JP2012183460A - Dehumidification body and desiccant dehumidifier including the same - Google Patents

Dehumidification body and desiccant dehumidifier including the same Download PDF

Info

Publication number
JP2012183460A
JP2012183460A JP2011047051A JP2011047051A JP2012183460A JP 2012183460 A JP2012183460 A JP 2012183460A JP 2011047051 A JP2011047051 A JP 2011047051A JP 2011047051 A JP2011047051 A JP 2011047051A JP 2012183460 A JP2012183460 A JP 2012183460A
Authority
JP
Japan
Prior art keywords
dehumidifying
dehumidification
fine particles
air
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011047051A
Other languages
Japanese (ja)
Inventor
Akira Kishimoto
章 岸本
Ryo Enomoto
量 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011047051A priority Critical patent/JP2012183460A/en
Publication of JP2012183460A publication Critical patent/JP2012183460A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dehumidification body having high regeneration efficiency and dehumidification performance, and to provide a desiccant dehumidifier including the same.SOLUTION: A dehumidification material 24 and fine particles 44 each formed of a metal, a metal oxide, or a metal sulfide, each having a particle diameter of 1-500 μm, and having large thermal conductivity are mixed such that a mixture ratio of the fine particles to the dehumidification material becomes 10-40 wt.%, and are held by a binder 46 to form this dehumidification body, and a base material 40 of a dehumidification rotor of the desiccant dehumidifier is formed with a dehumidification body coating layer 48 by the binder.

Description

本発明は、被乾燥ガス、例えば空気に含まれた水分を吸湿する除湿体及びこれを備えたデシカント除湿装置に関する。   The present invention relates to a dehumidifier that absorbs moisture contained in a gas to be dried, for example, air, and a desiccant dehumidifier equipped with the dehumidifier.

例えば、空気中に含まれた水分を除去するために除湿材が広く利用されている。除湿材は、空気中の水分を吸着して除去するとともに、高温の空気にさらされると吸着している水分を放出して再生され、このような特性を利用して低湿度から高湿度まで広範囲の湿度領域において除湿および加湿を行う調湿機能が得られる。   For example, a dehumidifying material is widely used to remove moisture contained in the air. The dehumidifying material absorbs and removes moisture from the air, and when exposed to high-temperature air, it releases the adsorbed moisture and regenerates it. Using these characteristics, it is widely used from low humidity to high humidity. A humidity control function for performing dehumidification and humidification in the humidity region is obtained.

このような除湿材の調湿機能を利用したものとして例えばデシカント除湿装置が知られている(例えば、特許文献1参照)。デシカント除湿装置は、除湿材を担持した円板状の除湿ロータを備え、この除湿ロータが駆動源によって吸着域及び再生域を通して回転される。除湿ロータは、その厚み方向に平行な通風孔が設けられたハニカム状構造、コルゲート状構造などの通風構造に構成され、この通風構造の表面、即ち通風孔の表面に除湿材が塗布されて担持される。   For example, a desiccant dehumidifier is known as one that utilizes the humidity control function of such a dehumidifying material (see, for example, Patent Document 1). The desiccant dehumidifying device includes a disk-shaped dehumidifying rotor carrying a dehumidifying material, and the dehumidifying rotor is rotated by the drive source through the adsorption zone and the regeneration zone. The dehumidification rotor has a ventilation structure such as a honeycomb structure or a corrugated structure in which ventilation holes parallel to the thickness direction are provided, and a dehumidifying material is applied to the surface of the ventilation structure, that is, the surface of the ventilation holes. Is done.

このデシカント除湿装置においては、吸着域では、除湿ロータの通風孔内を通過する間に、除湿材により空気中の水分が吸着され、水分を放出した空気が所定の場所に供給され、これによって、この場所が除湿空気によって調湿される。一方、再生域では、空気が加熱された後に除湿ロータを通り、この加熱空気が除湿ロータの通風孔を通過する間に、除湿材に吸着された水分が奪い取られて除湿材が再生され、水分を奪い取った空気が、その使用場所に送給される。また、再生された除湿材は、除湿ロータの回転によって吸着域に移動し、このように除湿ロータが連続的に回転することによって、吸着域における水分吸着と再生域における水分脱離が交互に繰り返して遂行される。   In this desiccant dehumidifying device, in the adsorption zone, moisture in the air is adsorbed by the dehumidifying material while passing through the ventilation hole of the dehumidifying rotor, and the released air is supplied to a predetermined place, thereby This place is conditioned by dehumidified air. On the other hand, in the regeneration zone, after the air is heated, it passes through the dehumidification rotor, and while the heated air passes through the ventilation holes of the dehumidification rotor, the moisture adsorbed on the dehumidification material is taken away to regenerate the dehumidification material, The air taken away is sent to the place of use. Further, the regenerated dehumidifying material moves to the adsorption zone by the rotation of the dehumidification rotor, and the dehumidification rotor rotates continuously in this way, so that moisture adsorption in the adsorption zone and moisture desorption in the regeneration zone are repeated alternately. To be carried out.

除湿材としては、一般的に、塩化リチウムなどの化学吸湿材や、活性アルミナ、シリカゲル、ゼオライト、吸湿性高分子などの物理吸湿材が広く用いられている。特に、シリカゲルや吸湿性高分子は水分吸湿量が多く、また安価に入手することができるために、デシカント除湿装置においても使用されることが多い。   As the dehumidifying material, chemical hygroscopic materials such as lithium chloride and physical hygroscopic materials such as activated alumina, silica gel, zeolite, and hygroscopic polymers are generally used widely. In particular, since silica gel and hygroscopic polymers have a large moisture absorption amount and can be obtained at low cost, they are often used in desiccant dehumidifiers.

特開2003−4255号公報JP 2003-4255 A

この除湿材を含む除湿体は、例えば、パルプ繊維やガラス繊維などからなるシート状母材の表面に除湿材を塗布担持させて調製される。ところが、母材に除湿材を塗布担持させたものにおいては、水分の吸湿、放湿に寄与する部分は、主として被乾燥空気に接する塗布層(除湿材を含む層)の表面部であり、被乾燥空気に直接接しない部分、即ち母材の表面付近の部分(換言すると、塗布層の下部)に存在する除湿材は、吸湿、放湿にほとんど寄与しないという問題がある。   The dehumidifying body containing this dehumidifying material is prepared, for example, by applying and supporting the dehumidifying material on the surface of a sheet-like base material made of pulp fiber or glass fiber. However, in the case where the dehumidifying material is applied and supported on the base material, the portion that contributes to moisture absorption and desorption is mainly the surface portion of the coating layer (layer including the dehumidifying material) in contact with the air to be dried. There is a problem that a dehumidifying material present in a portion that is not in direct contact with dry air, that is, a portion in the vicinity of the surface of the base material (in other words, a lower portion of the coating layer) hardly contributes to moisture absorption and moisture release.

このようなことから、除湿性能を向上させようと母材への除湿材の塗布担持量を増やした除湿体を調製することも考えられるが、このように調製したものにおいても、水分の吸湿、放湿に寄与する部分は、主として被乾燥空気に直接接している部分であり、それ故に、除湿材の塗布量を増やしても除湿性能の向上効果はほとんど見込めなかった。   For this reason, it may be possible to prepare a dehumidifying body with an increased amount of dehumidifying material applied to the base material so as to improve the dehumidifying performance. The part that contributes to moisture release is mainly the part that is in direct contact with the air to be dried. Therefore, even if the application amount of the dehumidifying material is increased, the effect of improving the dehumidifying performance is hardly expected.

本発明の目的は、除湿材の再生を高め、その結果として除湿性能を向上させることができる除湿体を提供することである。   An object of the present invention is to provide a dehumidifying body capable of enhancing the regeneration of the dehumidifying material and improving the dehumidifying performance as a result.

また、本発明の他の目的は、空気中の水分を充分に除湿することができるデシカント除湿装置を提供することである。   Another object of the present invention is to provide a desiccant dehumidifying device capable of sufficiently dehumidifying moisture in the air.

本発明の請求項1に記載の除湿体は、水分を吸湿するための除湿材と、熱伝導率が大きい微粒子と、前記除湿体及び前記微粒子を保持するためのバインダとが混合されてなることを特徴とする。   The dehumidifying body according to claim 1 of the present invention is a mixture of a dehumidifying material for absorbing moisture, fine particles having high thermal conductivity, and a binder for holding the dehumidifying body and the fine particles. It is characterized by.

また、本発明の請求項2に記載の除湿体では、前記微粒子が金属、金属酸化物又は金属硫化物から形成されていることを特徴とする。   In the dehumidifying body according to claim 2 of the present invention, the fine particles are formed of a metal, a metal oxide, or a metal sulfide.

また、本発明の請求項3に記載の除湿体では、前記微粒子の粒子径が1〜500μmであることを特徴とする。   Moreover, in the dehumidification body of Claim 3 of this invention, the particle diameter of the said microparticles | fine-particles is 1-500 micrometers, It is characterized by the above-mentioned.

また、本発明の請求項4に記載の除湿体では、前記微粒子の混合比率が10〜40重量%であることを特徴とする。   In the dehumidifying body according to claim 4 of the present invention, the mixing ratio of the fine particles is 10 to 40% by weight.

更に、本発明の請求項5に記載のデシカント除湿装置は、請求項1〜4のいずれかに記載の除湿体を備えたことを特徴とする。   Furthermore, the desiccant dehumidifier according to claim 5 of the present invention is characterized by including the dehumidifier according to any one of claims 1 to 4.

本発明の請求項1に記載の除湿体によれば、除湿体に熱伝導率の大きい微粒子が含まれているので、高温の空気にさらされて吸着している水分を放出して再生される際に、高温空気の熱が効率良く除湿体全体に伝わり、除湿材の再生が効率良く実施され、その結果、除湿体の吸湿/放湿性能を向上させることができる。   According to the dehumidifying body of claim 1 of the present invention, since the dehumidifying body contains fine particles having a high thermal conductivity, it is regenerated by releasing moisture adsorbed by exposure to high-temperature air. At this time, the heat of the high-temperature air is efficiently transmitted to the entire dehumidifying body, and the dehumidifying material is efficiently regenerated. As a result, the moisture absorption / desorption performance of the dehumidifying body can be improved.

また、本発明の請求項2に記載の除湿体によれば、熱伝導率の大きい微粒子が金属、金属酸化物又は金属硫化物から形成されているので、除湿体に容易に混入することができるとともに、再生の際に高温空気の熱を効率良く除湿体全体に伝えることができ、除湿材の再生を効率良く実施することができる。   Further, according to the dehumidifying body according to claim 2 of the present invention, since the fine particles having high thermal conductivity are formed of metal, metal oxide or metal sulfide, they can be easily mixed into the dehumidifying body. At the same time, the heat of the high-temperature air can be efficiently transmitted to the entire dehumidifying body during the regeneration, and the dehumidifying material can be efficiently regenerated.

また、本発明の請求項3に記載の除湿体によれば、熱伝導率の大きい微粒子(例えば、金属又は金属酸化物)の粒子径が1〜500μmであるので、母材に除湿材を塗布担持させる際に、除湿材の塗布担持状態が三次元的状態となって表面積を大きくすることができる。それ故に、乾燥すべきガス(例えば、空気)が塗布担持され除湿材により接し易くなり、その結果、除湿体全体の単位体積当たりの除湿能力が向上し、被乾燥ガスに含まれた水分をより効果的に除湿することができる。   Moreover, according to the dehumidifying body of claim 3 of the present invention, since the particle diameter of the fine particles (for example, metal or metal oxide) having a high thermal conductivity is 1 to 500 μm, the dehumidifying material is applied to the base material. At the time of carrying, the dehumidifying material is carried in a three-dimensional state, and the surface area can be increased. Therefore, the gas to be dried (for example, air) is applied and supported so that it can be easily touched by the dehumidifying material. As a result, the dehumidifying capacity per unit volume of the entire dehumidifying body is improved, and the moisture contained in the dried gas is more It can be effectively dehumidified.

また、本発明の請求項4に記載の除湿体によれば、微粒子の混合比率が10〜40重量%であるので、微粒子を三次元的に分散させて除湿材を三次元的に塗布担持させることができ、これによって、除湿体全体の単位体積当たりの除湿能力をより一層向上させることができる。   Further, according to the dehumidifier of claim 4 of the present invention, since the mixing ratio of the fine particles is 10 to 40% by weight, the fine particles are dispersed three-dimensionally and the dehumidifying material is applied and supported three-dimensionally. Accordingly, the dehumidifying capacity per unit volume of the entire dehumidifying body can be further improved.

更に、本発明の請求項5に記載のデシカント除湿装置は、請求項1〜4のいずれかに記載の除湿体を備えているので、除湿装置の除湿能力を高めて空気中の水分をより多く除湿することができる。   Furthermore, since the desiccant dehumidifying apparatus according to claim 5 of the present invention includes the dehumidifying body according to any of claims 1 to 4, the dehumidifying capacity of the dehumidifying apparatus is increased to increase the moisture in the air. Can be dehumidified.

本発明の従うデシカント除湿装置の一実施形態を示す簡略図。BRIEF DESCRIPTION OF THE DRAWINGS The simplified figure which shows one Embodiment of the desiccant dehumidification apparatus according to this invention. 図1のデシカント除湿装置の除湿ロータを示す斜視図。The perspective view which shows the dehumidification rotor of the desiccant dehumidification apparatus of FIG. 図2の除湿ロータの一部を拡大して示す部分拡大断面図。The partial expanded sectional view which expands and shows a part of dehumidification rotor of FIG. 除湿性能実験に用いた風洞装置を簡略的に示す斜視図。The perspective view which shows simply the wind tunnel apparatus used for the dehumidification performance experiment.

以下、添付図面を参照して、本発明に従う除湿体及びこれを備えたデシカント除湿装置の一実施形態について説明する。   Hereinafter, with reference to an accompanying drawing, an embodiment of a dehumidifying body according to the present invention and a desiccant dehumidifying device provided with the same will be described.

図1において、図示のデシカント除湿装置は、装置ハウジング2を備え、この装置ハウジング2内が仕切り部材3により仕切られ、この仕切り部材3の片側(図1において下側)に吸入流路4が規定され、その他側(図1において上側)に排出流路6が規定されている。吸入流路4の導入側には第1導入ダクト8が配設され、その導出側には第1導出ダクト10が配設されている。また、排出流路6の導入側には第2導入側ダクト12が配設され、その導出側には第2導出ダクト14が配設されている。このようなデシカント除湿装置は建造物などに設置され、図1において左側が建造物の屋外16となり、図1において右側が建造物の内側(例えば、屋内空間18)となる。   In FIG. 1, the desiccant dehumidifying device shown in the figure includes a device housing 2, the inside of the device housing 2 is partitioned by a partition member 3, and a suction flow path 4 is defined on one side (lower side in FIG. 1) of the partition member 3. A discharge channel 6 is defined on the other side (upper side in FIG. 1). A first introduction duct 8 is disposed on the introduction side of the suction flow path 4, and a first extraction duct 10 is disposed on the outlet side thereof. Further, a second introduction duct 12 is disposed on the introduction side of the discharge flow path 6, and a second lead duct 14 is disposed on the discharge side thereof. Such a desiccant dehumidifier is installed in a building or the like, and the left side in FIG. 1 is the outdoor 16 of the building, and the right side in FIG. 1 is the inside of the building (for example, the indoor space 18).

この装置ハウジング2内には、吸入流路4及び排出流路6にまたがって除湿ロータ20が配設され、除湿ロータ20は、水分を除湿するための除湿体を構成する。除湿ロータ20は円板状であり、その片側部が吸入流路4側に位置し、その他側部が排出流路6に位置する。吸入流路4には吸着域Kが設けられ、排出流路6には再生域Sが設けられ、除湿ロータ20は吸着域K及び再生域Sを通して回動される。この除湿ロータ20には、所定方向に回動するためのモータ(図示せず)が駆動連結され、このモータによって所定方向に回動される。   In the apparatus housing 2, a dehumidification rotor 20 is disposed across the suction flow path 4 and the discharge flow path 6, and the dehumidification rotor 20 constitutes a dehumidifier for dehumidifying moisture. The dehumidification rotor 20 has a disk shape, and one side thereof is located on the suction flow path 4 side, and the other side is located on the discharge flow path 6. The suction channel 4 is provided with an adsorption zone K, the discharge channel 6 is provided with a regeneration zone S, and the dehumidification rotor 20 is rotated through the adsorption zone K and the regeneration zone S. A motor (not shown) for rotating in a predetermined direction is drivingly connected to the dehumidifying rotor 20 and rotated in a predetermined direction by this motor.

図2を参照して、除湿ロータ20は、後に詳細に説明するが、ハニカム状構造の通風構造に構成され、多数の通風孔22が厚さ方向(即ち、図1において左右方向、図2において左下から右上の方向)に平行に延びており、多数の通風孔22を通して空気(即ち、被乾燥ガス)が流れる。この除湿ロータ20のハニカム状構造の表面、即ち多数の通風孔22を規定する表面には、後述するようにして除湿材24(図3参照)が担持されている。尚、除湿ロータ20の通風構造は、コルゲート状構造などの他の通風構造でもよい。   Referring to FIG. 2, the dehumidification rotor 20 will be described in detail later. The dehumidification rotor 20 is configured in a ventilation structure having a honeycomb-like structure, and a large number of ventilation holes 22 are formed in the thickness direction (that is, the left-right direction in FIG. It extends in parallel with the lower left to the upper right), and air (that is, a gas to be dried) flows through the numerous ventilation holes 22. A dehumidifying material 24 (see FIG. 3) is carried on the surface of the honeycomb-shaped structure of the dehumidifying rotor 20, that is, the surface defining a large number of ventilation holes 22 as described later. The ventilation structure of the dehumidifying rotor 20 may be another ventilation structure such as a corrugated structure.

再び図1に戻って、このデシカント除湿装置では、吸入流路4には吸入ファン26が設けられ、この吸入ファン26は、除湿ロータ20の下流側(換言すると、吸着域Kの下流側)に配設されている。また排出流路6には加熱手段28及び排気ファン30が設けられ、加熱手段28は、除湿ロータ20の上流側(換言すると、再生域Sの上流側)に配設され、排気ファン30は除湿ロータ20の下流側(換言すると、再生域Sの下流側)に配設されている。尚、加熱手段28は、例えば、温水との間で熱交換を行う熱交換器、電気で加熱する加熱ヒータなどから構成される。   Returning to FIG. 1 again, in this desiccant dehumidifier, a suction fan 26 is provided in the suction flow path 4, and this suction fan 26 is located downstream of the dehumidification rotor 20 (in other words, downstream of the adsorption zone K). It is arranged. The exhaust passage 6 is provided with a heating means 28 and an exhaust fan 30. The heating means 28 is disposed upstream of the dehumidification rotor 20 (in other words, upstream of the regeneration zone S), and the exhaust fan 30 is dehumidified. It is disposed downstream of the rotor 20 (in other words, downstream of the reproduction zone S). The heating means 28 includes, for example, a heat exchanger that exchanges heat with warm water, a heater that heats with electricity, and the like.

このデシカント除湿装置の動作を概説すると、次の通りである。除湿動作中は、モータ(図示せず)が作動して除湿ロータ20が所定方向に回動される。また、吸入ファン26が作動して外気の吸入が行われるとともに、排気ファン30が作動して室内の空気の排気が行われる。   An outline of the operation of this desiccant dehumidifier is as follows. During the dehumidifying operation, a motor (not shown) is operated to rotate the dehumidifying rotor 20 in a predetermined direction. In addition, the intake fan 26 is operated to suck in outside air, and the exhaust fan 30 is operated to exhaust indoor air.

外部(建造物の屋外)からの空気(被乾燥ガス)は、矢印32で示すように、第1導入ダクト8を通じて吸入流路4に吸入され、かく吸入された空気は吸着域Kを通して流れる。吸着域Kにおいては、この空気は、除湿ロータ20の多数の通風孔22を通して流れ、これら通風孔22を通してながれる間に、空気に含まれた水分が除湿ロータ20に担持された除湿材24に吸着され、除湿された空気が、矢印34で示すように、第1導出ダクト10から除湿すべき空間(建造物の屋内空間18)に送給され、この除湿空気によって空間が湿度調整される。   Air (gas to be dried) from the outside (outdoor of the building) is sucked into the suction flow path 4 through the first introduction duct 8 as indicated by an arrow 32, and the sucked air flows through the adsorption zone K. In the adsorption zone K, this air flows through the numerous ventilation holes 22 of the dehumidification rotor 20, and while flowing through these ventilation holes 22, the moisture contained in the air is adsorbed by the dehumidification material 24 carried by the dehumidification rotor 20. The dehumidified air is sent from the first outlet duct 10 to the space to be dehumidified (indoor space 18 of the building) as indicated by an arrow 34, and the humidity of the space is adjusted by the dehumidified air.

一方、屋内空間からの空気は、矢印36で示すように、第2導入ダクト12を通して排出流路6に吸入され、かく吸入された空気は、加熱手段28により加熱された後に再生域Sを通して流れる。再生域Sにおいては、この空気は、除湿ロータ20の多数の通風孔22を通して流れ、これら通風孔22を通してながれる間に、除湿ロータ20の除湿材24に吸着された水分を奪い取り、奪い取った水分を含む空気が、矢印38で示すように、第2導出ダクト14から外部(建造物の屋外)に排出され、このように水分を取ることによって除湿材24が再生される。   On the other hand, the air from the indoor space is sucked into the discharge channel 6 through the second introduction duct 12 as indicated by an arrow 36, and the sucked air flows through the regeneration zone S after being heated by the heating means 28. . In the regeneration zone S, this air flows through a number of ventilation holes 22 of the dehumidification rotor 20, and while it flows through these ventilation holes 22, it takes away the moisture adsorbed by the dehumidifying material 24 of the dehumidification rotor 20 and removes the removed moisture. As shown by the arrow 38, the air to be contained is discharged to the outside (outside of the building) from the second lead-out duct 14, and the dehumidifying material 24 is regenerated by removing moisture in this way.

除湿ロータ20は、吸湿域K及び再生域Sを通して回動され、吸湿域Kにおいて除湿材24による空気中の水分の吸着が行われ、再生域Sにおいて吸着した水分の除湿材24からの離脱が行われ、除湿材24の吸着、再生が繰り返し行われる。   The dehumidification rotor 20 is rotated through the moisture absorption area K and the regeneration area S, and moisture in the air is adsorbed by the dehumidifying material 24 in the moisture absorption area K, and the moisture adsorbed in the regeneration area S is detached from the dehumidification material 24. The adsorption and regeneration of the dehumidifying material 24 are repeated.

次に、図3を参照して、除湿ロータ20の具体的構成について説明する。除湿体として機能する除湿ロータ20は、除湿材24を担持するための母材40を備え、この母材40によりハニカム状構造が形成され、ハニカム状構造の母材40の表面に除湿材24を含む混合体42が塗布されている。この実施例では、混合体42は、除湿材24と、除湿材24を三次元的に担持させるための微粒子44と、これらを保持するためのバインダ46とを含んでいる。   Next, a specific configuration of the dehumidifying rotor 20 will be described with reference to FIG. The dehumidifying rotor 20 that functions as a dehumidifying body includes a base material 40 for supporting the dehumidifying material 24, a honeycomb-like structure is formed by the base material 40, and the dehumidifying material 24 is placed on the surface of the base material 40 of the honeycomb-like structure. A mixture 42 is applied. In this embodiment, the mixture 42 includes a dehumidifying material 24, fine particles 44 for supporting the dehumidifying material 24 three-dimensionally, and a binder 46 for holding them.

母材40には、例えば、パルプ繊維、ガラス繊維などから形成されたシート状部材が用いられ、このシート状部材の両面に混合体42が塗布されて塗布層48が設けられる。   For the base material 40, for example, a sheet-like member formed from pulp fiber, glass fiber, or the like is used, and the mixture 42 is applied to both surfaces of the sheet-like member to provide the coating layer 48.

混合体42に含まれる除湿材24は、粒子径が0.1〜20μm程度であり、この除湿材としては、ゼオライト、シリカゲル、ポリアクリル系ポリマーなどが用いられる。ゼオライトとしては、A型、Y型、X型などの合成ゼオライト、又はモルデナイト、シャバサイト、ホウフッ石、エリオナイト、フェリエライトなどの天然ゼオライトから任意に選択することができる。また、ゼオライト中の陽イオンをマグネシウム、鉄、銅などのアルカリ土類や遷移金属、若しくはランタン、セリウム、プラセオジウムなどの希土類元素に置換したものなども有効である。シリカゲルとしては、A、B型などから任意に選択することができる。また、ポリアクリル系ポリマーとしては、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸カリウムなどから任意に選択することができる。   The dehumidifying material 24 contained in the mixture 42 has a particle size of about 0.1 to 20 μm, and as this dehumidifying material, zeolite, silica gel, polyacrylic polymer, or the like is used. The zeolite can be arbitrarily selected from synthetic zeolites such as A-type, Y-type, and X-type, or natural zeolites such as mordenite, shabasite, borofluorite, erionite, and ferrierite. Also effective are those obtained by substituting cations in zeolite with alkaline earths such as magnesium, iron and copper, transition metals, or rare earth elements such as lanthanum, cerium and praseodymium. The silica gel can be arbitrarily selected from A and B types. In addition, the polyacrylic polymer can be arbitrarily selected from polyacrylic acid, sodium polyacrylate, potassium polyacrylate, and the like.

また、熱伝導率の大きい微粒子としては、アルミニウム、銅、鉄、亜鉛、金、銀などの金属又はこれらの混合物を用いることができ、このような金属の他に、これら金属の酸化物又は硫化物なども用いることができる。この微粒子の形状は、球状、針状、繊維状などの適宜の形状のものを用いることができる。   In addition, as the fine particles having high thermal conductivity, metals such as aluminum, copper, iron, zinc, gold, silver, or a mixture thereof can be used. Besides such metals, oxides or sulfides of these metals can be used. Things can also be used. The fine particles may have a suitable shape such as a spherical shape, a needle shape, or a fiber shape.

除湿材24に混入される微粒子44は、粒子径が1〜500μmと除湿材24よりも大きいものを用いることが望ましく、粒子径が100〜500μmのものを用いるのがより好ましい。微粒子44の粒子径が小さくなると、母材40に塗布した塗布層48が平面的となり、その粒子径が1μmより小さくなると微粒子44を混入した効果(塗布層48を三次元的にして表面積を増やす効果)がほとんど得られなくなり、またその粒子径が大きくなると、バインダ46による結合が弱くなり、その粒子径が500μmを超えると、微粒子44が母材40の表面から脱落、剥がれ易くなる。   The fine particles 44 mixed in the dehumidifying material 24 are desirably those having a particle size of 1 to 500 μm and larger than the dehumidifying material 24, and more preferably those having a particle size of 100 to 500 μm. When the particle diameter of the fine particles 44 becomes smaller, the coating layer 48 applied to the base material 40 becomes planar, and when the particle diameter becomes smaller than 1 μm, the effect of mixing the fine particles 44 (the coating layer 48 is three-dimensionally increased in surface area). (Effect) is hardly obtained, and when the particle diameter is increased, the binding by the binder 46 is weakened. When the particle diameter exceeds 500 μm, the fine particles 44 are easily dropped from the surface of the base material 40 and peeled off.

この微粒子44の混合比率は、混合体42全体を100重量%としたときに10〜40重量%とするのが好ましく、10重量%より少ないと、微粒子44の混入量が少なくなって塗布層48を三次元的状態にして表面積を大きく増やすことが難しく、また40重量%を超えると、除湿材24の混合比率が相対的に少なくなり、塗布層48の除湿能力(即ち、水分吸着能力)が低下する。   The mixing ratio of the fine particles 44 is preferably 10 to 40% by weight when the entire mixture 42 is 100% by weight, and if less than 10% by weight, the mixing amount of the fine particles 44 is reduced and the coating layer 48 is mixed. It is difficult to greatly increase the surface area in a three-dimensional state, and when it exceeds 40% by weight, the mixing ratio of the dehumidifying material 24 is relatively reduced, and the dehumidifying ability (that is, moisture adsorption ability) of the coating layer 48 is reduced. descend.

更に、バインダとしては、コロイダルシリカ、水ガラス、コロイダルアルミナ、エポキシ系ポリマー、エーテル系ポリマー、ウレタン系ポリマーなどを任意に選んで用いることができる。   Further, as the binder, colloidal silica, water glass, colloidal alumina, epoxy polymer, ether polymer, urethane polymer, or the like can be arbitrarily selected and used.

このバインダ46の混合比率は、混合体42全体を100重量%としたときに5〜20重量%とするのが好ましく、5重量%より少ないと、バインダ46の混入量が少なくなって結合力が弱くなり、母材40に塗布した塗布層48から除湿材24及び/又は微粒子44が脱落、剥がれ易くなり、また20重量%を超えると、バインダ46の混入量が多くなって塗布した状態にてバインダ46が除湿材24を覆うようになり、塗布層48の除湿能力が低下する。   The mixing ratio of the binder 46 is preferably 5 to 20% by weight when the entire mixture 42 is 100% by weight, and if it is less than 5% by weight, the amount of the binder 46 mixed in is reduced and the bonding strength is reduced. The dehumidifying material 24 and / or fine particles 44 easily fall off and peel off from the coating layer 48 applied to the base material 40, and when the amount exceeds 20% by weight, the amount of the binder 46 mixed in increases. The binder 46 covers the dehumidifying material 24, and the dehumidifying ability of the coating layer 48 is reduced.

このような除湿ロータ20を用いた場合、母材40の表面に塗布された塗布層48に熱伝導率の大きい微粒子(例えば、金属、金属酸化物、金属硫化物)が含まれているので、除湿材24の再生の際に高温空気の熱が効率良く除湿体全体に伝わり、これによって、除湿材の再生を効率良く行うことができ、その結果、除湿体の吸湿/放湿性能を向上させることができる。また、この微粒子44の粒子径が1〜500μmであるので、表面が三次元的状態となってその表面積を増大させることができ、これによって、除湿ロータ20の通風孔22を流れる空気と塗布層48中の除湿材24との接触が多くなり、その結果、除湿ロータ20の除湿性能をより向上させることができる。   When such a dehumidifying rotor 20 is used, since the coating layer 48 applied to the surface of the base material 40 contains fine particles having a high thermal conductivity (for example, metal, metal oxide, metal sulfide), When the dehumidifying material 24 is regenerated, the heat of the high-temperature air is efficiently transmitted to the entire dehumidifying body, whereby the dehumidifying material can be efficiently regenerated, and as a result, the moisture absorbing / releasing performance of the dehumidifying body is improved. be able to. Further, since the particle diameter of the fine particles 44 is 1 to 500 μm, the surface can be three-dimensionally increased to increase the surface area thereof, whereby the air flowing through the ventilation holes 22 of the dehumidification rotor 20 and the coating layer The contact with the dehumidification material 24 in 48 increases, As a result, the dehumidification performance of the dehumidification rotor 20 can be improved more.

以上、本発明に従う除湿体及びこれを備えたデシカント除湿装置の一実施形態について説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変更乃至修正が可能である。   As mentioned above, although one embodiment of the dehumidifying body according to the present invention and the desiccant dehumidifying device provided with the dehumidifying body has been described, the present invention is not limited to such an embodiment, and various modifications can be made without departing from the scope of the present invention. Or it can be modified.

例えば、上述した実施形態では、除湿体としての除湿ロータ20に適用して説明したが、このようなものに限定されず、母材40自体を省略し、混合体42から除湿体を構成するようにしてもよく、このような場合、除湿体自体を、例えば直径が数mm程度である粒子状に形成するようにしてもよく、或いはハニカム状成形体、繊維状成形体などに形成するようにしてもよい。   For example, in the above-described embodiment, the description has been made by applying the present invention to the dehumidifying rotor 20 as a dehumidifying body. However, the present invention is not limited to this, and the base material 40 itself is omitted and the dehumidifying body is configured from the mixture 42. In such a case, the dehumidifying body itself may be formed into particles having a diameter of, for example, about several millimeters, or may be formed into a honeycomb-shaped formed body, a fibrous formed body, or the like. May be.

次に、本発明に従う除湿体の除湿効果を確認するために、次の通りの実験を行った。除湿体として、図2に示すようなハニカム状構造の除湿ロータ70を作成した。除湿ロータ70の直径は250mmで、その厚さは80mmであった。この除湿ロータ70を図4に示す風洞装置72にセットして除湿ロータ70の除湿能力を調べた。風洞装置72の風洞ハウジング74は矩形状であり、その内部に矩形状の空気流路76が規定され、この空気流路76内に除湿ロータ70をセットした。風洞ハウジング74の内側サイズ(換言すると、空気流路76の大きさ)は、縦サイズHが30cmで、横サイズWが30cmで、その長さLが200cmであった。この風洞ハウジング74内(即ち、空気流路76)には、温度、湿度及び流量が調節可能な空気発生機(図示せず)が接続され、温度、湿度及び流量が調整された空気が、矢印78で示すように、風洞ハウジング74の流入側から導入し、この空気流路76を通して流れてその流出側から矢印80で示すように導出させた。また、除湿ロータ70を通過する空気の通過前及び通過後の湿度及び温度を計測するために、除湿ロータ70の上流側に第1湿度温度計82(ヴァイサラ社製の湿度温度計、型番:HPM230)を設置し、また除湿ロータ70の下流側に第2湿度温度計84(第1湿度温度計82と同じもの)を設置した。   Next, in order to confirm the dehumidifying effect of the dehumidifying body according to the present invention, the following experiment was performed. As the dehumidifying body, a dehumidifying rotor 70 having a honeycomb structure as shown in FIG. 2 was prepared. The dehumidifying rotor 70 had a diameter of 250 mm and a thickness of 80 mm. The dehumidifying rotor 70 was set in the wind tunnel device 72 shown in FIG. 4 and the dehumidifying capacity of the dehumidifying rotor 70 was examined. The wind tunnel housing 74 of the wind tunnel device 72 has a rectangular shape, and a rectangular air flow path 76 is defined therein, and the dehumidifying rotor 70 is set in the air flow path 76. As for the inner size of the wind tunnel housing 74 (in other words, the size of the air flow path 76), the vertical size H was 30 cm, the horizontal size W was 30 cm, and the length L was 200 cm. An air generator (not shown) capable of adjusting temperature, humidity and flow rate is connected to the inside of the wind tunnel housing 74 (that is, the air flow path 76), and the air whose temperature, humidity and flow rate are adjusted is indicated by an arrow. As indicated by 78, the air was introduced from the inflow side of the wind tunnel housing 74, flowed through the air flow path 76, and led out from the outflow side as indicated by an arrow 80. Further, in order to measure the humidity and temperature before and after the passage of the air passing through the dehumidifying rotor 70, a first humidity thermometer 82 (a humidity thermometer manufactured by Vaisala, model number: HPM230) is disposed upstream of the dehumidifying rotor 70. ) And a second humidity thermometer 84 (same as the first humidity thermometer 82) was installed downstream of the dehumidifying rotor 70.

実施例1及び2として、各原料(除湿材、微粒子及びバインダ)の混合比率が表1で示す通りの混合体を調製して母材に塗布して除湿ロータ70を製作し、各除湿ロータ70における混合体(換言すると、各実施例1及び2の除湿体)の除湿能力(即ち、除湿量)を計測した。実施例1及び2では、除湿材としてポリアクリル系ポリマーを使用し、熱伝導率の高い微粒子としてアルミニウムを用いた。この微粒子の平均粒径が200μmであった。また、バインダとしてはエポキシ系ポリマーを用いた。除湿ロータ70に塗布した除湿材と微粒子の合計重量は150gであった。   As Examples 1 and 2, a mixture having the mixing ratio of each raw material (dehumidifying material, fine particles and binder) as shown in Table 1 was prepared and applied to a base material to produce a dehumidifying rotor 70. The dehumidifying ability (that is, the dehumidifying amount) of the mixture (in other words, the dehumidifying bodies of Examples 1 and 2) was measured. In Examples 1 and 2, a polyacrylic polymer was used as a dehumidifying material, and aluminum was used as fine particles having high thermal conductivity. The average particle diameter of the fine particles was 200 μm. An epoxy polymer was used as the binder. The total weight of the dehumidifying material and fine particles applied to the dehumidifying rotor 70 was 150 g.

Figure 2012183460
除湿能力の計測においては、風洞ハウジング74内に実施例1及び2の除湿ロータ70をセットし、計測の前段階として、70℃、5%RHの乾燥空気を風洞ハウジング74を通して15分間流して除湿ロータ70(即ち、それに塗布された除湿体)を乾燥させ、その後、除湿実験を行った。この除湿実験においては、30℃、70%RHの加湿空気を風洞ハウジング74を通して流し、除湿ロータ70を通過する前の空気の湿度を第1湿度温度計82でモニターするとともに、除湿ロータ70を通過した後の空気の湿度を第2湿度温度計84によりの湿度をモニターした。尚、風洞ハウジング74を通して送給した空気の流量は、150m/hであった。
Figure 2012183460
In the measurement of the dehumidifying capacity, the dehumidifying rotor 70 of Examples 1 and 2 is set in the wind tunnel housing 74, and dehumidification is performed by flowing dry air of 70 ° C. and 5% RH through the wind tunnel housing 74 for 15 minutes as a preliminary stage of measurement. The rotor 70 (that is, the dehumidifying body applied thereto) was dried, and then a dehumidifying experiment was performed. In this dehumidification experiment, humidified air of 30 ° C. and 70% RH is caused to flow through the wind tunnel housing 74, and the humidity of the air before passing through the dehumidifying rotor 70 is monitored by the first humidity thermometer 82 and passes through the dehumidifying rotor 70. Thereafter, the humidity of the air was monitored by the second humidity thermometer 84. The flow rate of air fed through the wind tunnel housing 74 was 150 m 3 / h.

この除湿実験の結果は、表1に示す通りであった。この除湿実験では、風洞ハウジング74に送給する空気を乾燥空気から加湿空気に切り替えてから10秒経過後から60秒後経過するまでの50秒の間にわたって行い、除湿ロータ70を通過する前の湿度及び温度を第1湿度温度計82により1秒毎に計測し、また除湿ロータ70を通過した後の湿度及び温度を第2湿度温度計84により1秒毎に計測した。そして、第1及び第2湿度温度計82,84により計測した湿度及び温度を平均し、それぞれの平均湿度(絶対湿度)の差を除湿ロータ70が吸着した水分量(即ち、除湿量)とし、実施例1及び2の各々における除湿量を表1の右欄に示した。   The results of this dehumidification experiment were as shown in Table 1. In this dehumidification experiment, the air supplied to the wind tunnel housing 74 is switched over from the dry air to the humidified air for 50 seconds from 10 seconds to 60 seconds, before passing through the dehumidification rotor 70. The humidity and temperature were measured every second by the first humidity thermometer 82, and the humidity and temperature after passing through the dehumidification rotor 70 were measured every second by the second humidity thermometer 84. Then, the humidity and temperature measured by the first and second humidity thermometers 82 and 84 are averaged, and the difference between the average humidity (absolute humidity) is defined as the amount of moisture adsorbed by the dehumidification rotor 70 (ie, dehumidification amount). The amount of dehumidification in each of Examples 1 and 2 is shown in the right column of Table 1.

また、比較例1及び2として、各原料(除湿材及びバインダ)の混合比率が表1で示す通りの混合体を調製し、実施例1及び2と同様にして母材に塗布して除湿ロータ70を製作し、各除湿ロータ70における混合体の除湿能力(即ち、除湿量)を計測した。また、比較例3及び4として、実施例1及び2と同様の原料(除湿材及びバインダ)を用い、微粒子として平均粒径200μmのメラミン樹脂を用い、これらの混合比率が表1で示す通りの混合体を調製し、実施例1及び2と同様にして母材に塗布して除湿ロータ70を製作し、各除湿ロータ70における混合体の除湿能力(即ち、除湿量)を計測した。比較例1〜4においても、除湿ロータ70に塗布した除湿材と微粒子の合計重量を実施例1及び2と同様の150gとした。   Further, as Comparative Examples 1 and 2, a mixture in which the mixing ratio of each raw material (dehumidifying material and binder) is as shown in Table 1 was prepared and applied to the base material in the same manner as in Examples 1 and 2, and the dehumidifying rotor 70 was manufactured, and the dehumidifying ability (that is, the dehumidifying amount) of the mixture in each dehumidifying rotor 70 was measured. Further, as Comparative Examples 3 and 4, the same raw materials (dehumidifying material and binder) as in Examples 1 and 2 were used, and melamine resin having an average particle diameter of 200 μm was used as fine particles, and the mixing ratio thereof was as shown in Table 1. A mixture was prepared, applied to the base material in the same manner as in Examples 1 and 2, and a dehumidification rotor 70 was manufactured. The dehumidification capacity (ie, dehumidification amount) of the mixture in each dehumidification rotor 70 was measured. Also in Comparative Examples 1 to 4, the total weight of the dehumidifying material and fine particles applied to the dehumidifying rotor 70 was set to 150 g as in Examples 1 and 2.

除湿能力の計測においては、実施例1及び2と同様にし、計測の前段階として、70℃、5%RHの乾燥空気を風洞ハウジング74を通して15分間流し、その後、30℃、70%RHの加湿空気を風洞ハウジング74を通して流し、除湿ロータ70を通過する前の空気の湿度を第1湿度温度計82でモニターするとともに、除湿ロータ70を通過した後の空気の湿度を第2湿度温度計84の温度及び湿度をモニターし、乾燥空気から加湿空気に切り替えてから10秒経過後から60秒後経過するまでの50秒の間にわたって1秒毎に計測した。そして、実施例1及び2と同様に、第1及び第2湿度温度計82,84により計測した湿度及び温度を平均し、それぞれの平均湿度(絶対湿度)の差を除湿ロータ70が吸着した水分量(即ち、除湿量)とし、比較例1〜4の各々における除湿量を表1の右欄に示した。   In the measurement of the dehumidifying capacity, in the same manner as in Examples 1 and 2, as a pre-stage of the measurement, dry air of 70 ° C. and 5% RH was passed through the wind tunnel housing 74 for 15 minutes, and then humidified at 30 ° C. and 70% RH. The air flows through the wind tunnel housing 74 and the humidity of the air before passing through the dehumidifying rotor 70 is monitored by the first humidity thermometer 82, and the humidity of the air after passing through the dehumidifying rotor 70 is monitored by the second humidity thermometer 84. The temperature and humidity were monitored and measured every second for 50 seconds after switching from dry air to humidified air until 10 seconds passed and 60 seconds passed. In the same manner as in the first and second embodiments, the humidity and temperature measured by the first and second humidity thermometers 82 and 84 are averaged, and the moisture desorbed by the dehumidification rotor 70 is determined based on the difference between the average humidity (absolute humidity). The amount of dehumidification (namely, the amount of dehumidification) is shown in the right column of Table 1 for each of Comparative Examples 1 to 4.

除湿実験結果を示す表1から明らかなように、除湿材の混合比率が同じであっても熱伝導率の大きい微粒子(実施例1及び2では、アルミニウムの微粒子)が含まれている実施例1及び2の方が、微粒子を含まない比較例1及び2よりも除湿量が多く、また微粒子として有機物質(比較例3及び4では、メラミン樹脂)を含む比較例3及び4と比べても除湿量が多かった。このことは、熱伝導率の大きい微粒子を混合することで除湿能力が向上することが分かった。   As is apparent from Table 1 showing the dehumidification experiment results, Example 1 containing fine particles having high thermal conductivity (in Example 1 and 2, aluminum fine particles) even when the mixing ratio of the dehumidifying material is the same. And 2 are more dehumidified than Comparative Examples 1 and 2 that do not contain fine particles, and are also dehumidified compared to Comparative Examples 3 and 4 that contain organic substances as fine particles (in Comparative Examples 3 and 4, melamine resin). The amount was large. This indicates that the dehumidifying ability is improved by mixing fine particles having a high thermal conductivity.

次いで、実施例3〜6として、実施例1及び2と同様の原料(除湿材、微粒子及びバインダ)を用い、これらの混合比率が表2で示す通りの混合体を調製し、実施例1及び2と同様にして母材に塗布して除湿ロータ70を製作した。   Next, as Examples 3 to 6, the same raw materials (dehumidifying material, fine particles and binder) as in Examples 1 and 2 were used, and a mixture having these mixing ratios as shown in Table 2 was prepared. The dehumidification rotor 70 was manufactured by applying to the base material in the same manner as in FIG.

Figure 2012183460
そして、実施例1〜6及び比較例1について、図4に示す風洞装置を用い、30℃、95%RHの空気を15分間流して除湿ロータ70を吸湿処理させた後に、70℃、5%RHの空気を1分間流して、除湿ロータ70の下流側面の温度を測定した。
Figure 2012183460
And about Examples 1-6 and the comparative example 1, after using the wind tunnel apparatus shown in FIG. 4 and flowing air of 30 degreeC and 95% RH for 15 minutes and carrying out the moisture absorption process of 70 degreeC, 70 degreeC and 5% The temperature of the downstream side surface of the dehumidification rotor 70 was measured by flowing RH air for 1 minute.

実施例1〜6及び比較例1における測定結果は、表2の右欄に示す通りであった。表2から明らかなように、熱伝導率の高い微粒子(実施例1〜6では、アルミニウム)を含む実施例1〜6における除湿ロータ70の温度は、この微粒子を含まない比較例1の温度よりも高く、また実施例1〜6の温度を見ると、この微粒子をより多く含むほど除湿ロータ70の温度が高くなっていることが分かった。このことは、熱伝導率の高い微粒子の混合比率が大きいほど乾燥空気の熱が効率良く除湿ロータ70全体に熱伝導されて温度上昇したと考えられ、これにより、熱伝導率の高い微粒子を混入することによって、除湿ロータ70の再生を効率的に行うことができることが確認できた。   The measurement results in Examples 1 to 6 and Comparative Example 1 were as shown in the right column of Table 2. As is clear from Table 2, the temperature of the dehumidifying rotor 70 in Examples 1 to 6 containing fine particles having high thermal conductivity (aluminum in Examples 1 to 6) is higher than the temperature of Comparative Example 1 not containing these fine particles. Moreover, when the temperature of Examples 1-6 was seen, it turned out that the temperature of the dehumidification rotor 70 is so high that this fine particle is included more. This is considered to be because the heat of the dry air is efficiently conducted to the entire dehumidifying rotor 70 and the temperature rises as the mixing ratio of the fine particles having high thermal conductivity increases, thereby mixing fine particles having high thermal conductivity. Thus, it was confirmed that the dehumidification rotor 70 can be efficiently regenerated.

次に、除湿体に混合する微粒子の比率を検討するために、実施例3〜6についても、実施例1及び2と同様にして除湿能力の計測を行った。この除湿能力の計測においては、上述したように、計測の前段階として、70℃、5%RHの乾燥空気を風洞ハウジング74を通して15分間流し、その後、30℃、70%RHの加湿空気を風洞ハウジング74を通して流し、除湿ロータ70を通過する前の空気の湿度を第1湿度温度計82でモニターするとともに、除湿ロータ70を通過した後の空気の湿度を第2湿度温度計84の温度及び湿度をモニターし、第1及び第2湿度温度計82,84の計測湿度及び計測温度に基づいて除湿量を求めた。   Next, in order to examine the ratio of the fine particles mixed in the dehumidified body, the dehumidifying ability was measured in the same manner as in Examples 1 and 2 for Examples 3 to 6. In the measurement of the dehumidifying capacity, as described above, as a preliminary step of measurement, dry air of 70 ° C. and 5% RH is allowed to flow through the wind tunnel housing 74 for 15 minutes, and then humidified air of 30 ° C. and 70% RH is supplied to the wind tunnel. The humidity of the air flowing through the housing 74 and before passing through the dehumidifying rotor 70 is monitored by the first humidity thermometer 82, and the humidity of the air after passing through the dehumidifying rotor 70 is monitored by the temperature and humidity of the second humidity thermometer 84. The dehumidification amount was determined based on the measured humidity and measured temperature of the first and second humidity thermometers 82 and 84.

この除湿試験の結果は、表3に示す通りであった。尚、理解を容易にするために、実施例1及び2の実験結果を表3に転記して示している。この表3から明らかなように、微粒子の混合比率が10重量%より少ないと、微粒子を混入したことによる効果(吸湿性の向上効果)があまり得られず、また微粒子の混合比率が40%を超えると、除湿材の混合比率が相対的に少なくなって除湿性能が低下し、このことから、この微粒子の混合比率が10〜40重量%であるのが望ましいことが分かった。   The results of this dehumidification test were as shown in Table 3. In order to facilitate understanding, the experimental results of Examples 1 and 2 are shown in Table 3. As is apparent from Table 3, if the mixing ratio of the fine particles is less than 10% by weight, the effect of mixing the fine particles (improvement in hygroscopicity) is not obtained so much, and the mixing ratio of the fine particles is 40%. If it exceeds, the mixing ratio of the dehumidifying material is relatively decreased and the dehumidifying performance is lowered. From this, it was found that the mixing ratio of the fine particles is preferably 10 to 40% by weight.

Figure 2012183460
Figure 2012183460

2 装置ハウジング
4 吸入流路
6 排出流路
20 除湿ロータ
24 除湿材
40 母材
42 混合体
44 微粒子
46 バインダ
48 塗布層


2 Device Housing 4 Suction Channel 6 Discharge Channel 20 Dehumidifying Rotor 24 Dehumidifying Material 40 Base Material 42 Mixture 44 Fine Particle 46 Binder 48 Coating Layer


Claims (5)

水分を吸湿するための除湿材と、熱伝導率が大きい微粒子と、前記除湿材及び前記微粒子を保持するためのバインダとが混合されてなることを特徴とする除湿体。   A dehumidifying body comprising a dehumidifying material for absorbing moisture, fine particles having high thermal conductivity, and the dehumidifying material and a binder for holding the fine particles. 前記微粒子が金属、金属酸化物又は金属硫化物から形成されていることを特徴とする請求項1に記載の除湿体。   The dehumidifier according to claim 1, wherein the fine particles are formed of a metal, a metal oxide, or a metal sulfide. 前記微粒子の粒子径が1〜500μmであることを特徴とする請求項1又は2に記載の除湿体。   The dehumidifier according to claim 1 or 2, wherein the fine particles have a particle diameter of 1 to 500 µm. 前記微粒子の混合比率が10〜40重量%であることを特徴とする請求項1〜3のいずれかに記載の除湿体。   The dehumidifier according to any one of claims 1 to 3, wherein a mixing ratio of the fine particles is 10 to 40% by weight. 請求項1〜4のいずれかに記載の除湿体を備えたことを特徴とするデシカント除湿装置。









A desiccant dehumidifier comprising the dehumidifier according to any one of claims 1 to 4.









JP2011047051A 2011-03-04 2011-03-04 Dehumidification body and desiccant dehumidifier including the same Pending JP2012183460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011047051A JP2012183460A (en) 2011-03-04 2011-03-04 Dehumidification body and desiccant dehumidifier including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011047051A JP2012183460A (en) 2011-03-04 2011-03-04 Dehumidification body and desiccant dehumidifier including the same

Publications (1)

Publication Number Publication Date
JP2012183460A true JP2012183460A (en) 2012-09-27

Family

ID=47014051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011047051A Pending JP2012183460A (en) 2011-03-04 2011-03-04 Dehumidification body and desiccant dehumidifier including the same

Country Status (1)

Country Link
JP (1) JP2012183460A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187483A (en) * 2011-03-09 2012-10-04 Osaka Gas Co Ltd Dehumidification body and desiccant dehumidifying apparatus equipped with the same
KR20150054255A (en) * 2013-11-11 2015-05-20 (주) 태진금속 Desiccant rotor and method of manufacturing desiccant rotor
KR102672839B1 (en) 2023-06-28 2024-06-10 주식회사 금영이엔지 Dehumidification rotor system and its operation method of lowering the water desorption temperature

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229216A (en) * 1999-02-09 2000-08-22 Sharp Corp Dry type adsorption device and adsorbent
JP2000272914A (en) * 1999-03-26 2000-10-03 Hirobe:Kk Thermally conductive activated carbon substance and gas treating apparatus
JP2002079045A (en) * 2000-09-07 2002-03-19 Nissan Motor Co Ltd Dehumidifying material and method for manufacturing the same
JP2003251133A (en) * 2002-03-07 2003-09-09 Seibu Giken Co Ltd Adsorption sheet and adsorber using the same
JP2008249311A (en) * 2007-03-30 2008-10-16 Nichias Corp Dry air supply device
JP2009136750A (en) * 2007-12-05 2009-06-25 Osaka Gas Co Ltd Desiccant dehumidifier and desiccant air-conditioning system
JP2010069428A (en) * 2008-09-19 2010-04-02 Panasonic Corp Dehumidifying apparatus
JP2012522883A (en) * 2009-04-06 2012-09-27 バイオスフィア・インダストリーズ・リミテッド・ライアビリティ・カンパニー Eco-friendly composition with beneficial additives

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229216A (en) * 1999-02-09 2000-08-22 Sharp Corp Dry type adsorption device and adsorbent
JP2000272914A (en) * 1999-03-26 2000-10-03 Hirobe:Kk Thermally conductive activated carbon substance and gas treating apparatus
JP2002079045A (en) * 2000-09-07 2002-03-19 Nissan Motor Co Ltd Dehumidifying material and method for manufacturing the same
JP2003251133A (en) * 2002-03-07 2003-09-09 Seibu Giken Co Ltd Adsorption sheet and adsorber using the same
JP2008249311A (en) * 2007-03-30 2008-10-16 Nichias Corp Dry air supply device
JP2009136750A (en) * 2007-12-05 2009-06-25 Osaka Gas Co Ltd Desiccant dehumidifier and desiccant air-conditioning system
JP2010069428A (en) * 2008-09-19 2010-04-02 Panasonic Corp Dehumidifying apparatus
JP2012522883A (en) * 2009-04-06 2012-09-27 バイオスフィア・インダストリーズ・リミテッド・ライアビリティ・カンパニー Eco-friendly composition with beneficial additives

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187483A (en) * 2011-03-09 2012-10-04 Osaka Gas Co Ltd Dehumidification body and desiccant dehumidifying apparatus equipped with the same
KR20150054255A (en) * 2013-11-11 2015-05-20 (주) 태진금속 Desiccant rotor and method of manufacturing desiccant rotor
KR101583077B1 (en) 2013-11-11 2016-01-06 (주)태진금속 Desiccant rotor and method of manufacturing desiccant rotor
KR102672839B1 (en) 2023-06-28 2024-06-10 주식회사 금영이엔지 Dehumidification rotor system and its operation method of lowering the water desorption temperature

Similar Documents

Publication Publication Date Title
JP3346680B2 (en) Adsorbent for moisture exchange
JP6432022B2 (en) Dehumidifier and water machine
JP2019504271A (en) Heat recovery adsorbent as a ventilation system in a building
WO2016056304A1 (en) Dehumidification device
JP2011036768A (en) Dehumidifier
JP6632005B1 (en) Gas adsorbent, its production method and carbon dioxide gas concentrator
JP2010069428A (en) Dehumidifying apparatus
JP2012135759A (en) Hygroscopic agent, method for production thereof, and apparatus using the hygroscopic agent
JP2006061758A (en) Carbon dioxide remover
JP6266100B2 (en) Humidity control device
JP2011143358A (en) Moisture absorption filter and humidifier
JP2012183460A (en) Dehumidification body and desiccant dehumidifier including the same
JP2000070659A (en) Dehumidifying material and dehumidifier
JP5844058B2 (en) Dehumidifier and desiccant dehumidifier equipped with the same
JP4919498B2 (en) Air conditioning system
JPH0710330B2 (en) Dry dehumidifier
JP2003001047A (en) Dehumidification device and cold air generator using this dehumidification device
JP2012179559A (en) Dehumidifying body and desiccant dehumidifying apparatus including the same
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
JPS63264125A (en) Dry dehumidifying component
JP2006289258A (en) Dehumidification body and desiccant air-conditioner using the same
JP2002253924A (en) Dehumidifying device and dehumidifier using the same
JP2004093013A (en) Refrigeration device
JP3345596B2 (en) Adsorbent for moisture exchange
CN204494647U (en) A kind of two regeneration rotary dehumidifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150811

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20151030