-14 | 江苏苏净集团有限公司 | Silica gel rotating wheel adsorbing material for dehumidification and preparation method thereof |
CN111408337A (en) * | 2020-03-17 | 2020-07-14 | 江苏苏净集团有限公司 | Silica gel dehumidification rotating wheel and preparation method thereof |
CN112902315A (en) * | 2021-01-13 | 2021-06-04 | 常州大学 | Circulation dehumidification cooling system |
-
1989
- 1989-08-07 JP JP1205053A patent/JP2707330B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6352578B1 (en) * | 1998-05-26 | 2002-03-05 | Takasago Thermal Engineering Co., Ltd. | Air cleaning filter, process for preparing the same, and high-level cleaner |
CN105339083A (en) * | 2013-04-30 | 2016-02-17 | 三菱日立电力系统株式会社 | Denitration catalyst and method for producing same |
EP2979753A4 (en) * | 2013-04-30 | 2016-07-13 | Mitsubishi Hitachi Power Sys | Denitration catalyst and method for producing same |
US9623402B2 (en) | 2013-04-30 | 2017-04-18 | Mitsubishi Hitachi Power Systems, Ltd. | Denitration catalyst and method for producing same |
CN111408338A (en) * | 2020-03-17 | 2020-07-14 | 江苏苏净集团有限公司 | Silica gel rotating wheel adsorbing material for dehumidification and preparation method thereof |
CN111408337A (en) * | 2020-03-17 | 2020-07-14 | 江苏苏净集团有限公司 | Silica gel dehumidification rotating wheel and preparation method thereof |
CN111408338B (en) * | 2020-03-17 | 2023-03-14 | 江苏苏净集团有限公司 | Silica gel rotating wheel adsorbing material for dehumidification and preparation method thereof |
CN112902315A (en) * | 2021-01-13 | 2021-06-04 | 常州大学 | Circulation dehumidification cooling system |
Also Published As
Publication number | Publication date |
---|---|
JP2707330B2 (en) | 1998-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4886769A (en) | Active gas adsorbing element and method of manufacturing | |
US4911775A (en) | Method of manufacturing dehumidifier element | |
JPH0628173Y2 (en) | Moisture exchange element | |
JP3222728B2 (en) | Element for moisture exchanger, moisture exchanger medium and method for producing the same | |
US3865924A (en) | Process for regenerative sorption of CO{HD 2 | |
JP3346680B2 (en) | Adsorbent for moisture exchange | |
US5683532A (en) | Method of manufacturing an active silica gel honeycomb adsorbing body usable in an atmosphere having 100% relative humidity | |
WO2013108117A1 (en) | Desiccant based honeycomb chemical filter and method of manufacture thereof | |
JPH0125614B2 (en) | ||
JPH02160046A (en) | Production of gas adsorbing element | |
JPH0523529A (en) | Adsorbable honeycomb ceramic laminate and preparation thereof | |
JPH0368415A (en) | Production of element for gas sorbing machine | |
JPH0364164B2 (en) | ||
US5254195A (en) | Process for manufacturing moisture exchange element | |
JPS63240921A (en) | Dry-type dehumidifying material and dry-type dehumidifying device | |
JPS5919727B2 (en) | Manufacturing method of activated carbon adsorption unit | |
JPS63175619A (en) | Preparation of moisture absorbing sheet and moisture exchange element | |
US20030056884A1 (en) | Heat and moisture exchange media | |
DE3907167C2 (en) | Process for producing a dehumidifier element | |
JP3495874B2 (en) | Method of manufacturing dehumidifying element | |
JP2937437B2 (en) | Manufacturing method of activated silica gel honeycomb adsorbent | |
KR960010898B1 (en) | Method for producing a gas absorptions elements | |
JPH01111422A (en) | Production of moisture absorptive sheet and element for exchanging moisture | |
JPS63218235A (en) | Production of element for dehumidification | |
JP3345596B2 (en) | Adsorbent for moisture exchange |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081017 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081017 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091017 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |