JP3345596B2 - Adsorbent for moisture exchange - Google Patents

Adsorbent for moisture exchange

Info

Publication number
JP3345596B2
JP3345596B2 JP33939999A JP33939999A JP3345596B2 JP 3345596 B2 JP3345596 B2 JP 3345596B2 JP 33939999 A JP33939999 A JP 33939999A JP 33939999 A JP33939999 A JP 33939999A JP 3345596 B2 JP3345596 B2 JP 3345596B2
Authority
JP
Japan
Prior art keywords
moisture
silica
sheet
fine particles
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33939999A
Other languages
Japanese (ja)
Other versions
JP2000126541A (en
Inventor
利実 隈
升章 白濱
宏暁 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18327119&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3345596(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP33939999A priority Critical patent/JP3345596B2/en
Publication of JP2000126541A publication Critical patent/JP2000126541A/en
Application granted granted Critical
Publication of JP3345596B2 publication Critical patent/JP3345596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は湿気交換用吸着体た
とえば除湿用吸着シートおよび湿気交換用ハニカム吸着
素子たとえば除湿用吸着素子または湿気および顕熱を交
換する全熱交換素子(以下これらを湿気交換体と呼ぶ)
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moisture exchange adsorbent such as a dehumidification adsorption sheet and a moisture exchange honeycomb adsorption element such as a dehumidification adsorption element or a total heat exchange element for exchanging moisture and sensible heat (hereinafter referred to as a moisture exchange element). Call it body)
It is about.

【0002】[0002]

【従来の技術】ゼオライトその他のモレキュラシーブ、
シリカゲル、塩化リチウム等無機吸湿剤を用いた除湿用
または全熱(湿気および顕熱)交換用のハニカム素子は
従来から使用されている。また本出願人は水ガラスを積
層体に含浸固着した後酸または金属塩水溶液により化学
反応を利用してシリカゲルまたは金属珪酸塩ゲルを合成
した湿気交換体(特公平1−25614、特公平5−8
1831)を製造販売している。
2. Description of the Related Art Zeolite and other molecular sieves,
Honeycomb elements for dehumidification or total heat (moisture and sensible heat) exchange using an inorganic desiccant such as silica gel or lithium chloride have been conventionally used. In addition, the present applicant impregnated and immobilized water glass on the laminate, and then synthesized a silica gel or metal silicate gel using a chemical reaction with an acid or metal salt aqueous solution (Japanese Patent Publication No. 1-261414, Japanese Patent Publication No. Hei 5-256). 8
1831).

【0003】これ等の除湿用吸着体は半導体工業、フイ
ルム工業、食品工業、軍事用等あらゆる分野における空
気、窒素ガスその他の気体中の湿分の除去に利用されて
いる。また全熱交換用のハニカム素子はビル、工場、家
庭用全熱交換器として湿気および顕熱の交換に使用され
ている。
[0003] These adsorbents for dehumidification are used for removing moisture from air, nitrogen gas and other gases in various fields such as semiconductor industry, film industry, food industry and military industry. Honeycomb elements for total heat exchange are used for exchanging moisture and sensible heat as total heat exchangers for buildings, factories and homes.

【0004】[0004]

【発明が解決しようとする課題】上記従来のゼオライト
その他のモレキュラシーブ、シリカゲル等の吸着剤はシ
リカゾル、アルミナゾル等バインダーに分散してこの分
散液にハニカム素子を浸漬する方法により上記無機吸湿
剤の微粒子をハニカム素子を構成するシート内部に含浸
固着させ、またはハニカム素子を構成するシートにバイ
ンダーを用いて無機吸湿剤の微粒子を固着した後積層し
ハニカム状に成形する方法が行われている。
The above-mentioned conventional adsorbents such as zeolite and other molecular sieves and silica gel are dispersed in a binder such as silica sol and alumina sol, and the fine particles of the inorganic moisture absorbent are dispersed by dipping the honeycomb element in the dispersion. A method of impregnating and fixing the inside of a sheet constituting a honeycomb element, or fixing a fine particle of an inorganic moisture absorbing agent to a sheet constituting a honeycomb element by using a binder, and then laminating and forming into a honeycomb shape is performed.

【0005】この方法ではバインダーは湿分の吸着に寄
与することなくむしろ吸着剤の吸着面積を減少し吸着性
能を低下させている。本発明は高性能の吸湿性シートお
よび湿気交換用ハニカム素子を簡易な手段で得ようとす
るものである。
In this method, the binder does not contribute to the adsorption of moisture, but rather reduces the adsorption area of the adsorbent and lowers the adsorption performance. The present invention aims to obtain a high-performance hygroscopic sheet and a honeycomb element for exchanging moisture by simple means.

【0006】[0006]

【課題を解決するための手段】本発明は表面に多数の安
定したシラノール基を有する粒子直径約120Å以下の
シリカ粒子を含有するシリカゾルに親水性有機高分子電
解質を加えシートまたは多数の小透孔を有する積層体
(以下ハニカム積層体という)に含浸結合または塗布
し、乾燥し、ゾルをゲル化してシートまたは積層体の繊
維間隙および表面にシリカ微粒子を固着させることによ
り湿気交換体を得るものである。
According to the present invention, a hydrophilic organic polymer electrolyte is added to a silica sol containing silica particles having a number of stable silanol groups on the surface and having a particle diameter of about 120.degree. A moisture exchanger is obtained by impregnating or coating a laminate having the following (hereinafter referred to as a honeycomb laminate), drying, gelling the sol, and fixing silica fine particles to the fiber gap and the surface of the sheet or laminate. is there.

【0007】ここで使用されるシリカゾルは、表面に多
数のシラノール基を有する粒子直径約120Å以下のシ
リカ微粒子が固形分として30%以下の割合で混入して
いるシリカゾルで、このゾルを加熱等の手段によりゲル
化させるとシリカ微粒子が互に凝集しながら多孔状に結
合しマイクロポアを形成する。一方、シリカ粒子の直径
があまり小さくなると不安定で放置中にゲル化し使用不
可能となる場合がある。この詳細については後述する。
The silica sol used here is a silica sol in which silica fine particles having a large number of silanol groups on the surface and having a particle diameter of about 120 ° or less are mixed in a proportion of 30% or less as a solid content. When gelled by the means, the silica fine particles are aggregated with each other and bonded in a porous manner to form micropores. On the other hand, the diameter of silica particles
Becomes too small and gels during standing, making it unusable.
May be possible. The details will be described later.

【0008】このマイクロポアがシリカ微粒子の表面に
存在する多数のシラノール基とともに強力な吸湿性を発
揮する。シリカゾル中の粒子径が大きい場合はこれが凝
集結合しながら形成するマイクロポアの径が大きくなる
ため吸湿作用が弱くかつ凝集結合力も弱いのでハニカム
吸湿体としては使用がむずかしい。一方シリカゾル中の
微量のアルカリ金属イオンも吸湿性に寄与するためこれ
も比較的多く混入したゾルを使用する。以下実施例を詳
細に説明する。
The micropores exhibit strong hygroscopicity together with a large number of silanol groups present on the surface of the silica fine particles. When the particle diameter in the silica sol is large, the diameter of the micropores formed while the silica sol is coagulated and bonded becomes large, so that the hygroscopic action is weak and the cohesive bonding force is also weak, so that it is difficult to use as a honeycomb moisture absorber. On the other hand, a small amount of alkali metal ions in the silica sol also contributes to the hygroscopicity, so that a sol mixed with a relatively large amount is used. Hereinafter, embodiments will be described in detail.

【0009】[0009]

【発明の実施の形態】本発明は高性能の吸湿性シートお
よび湿気交換用ハニカム素子を簡易な手段で得ようとす
るものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention aims to obtain a high-performance moisture-absorbing sheet and a honeycomb element for exchanging moisture by simple means.

【0010】[0010]

【実施例】(実施例1)下記表1の5種類のシリカゾル
を夫々0.2mm厚のセラミック繊維ペーパを好ましく
は焼成して密度を下げた後セラミックペーパの重量に対
してシリカ固形分の付着量が約64wt%になるように
含浸し150℃で20分間乾燥しシリカゾルをゲル化し
て湿気交換用の吸着シートを得る。このシートの時間経
過に対する湿気吸着量を測定した結果を図2に示す。
(Example 1) Five kinds of silica sols shown in Table 1 below are each preferably fired with 0.2 mm thick ceramic fiber paper to reduce the density, and then the solid content of silica is attached to the weight of the ceramic paper. Impregnated so that the amount becomes about 64 wt%, dried at 150 ° C. for 20 minutes, and gelled the silica sol to obtain an adsorption sheet for moisture exchange. FIG. 2 shows the result of measuring the amount of moisture adsorbed on the sheet over time.

【表1】 [Table 1]

【0011】測定法は先ずこのシートを140℃で30
分間加熱して完全に脱湿した後吸着を開始する。測定装
置は図1に示すように吸着シートASを架台DSに数枚
夫々間隔をおいて載置する。送風機Fを作動させ恒温恒
湿室CRから温湿度を一定にした空気を吸込みながらダ
クトDに送り込む。ダクトDにはヒータボックスHDを
介在させ加熱によってダクトD内の空気の温度を所定の
値に上げ吸着シートASを通って放出する。
The measuring method is as follows.
After heating for a minute to completely dehumidify, adsorption is started. In the measuring device, as shown in FIG. 1, a plurality of suction sheets AS are placed on the gantry DS at intervals. The blower F is operated and the air with a constant temperature and humidity is sucked into the duct D while being sucked from the constant temperature and humidity chamber CR. The heater box HD is interposed in the duct D, and the temperature of the air in the duct D is raised to a predetermined value by heating and discharged through the suction sheet AS.

【0012】吸着シートASの前後には温度計T、湿度
計HM、風速計Vを取付けてあり夫々の空気条件を計測
する。一方吸着シートASを載置した架台DSは電子天
秤EBにじかに載置しており吸着シートASが湿分を吸
着するに従い重量の増加を計測する。先ず送風機Fを作
動しダクトD内の流速を一定にする。次に吸着シートA
Sを完全に脱湿するためにヒータボックスHDに通電し
空気を140℃に加熱しこれを30分間吸着シートAS
に平行に送通し完全に脱湿する。
A thermometer T, a hygrometer HM, and an anemometer V are attached to the front and back of the suction sheet AS, and each air condition is measured. On the other hand, the gantry DS on which the suction sheet AS is mounted is directly mounted on the electronic balance EB, and measures an increase in weight as the suction sheet AS absorbs moisture. First, the blower F is operated to make the flow velocity in the duct D constant. Next, suction sheet A
In order to completely dehumidify S, the heater box HD is energized and the air is heated to 140 ° C., and this is heated for 30 minutes by the suction sheet AS
And then completely dehumidified.

【0013】次にヒータHを切りダクトD内の空気の温
度を下げ吸着シートASが吸着を始めた時点から吸着シ
ートASの重量の増加の立上がりを凡そ60秒毎に計測
する。これを20分間続ける。この値をプロットしたの
を図2に示す。図2から分かるようにシリカ粒子の直径
が小さくなるに従い吸湿速度が速いことが分かる。
Next, the heater H is turned off, the temperature of the air in the duct D is lowered, and the rising of the weight increase of the suction sheet AS is measured approximately every 60 seconds from the time when the suction sheet AS starts suction. This is continued for 20 minutes. This value is plotted in FIG. As can be seen from FIG. 2, the smaller the diameter of the silica particles, the higher the moisture absorption rate.

【0014】この内No.1(40Å),No.2(7
0Å)のシリカ粒子の吸湿速度が最も速い性能を有して
いるので除湿素子、全熱交換用素子として使用できる。
吸湿条件は空気の温度20℃、相対湿度70%、吸着
シートASの前面の風速1m/sec.である。図2の
横軸は吸着時間(分)を示し縦軸はシートに吸着された
湿分の量(g/m)を示す。図に示すように吸着シー
トASの時間に対する吸着量(g/m)のカーブはN
o.1,No.2,No.3,No.4,No.5のよ
うになる。一方ロータリー型除湿機の使用方法において
は図4矢印に示す如くロータの1回転(約6分)毎に吸
湿、脱湿を繰り返し吸湿時間は約4.5分、脱湿時間は
約1.5分である。
No. No. 1 (40 °), No. 2 (7
Since the silica particles of 0 °) have the highest moisture absorption rate, they can be used as dehumidifying elements and elements for total heat exchange.
The conditions of moisture absorption are as follows: air temperature 20 ° C., relative humidity 70%, wind speed 1 m / sec. It is. The horizontal axis in FIG. 2 indicates the adsorption time (minute), and the vertical axis indicates the amount of moisture adsorbed on the sheet (g / m 2 ). As shown in the figure, the curve of the amount of adsorption (g / m 2 ) with respect to time of the adsorption sheet AS is N
o. 1, No. 2, No. 3, No. 4, No. It looks like 5. On the other hand, in the method of using the rotary dehumidifier, as shown by an arrow in FIG. 4, moisture absorption and dehumidification are repeated every one rotation (about 6 minutes) of the rotor, and the moisture absorption time is about 4.5 minutes and the dehumidification time is about 1.5. Minutes.

【0015】従ってこの吸湿時間の4.5分間に如何に
多くの湿分を吸着するかによって除湿性能が決まる。図
2に示す如くシリカ粒子の直径が40Å〜70Åの場合
が極めて吸湿速度の立上りが速く、例えばNo.2は3
分間に約13g/m吸湿しNo.1は3分間に21g
/m吸湿する。粒子径が250Å,450Åと大きく
なるに従い吸着速度は遅くなる。
Therefore, the dehumidifying performance is determined by how much moisture is adsorbed during the 4.5 minutes of the moisture absorption time. As shown in FIG. 2, when the diameter of the silica particles is 40 ° to 70 °, the rise of the moisture absorption rate is extremely fast. 2 is 3
Of about 13 g / m 2 per minute. 1 is 21g for 3 minutes
/ M 2 to moisture absorption. As the particle diameter increases to 250 ° and 450 °, the adsorption speed decreases.

【0016】たとえばNo.4は3分間に5g/m
湿し、No.5は同じく3分間に2.5g/m吸湿
し、従ってこの吸湿性能では除湿機、全熱交換機には使
用できない。従って除湿用、全熱交換用として用いられ
る性能を有するものは粒子径が約120Å以下の粒子が
最も適している。
For example, No. No. 4 absorbed 5 g / m 2 in 3 minutes. 5 also absorbs 2.5 g / m 2 in 3 minutes, and therefore cannot be used for a dehumidifier or a total heat exchanger with this moisture absorbing performance. Accordingly, particles having a performance of being used for dehumidification and total heat exchange are most preferably particles having a particle size of about 120 ° or less.

【0017】一方全熱交換体の吸着素子は1回転毎に顕
熱と潜熱とを同時に効率よく交換しなければならず、全
熱交換用素子の回転数は通常顕熱交換効率の最大値を加
味して8〜16r.p.m.と速く従って湿分の吸・脱
着速度も極めて速いことが要求され好ましくはNo.2
の粒子径70Å以下が望ましい。図2により分るように
シリカゾル内のシリカ微粒子の直径が小さくなるに従い
シートの吸着速度は速くなる特性を示す。
On the other hand, the adsorption element of the total heat exchanger must efficiently and simultaneously exchange sensible heat and latent heat for each rotation, and the rotation speed of the element for total heat exchange usually has the maximum value of the sensible heat exchange efficiency. 8-16r. p. m. Therefore, it is required that the absorption and desorption rates of moisture are extremely high. 2
Is preferably 70 ° or less. As shown in FIG. 2, the adsorption rate of the sheet increases as the diameter of the silica fine particles in the silica sol decreases.

【0018】(実施例2)ガラス繊維に有機バインダ
ー、紙力増強剤等を加え抄造した厚さ0.2mmのガラ
ス繊維ペーパを用意する。前記シリカゾルNo.2にシ
リカゾルに対する重量比で三菱化成社のダイヤイオンS
K 1B Na形(以下SK1Bという)微粒子を吸湿
剤として20%分散した分散体を上記のペーパに含浸し
乾燥し、ペーパに対する重量比で約20%のシリカ微粒
子と約20%のSK1B微粒子とを固着させ、湿気交換
用シートを得る。
(Example 2) A glass fiber paper having a thickness of 0.2 mm prepared by adding an organic binder, a paper strength agent and the like to glass fibers is prepared. The silica sol no. Fig. 2 Diaion S of Mitsubishi Kasei Co., Ltd.
The above-mentioned paper is impregnated with a dispersion in which K 1B Na type (hereinafter referred to as SK1B) fine particles are dispersed as a hygroscopic agent by 20% and dried. Affix to obtain a moisture exchange sheet.

【0019】上記SK 1Bは化学式に示す如くスチレ
ンとジビニルベンゼンとが三次元的に共重合した合成樹
脂のベンゼン環のところどころに化学結合した電離基と
してスルホン酸ナトリウム基(−SONa)を有する
強酸性陽イオン交換樹脂ナトリウム形(中性)である。
ここでシリカ微粒子は吸湿剤として作用すると同時に吸
湿剤であるSK 1B微粒子をシートの内部および表面
に結合するバインダーとして作用し互に相乗吸湿作用を
持った吸湿シートを得る。
The SK 1B has a sodium sulfonate group (—SO 3 Na) as an ionizing group chemically bonded to the benzene ring of a synthetic resin in which styrene and divinylbenzene are three-dimensionally copolymerized as shown in the chemical formula. It is a strong acid cation exchange resin sodium form (neutral).
Here, the silica fine particles act as a hygroscopic agent, and at the same time, act as a binder for bonding the SK1B fine particles as the hygroscopic agent to the inside and the surface of the sheet, thereby obtaining a hygroscopic sheet having a synergistic hygroscopic action.

【化1】 Embedded image

【0020】(実施例3)セラミック繊維に少量のパル
プおよびガラス繊維を混抄した厚さ0.2mmの紙をピ
ッチ3.4mm、高さ1.8mmの片波成形体に成形
し、図3に示す如く片波形成体を芯材Sに捲回積層して
ハニカムロータを得る。前記シリカゾルNo.2に重量
比で三菱化成社のSK 1B微粒子を20%分散し、上
記ハニカムロータにこの分散体を含浸し乾燥してハニカ
ム除湿ロータROを得る。No.2シリカゲルとSK
1B微粒子との含有量は除湿ロータの重量に対し夫々2
0%である。このロータROの性能はシリカゾルとゼオ
ライトとを使用したロータの性能には劣るが、従来のL
iCl使用ロータの性能より優れており、ハニカム除湿
機として充分使用できる。
(Example 3) A 0.2 mm thick paper obtained by mixing a small amount of pulp and glass fiber with ceramic fiber was formed into a single wave molded body having a pitch of 3.4 mm and a height of 1.8 mm. The honeycomb rotor is obtained by winding and laminating the half-wave forming body on the core material S as shown in FIG. The silica sol no. 2, SK 1B fine particles of Mitsubishi Kasei Co., Ltd. are dispersed in a weight ratio of 20%, and the honeycomb rotor is impregnated with the dispersion and dried to obtain a honeycomb dehumidifying rotor RO. No. 2 Silica gel and SK
The content of 1B fine particles is 2 parts each with respect to the weight of the dehumidifying rotor.
0%. The performance of this rotor RO is inferior to the performance of a rotor using silica sol and zeolite,
It is superior to the performance of the rotor using iCl and can be sufficiently used as a honeycomb dehumidifier.

【0021】ハニカム除湿ロータRD,RD,RD
L,ROを夫々各別に使用する場合には図4に示す如く
ロータRD,RD,RDL,ROをケーシング11
内に駆動回転可能に装着し、セパレータ17により除湿
ゾーン18と再生ゾーン19とに分離し、ロータをギヤ
ドモータ20,プーリ21,テンションプーリ22,駆
動ベルト23により10〜25r.p.h.で回転し、
除湿すべき処理空気TAを1〜3m/sec.で除湿ゾ
ーン18に通して除湿空気DAを得、再生空気HAを再
生ゾーン19に反対方向より同じく1〜3m/sec.
で通して再生部分を80〜150℃の熱風で脱着再生す
る。尚図中24はシール、25は再生空気加熱器であ
る。
Honeycomb dehumidifying rotors RD 1 , RD 2 , RD
When each of L and RO is used separately, the rotors RD 1 , RD 2 , RDL and RO are connected to the casing 11 as shown in FIG.
The rotor is separated into a dehumidifying zone 18 and a regeneration zone 19 by a separator 17, and the rotor is driven by a geared motor 20, a pulley 21, a tension pulley 22, and a driving belt 23 for 10 to 25 rpm. p. h. Rotate with
The processing air TA to be dehumidified is 1 to 3 m / sec. Through the dehumidifying zone 18 to obtain dehumidified air DA, and the regenerating air HA is similarly passed through the regenerating zone 19 from the opposite direction at 1 to 3 m / sec.
And desorbing and regenerating the regenerated portion with hot air at 80 to 150 ° C. In the drawing, reference numeral 24 denotes a seal, and reference numeral 25 denotes a regeneration air heater.

【0022】[0022]

【発明の効果】本発明は表面に多数の安定したシラノー
ル基を有し粒子直径約120Å以下で微粒子同志の結合
力が強くかつ他の物質との結合力即ちバインダー力も強
い性質を有するシリカ微粒子を含有するシリカゾルをシ
ートまたはハニカム積層体に含浸または塗布して乾燥し
ゲル化固着するので各シリカ微粒子はハニカム積層体に
強力に結合しながら多数のシリカ微粒子同志が互いに結
合することにより3.0Å〜48Åの孔径を有する膨大
な数のマイクロポアを形成してシート内部および表面に
定着するものである。
According to the present invention, there are provided silica fine particles having a large number of stable silanol groups on the surface, having a particle diameter of about 120 ° or less and having a strong binding force between the fine particles and a strong binding force with other substances, that is, a strong binder force. The silica sol contained is impregnated or coated on a sheet or a honeycomb laminate and dried and gel-fixed, so that each silica fine particle is strongly bonded to the honeycomb laminate while a large number of silica fine particles are bonded to each other to achieve a thickness of 3.0 °-. An enormous number of micropores having a pore diameter of 48 ° are formed and fixed inside and on the surface of the sheet.

【0023】本発明はシリカゾル内に固形分30%以下
含まれるシリカ微粒子の直径が120Å以下でかつ安定
したシラノール基を有ししかもシリカゾルに対して0.
1〜1.0wt%のアルカリ金属NaOが存在するシ
リカゾルをシートまたはハニカム積層体に含浸または塗
布した後乾燥しシートまたはハニカム積層体内のゾルを
ゲル化固着するものであり、ゲル化の過程において(図
5〜6参照)多数のシリカ微粒子は互いに結合しながら
径3Å−48Åの膨大な数のマイクロポアを形成しなが
らシートまたはハニカム積層体の素材内に結合してゆく
ものであり、この場合シラノール基もNaOも上記マ
イクロポア表面に定着しておりマイクロポアと共に強力
な水分子吸着性能を発揮するものである。シリカゾル内
の固形分即ちシリカ粒子の直径が小さくなればなる程粒
子間の吸引力が強くなりシリカゾル内に分散状態で存在
するシリカ粒子の量が多くなれば短時間でゲル化する特
性を有する。この短時間でゲル化し不安定になる状態に
ついては後述する。
In the present invention, the silica fine particles contained in the silica sol having a solid content of 30% or less have a diameter of 120 ° or less, have a stable silanol group, and have a silica sol content of 0.1%.
A sheet or honeycomb laminate is impregnated or coated with a silica sol containing 1 to 1.0 wt% of alkali metal Na 2 O, and then dried and gelled and fixed to the sol in the sheet or honeycomb laminate. (See FIGS. 5 and 6), a large number of silica fine particles are bonded to each other to form a huge number of micropores having a diameter of 3Å-48Å while being bonded to each other, and to be bonded into the material of the sheet or the honeycomb laminate. In this case, both a silanol group and Na 2 O are fixed on the surface of the micropore, and exhibit strong water molecule adsorption performance together with the micropore. The smaller the solid content in the silica sol, that is, the smaller the diameter of the silica particles, the stronger the attraction force between the particles and the greater the amount of the silica particles dispersed in the silica sol, the faster the gelation. Gels become unstable in this short time
This will be described later.

【0024】たとえば表1、No.2で粒子径70Åの
場合そのシリカゾル内の含有量が30%以上になれば短
時間でゲル化し、表1、No.1で粒子径40Åの場合
その含有量は15%以上になれば不安定で放置中にゲル
化し使用不可能となる。
For example, Table 1, No. 2, when the content in the silica sol becomes 30% or more, gelation occurs in a short time. In the case where the particle size is 1 and the particle diameter is 40 °, if the content exceeds 15%, it becomes unstable and gels during standing, making it unusable.

【0025】本発明において使用するシリカゾルより得
られるシリカゲルはシリカゾル中のシリカ微粒子が小さ
くなる程吸湿力が強くなりかつバインダー力も強くな
り、シリカゾル中に有機高分子電解質微粒子等を混入し
これをシートに含浸し固着すれば強力なバインダーとし
て作用するとともに混入した吸着剤とシリカゲル自体が
同時に吸着剤として作用するため強力な吸着体を得るこ
とができる。
In the silica gel obtained from the silica sol used in the present invention, the smaller the silica fine particles in the silica sol, the stronger the hygroscopic power and the stronger the binder power. The silica sol is mixed with organic polymer electrolyte fine particles, etc. If impregnated and fixed, a strong adsorbent can be obtained because the adsorbent and silica gel itself simultaneously act as an adsorbent while acting as a strong binder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】湿気交換用吸着シートの時間経過に対する湿気
吸着量を測定する装置の説明図である。
FIG. 1 is an explanatory view of an apparatus for measuring a moisture adsorption amount of a moisture exchange adsorption sheet over time.

【図2】本発明の湿気交換用吸着シートの時間経過に対
する湿気吸着量を示すグラフである。
FIG. 2 is a graph showing the amount of moisture adsorbed over time of the moisture exchange adsorption sheet of the present invention.

【図3】除湿用ハニカムロータの斜視図である。FIG. 3 is a perspective view of a honeycomb rotor for dehumidification.

【図4】除湿機の一部欠截斜視図である。FIG. 4 is a partially cutaway perspective view of the dehumidifier.

【図5】シリカゾル中のシリカ微粒子が互に結合した状
況を示す説明図である。
FIG. 5 is an explanatory diagram showing a situation where silica fine particles in a silica sol are mutually bonded.

【図6】シリカゾル中のシリカ微粒子が互に結合した状
況を示す説明図である。
FIG. 6 is an explanatory diagram showing a situation in which silica fine particles in a silica sol are bonded to each other.

【符号の説明】[Explanation of symbols]

11 ケーシング 17 セパレータ 18 除湿ゾーン 19 再生ゾーン 11 casing 17 separator 18 dehumidification zone 19 regeneration zone

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−23529(JP,A) 特開 平6−323(JP,A) 特開 平7−204451(JP,A) 特開 平5−115737(JP,A) 特公 昭46−28522(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B01D 53/28,53/26 B01J 20/00 - 20/34 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-5-23529 (JP, A) JP-A-6-323 (JP, A) JP-A-7-204451 (JP, A) JP-A-5-205 115737 (JP, A) JP 46-28522 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 53/28, 53/26 B01J 20/00-20/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】親水性有機高分子電解質微粒子を、吸湿性
を有するバインダーでシートまたは多数の小透孔を有す
る積層体に含浸または塗布した後乾燥し固着させてなる
湿気交換用吸着体。
1. A moisture exchange adsorbent obtained by impregnating or applying hydrophilic organic polymer electrolyte fine particles to a sheet or a laminate having a large number of small pores with a binder having a hygroscopic property, followed by drying and fixing.
JP33939999A 1999-11-30 1999-11-30 Adsorbent for moisture exchange Expired - Lifetime JP3345596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33939999A JP3345596B2 (en) 1999-11-30 1999-11-30 Adsorbent for moisture exchange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33939999A JP3345596B2 (en) 1999-11-30 1999-11-30 Adsorbent for moisture exchange

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14936295A Division JP3346680B2 (en) 1995-05-11 1995-05-11 Adsorbent for moisture exchange

Publications (2)

Publication Number Publication Date
JP2000126541A JP2000126541A (en) 2000-05-09
JP3345596B2 true JP3345596B2 (en) 2002-11-18

Family

ID=18327119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33939999A Expired - Lifetime JP3345596B2 (en) 1999-11-30 1999-11-30 Adsorbent for moisture exchange

Country Status (1)

Country Link
JP (1) JP3345596B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107070A (en) * 2011-05-30 2013-06-06 Jsr Corp Moisture absorbing/desorbing agent, moisture absorbing/desorbing agent composition for desiccant air-conditioning, molding, and desiccant air-conditioning system
WO2019203146A1 (en) * 2018-04-17 2019-10-24 住友化学株式会社 Humidity control member and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2651964B2 (en) * 1991-07-25 1997-09-10 株式会社カワタ Adsorbable honeycomb-shaped ceramic laminate and method for producing the same
JP2950444B2 (en) * 1991-10-26 1999-09-20 株式会社西部技研 Deodorizing and dehumidifying cooling method and deodorizing and dehumidifying cooling device
JPH0773654B2 (en) * 1992-05-08 1995-08-09 財団法人工業技術研究院 Method of manufacturing moisture exchange element
JP2936127B2 (en) * 1993-11-30 1999-08-23 株式会社西部技研 Hygroscopic element and dehumidifier

Also Published As

Publication number Publication date
JP2000126541A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
JP3346680B2 (en) Adsorbent for moisture exchange
JP2579767B2 (en) Ultra-low concentration gas adsorption element and gas adsorption removal device
JPH0628173Y2 (en) Moisture exchange element
US4911775A (en) Method of manufacturing dehumidifier element
JP2950444B2 (en) Deodorizing and dehumidifying cooling method and deodorizing and dehumidifying cooling device
US5580370A (en) Total heat energy exchanger element preventing a transfer of odors and method of manufacturing same
JP2006240956A (en) Amorphous aluminum silicate, adsorbent having the same, dehumidifying rotor and air conditioner
JP2950453B2 (en) Sheet-shaped sorbent body having a heating element, sorption laminate having a heating element, and dehumidifier using sorption laminate having a heating element
BR112012008825B1 (en) process for the "in-situ" preparation of an alveolar matrix based on a macroporous desiccator
JP2002001106A (en) Functional element for dehumidification or heat exchange and its manufacturing method
JP2011143358A (en) Moisture absorption filter and humidifier
JP2000070659A (en) Dehumidifying material and dehumidifier
JPH0710330B2 (en) Dry dehumidifier
JP3345596B2 (en) Adsorbent for moisture exchange
JP2936127B2 (en) Hygroscopic element and dehumidifier
JP5140278B2 (en) Desiccant material and air dehumidification method using the same
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
JPH08187429A (en) Adsorbing material and adsorbent using the same
JP2012183460A (en) Dehumidification body and desiccant dehumidifier including the same
JPH0225107B2 (en)
JP2003200016A (en) Element for dehumidification and humidification, and humidifier using the same
JP5844058B2 (en) Dehumidifier and desiccant dehumidifier equipped with the same
JP4674009B2 (en) Gas exchange device
JP2937437B2 (en) Manufacturing method of activated silica gel honeycomb adsorbent
JPH0796182A (en) Self-regenerating dehumidifier

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130830

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term