JP2000070659A - Dehumidifying material and dehumidifier - Google Patents

Dehumidifying material and dehumidifier

Info

Publication number
JP2000070659A
JP2000070659A JP10247972A JP24797298A JP2000070659A JP 2000070659 A JP2000070659 A JP 2000070659A JP 10247972 A JP10247972 A JP 10247972A JP 24797298 A JP24797298 A JP 24797298A JP 2000070659 A JP2000070659 A JP 2000070659A
Authority
JP
Japan
Prior art keywords
dehumidifying
clay mineral
binder
humidity
dehumidifying material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10247972A
Other languages
Japanese (ja)
Inventor
Yohei Seguchi
洋平 瀬口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10247972A priority Critical patent/JP2000070659A/en
Publication of JP2000070659A publication Critical patent/JP2000070659A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1048Geometric details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Abstract

PROBLEM TO BE SOLVED: To enlarge a use range while a high hygroscopic performance is secured in a widely ranged humidity region by replacing a part of a binder with a clay mineral having a hygroscopic property in a dehumidifying material comprising a dehumidifying agent and a binder for holding that. SOLUTION: A dehumidifying rotor 1 is formed in a honeycomb structure disk having a void through which air can pass, and fixed to a central shaft 2 to be rotatively driven by a motor. Then, the dehumidifying rotor 1 is formd in the honeycomb structure from a sheet-like base material 20 such as a corrugated cardboard, a high-temperature resin molded product, or the like, and a dehumidifying material is attached onto a surface of the base material 20 to which respective vents are formed. In this case, the dehumidifying material is formed by mixing a moisture absorbent, a clay mineral having an excellent hygroscopic characteristic, and a binder holding them. Further, zeolite is used as the moisture adsorbent, and alumina silica based gel clay to be called as allophane in a scientific name, which is one kind of ores existing in nature, is used as the clay mineral.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被乾燥ガス中、例
えば空気中の水分を吸湿する除湿材に関し、さらに、こ
れを用いた除湿装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dehumidifying material which absorbs moisture in a gas to be dried, for example, air, and further relates to a dehumidifying device using the same.

【0002】[0002]

【従来の技術】乾式除湿材は、空気中の水分を吸着して
除去するとともに、高温の空気にさらされると吸着して
いる水分を放出して、再生される。このような乾式除湿
材を用いた除湿装置は、低湿度から高湿度まで広範囲の
湿度領域において除湿および加湿を行い、いわゆる調湿
機能を有する。
2. Description of the Related Art Dry dehumidifiers are regenerated by adsorbing and removing moisture in the air and releasing the adsorbed moisture when exposed to high-temperature air. A dehumidifier using such a dry type dehumidifier performs dehumidification and humidification in a wide range of humidity from low humidity to high humidity, and has a so-called humidity control function.

【0003】図7に従来の除湿装置を示す。乾式除湿材
を担持した円板状の除湿ローター1は、厚み方向と平行
に通風孔が設けられたハニカム構造とされ、中心軸2を
中心としてモータ(図示せず)により回転駆動される。
FIG. 7 shows a conventional dehumidifier. The disc-shaped dehumidifying rotor 1 carrying a dry dehumidifying material has a honeycomb structure having ventilation holes parallel to the thickness direction, and is driven to rotate about a central axis 2 by a motor (not shown).

【0004】除湿する空気は被乾燥空気導入用ダクト3
を通じて除湿ローター1の吸着エリア4に送り込まれ、
除湿ローター1の通風孔内を通過する間に通風孔表面に
担持された除湿材により水分が吸着される。水分を放出
した乾燥空気はファン5により強制的に吸引され、被乾
燥空気排出用ダクト6に送り込まれた後、使用目的に応
じて所定の場所に供給される。
The air to be dehumidified is a duct 3 for introducing air to be dried.
Through the suction area 4 of the dehumidifying rotor 1
While passing through the ventilation holes of the dehumidifying rotor 1, moisture is adsorbed by the dehumidifying material carried on the surfaces of the ventilation holes. The dried air from which water has been released is forcibly sucked by the fan 5 and sent to the drying air discharge duct 6 where it is supplied to a predetermined place according to the purpose of use.

【0005】一方、再生空気導入用ダクト7から送り込
まれた再生空気が熱源8を通過する間に加熱され、除湿
ローター1の再生エリア9に送り込まれる。この加熱さ
れた再生空気が除湿ローター1の通風孔を通過する間
に、除湿材から吸着した水分を奪い取り、除湿ローター
1を再生した後、ファン10により吸引されて再生空気
排出用ダクト11に導かれる。そして、この水分を含ん
だ再生空気は、その使用目的に応じて所定の場所に送ら
れる。
On the other hand, the regeneration air sent from the regeneration air introduction duct 7 is heated while passing through the heat source 8 and is sent to the regeneration area 9 of the dehumidifying rotor 1. While the heated regeneration air passes through the ventilation holes of the dehumidification rotor 1, it absorbs moisture adsorbed from the dehumidification material, regenerates the dehumidification rotor 1, and is sucked by the fan 10 to be guided to the regeneration air discharge duct 11. I will Then, the regenerated air containing the water is sent to a predetermined place according to the purpose of use.

【0006】以上のように除湿ローター1が連続的に回
転することによって、除湿装置は水分吸着と水分脱離を
交互に繰り返して行える構造になっている。
As described above, the dehumidifying device has a structure in which moisture adsorption and desorption can be alternately repeated by rotating the dehumidification rotor 1 continuously.

【0007】ここで、乾式除湿材に用いられる吸湿剤と
しては、一般的に塩化リチウム等の化学吸湿剤や、活性
アルミナ、シリカゲル、ゼオライト等の物理吸湿剤が広
く用いられている。特に、塩化リチウムは水分吸湿量が
多く、この乾式除湿装置においても使用されることが多
い。
Here, as a moisture absorbent used for the dry dehumidifier, a chemical moisture absorbent such as lithium chloride and a physical moisture absorbent such as activated alumina, silica gel and zeolite are generally widely used. In particular, lithium chloride has a large amount of moisture absorption and is often used in this dry dehumidifier.

【0008】[0008]

【発明が解決しようとする課題】ところが、塩化リチウ
ム等の無機塩類は、吸湿量が多くなると自らが潮解して
しまう欠点がある。これらが潮解して液状になると、除
湿ローターから流出して装置内に飛散し、装置を腐食し
たり、さらにひどい場合は装置の外に流出し、設置場所
を汚染したり、人体に付着したりしてしまう危険性があ
った。
However, inorganic salts such as lithium chloride have a drawback that when they absorb a large amount of moisture, they deliquefy themselves. If they deliquefy and become liquid, they will flow out of the dehumidifying rotor and fly into the equipment, corroding the equipment, and in severe cases, spilling out of the equipment, contaminating the installation site and adhering to the human body. There was a risk of doing it.

【0009】一方、物理吸湿剤としては、シリカゲルが
広く知られている。しかしながら、シリカゲルは水蒸気
分圧が高い領域では優れた吸湿性能を有しているが、水
蒸気分圧が低い領域では、吸湿速度は著しく低下する。
このため、水蒸気分圧が低い場合の吸湿剤としては不向
きである。活性アルミナも同様の傾向がある。
On the other hand, silica gel is widely known as a physical moisture absorbent. However, silica gel has excellent moisture absorption performance in a region where the water vapor partial pressure is high, but the moisture absorption rate is significantly reduced in a region where the water vapor partial pressure is low.
Therefore, it is not suitable as a moisture absorbent when the partial pressure of water vapor is low. Activated alumina has a similar tendency.

【0010】逆に、ゼオライトは水蒸気分圧が低い領域
から水分を吸湿することができる。しかしながら、水蒸
気分圧が高い領域においても、その水分吸湿量は一定で
あり、この領域における吸湿量は不十分である。以上の
ように対象となる水蒸気分圧が広範囲にわたる場合、全
範囲において満足できる吸湿剤は存在しない。
Conversely, zeolite can absorb moisture from a region where the partial pressure of water vapor is low. However, even in a region where the water vapor partial pressure is high, the amount of moisture absorption is constant, and the amount of moisture absorption in this region is insufficient. As described above, when the target steam partial pressure is wide, there is no satisfactory hygroscopic agent in the whole range.

【0011】そこで、上記の物理吸湿剤の欠点を補うも
のとして、 シリカゲルとゼオライトを混合した除湿材(特開昭5
8−37430号公報参照) 入口側にシリカゲルを主成分とした吸湿剤を配し、出
口側にゼオライトを主成分とした吸湿剤を配し、これら
を接着固定した構造の除湿材(特開昭63−24092
1号公報参照) が提案されている。
In order to compensate for the above-mentioned drawbacks of the physical moisture absorbent, a dehumidifying material obtained by mixing silica gel and zeolite (Japanese Patent Laid-Open No.
A dehumidifier having a structure in which a moisture absorbent mainly composed of silica gel is disposed on the inlet side and a moisture absorbent mainly composed of zeolite is disposed on the exit side, and these are bonded and fixed (Japanese Patent Application Laid-Open No. 63-24092
No. 1) has been proposed.

【0012】しかしながら、では、単にゼオライトと
シリカゲルを混合して使用しただけであるので、除湿材
に占める吸湿剤の比率は増えておらず、両者の中間の特
性が得られるだけであり、低湿度あるいは高湿度におい
てはそれぞれ単独の方が特性は優れている結果となる。
そのため、低湿度から高湿度まで広範囲の湿度領域にお
いて満足できる特性は得られない。
However, in this case, since only zeolite and silica gel are used in a mixed state, the ratio of the hygroscopic agent in the dehumidifying material has not increased, and an intermediate characteristic between the two can be obtained. Alternatively, in a high humidity condition, the results are superior when used alone.
Therefore, satisfactory characteristics cannot be obtained in a wide humidity range from low humidity to high humidity.

【0013】また、では、別々の吸湿剤で作成した円
板状ハニカム構造体を貼り合わせる必要があり、工程が
複雑になり、製造コストが高くなってしまう問題があ
る。しかも、両者の表裏面を被乾燥空気の圧力損失を増
やさずに貼り合わせることは現実的には困難である。
Further, in this case, it is necessary to bond the disc-shaped honeycomb structures made of different hygroscopic agents, which causes a problem that the process becomes complicated and the production cost becomes high. Moreover, it is practically difficult to bond the front and back surfaces of both without increasing the pressure loss of the air to be dried.

【0014】本発明は、上記に鑑み、広範囲の湿度領域
において高い吸湿性能を有する除湿材の提供を目的とす
る。さらに、この優れた吸湿特性を生かして、利用範囲
の広い除湿装置を提供することを目的とする。
[0014] In view of the above, an object of the present invention is to provide a dehumidifying material having high moisture absorbing performance in a wide range of humidity. Further, it is another object of the present invention to provide a dehumidifier having a wide range of use by utilizing the excellent moisture absorption characteristics.

【0015】[0015]

【課題を解決するための手段】本発明による課題解決手
段は、吸湿剤とこれを保持するために用いられるバイン
ダーとからなる除湿材において、バインダーの一部を吸
湿性を有する粘土鉱物に置換するものである。すなわ
ち、粘土鉱物は、粘性を有し、乾燥したとき強固になる
ことから、吸湿剤を保持する機能があり、バインダーの
役割を果たすことになる。しかも、吸湿性を有している
ので、吸湿剤としての役割も果たし、除湿材における吸
湿剤の比率を高めることになる。
The object of the present invention is to provide a dehumidifying material comprising a hygroscopic agent and a binder used to hold the hygroscopic agent, wherein a part of the binder is replaced with a clay mineral having hygroscopicity. Things. That is, since the clay mineral has viscosity and becomes strong when dried, it has a function of retaining the moisture absorbent and plays a role of a binder. In addition, since it has a hygroscopic property, it also functions as a hygroscopic agent, and increases the ratio of the hygroscopic agent in the dehumidifying material.

【0016】したがって、このような除湿材を担体に担
持させれば、担体への除湿材の結合力が低下することは
ないので、剥がれ等の欠陥がなくなり、高品質な除湿装
置が得られるとともに、従来と変わらない工程によって
製作できる。また、吸湿剤の比率を高めることができる
ので、吸湿性能を向上させることができ、高性能な除湿
装置となる。
Therefore, if such a dehumidifying material is carried on a carrier, the bonding force of the dehumidifying material to the carrier does not decrease, so that defects such as peeling are eliminated, and a high-quality dehumidifying device can be obtained. It can be manufactured by the same process as conventional. Further, since the ratio of the hygroscopic agent can be increased, the hygroscopic performance can be improved, and a high-performance dehumidifier can be obtained.

【0017】そして、粘土鉱物としては、アルミナシリ
カ質ゲル(学名アロフェン)が用いられる。この特徴と
しては、湿度が高くなるにつれて吸湿量が増加する。そ
こで、低湿度で優れた吸湿性能を有するゼオライトと組
み合わせることにより、低湿度から高湿度の広範囲な湿
度領域において高い吸湿性能を有する除湿材が得られ、
利用範囲が広がる。
As the clay mineral, alumina-silica gel (scientific name: allophane) is used. The feature is that the moisture absorption increases as the humidity increases. Therefore, by combining with zeolite having excellent moisture absorption performance at low humidity, a dehumidifier having high moisture absorption performance in a wide range of humidity from low humidity to high humidity can be obtained.
The range of use expands.

【0018】[0018]

【発明の実施の形態】本発明に係る乾式除湿装置は、除
湿材を担持する担体である除湿ローター、除湿ローター
を回転させるモータ、除湿ローターに対してその一側あ
るいは反対の他側から空気を送風するファンおよびダク
トからなる送風手段、再生用熱源からなり、従来と同じ
構造であり、除湿および加湿を行い、所定の場所を一定
の湿度に保つことができる、いわゆる調湿機能を有する
ものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A dry dehumidifier according to the present invention comprises a dehumidifying rotor serving as a carrier for supporting a dehumidifying material, a motor for rotating the dehumidifying rotor, and air from one side or the other side of the dehumidifying rotor. Blowing means consisting of a fan and duct for blowing air, consisting of a heat source for regeneration, has the same structure as before, performs dehumidification and humidification, and has a so-called humidity control function that can maintain a predetermined location at a constant humidity. is there.

【0019】図1に示すように、除湿ローター1は、空
気が通り抜け可能な空隙を有するハニカム構造の円板と
され、モータにより回転駆動される中心軸2に固定され
ている。除湿ローター1は、ダンボール紙、耐熱樹脂成
型品等のシート状基材20からハニカム構造を有する形
状に製作される。ここで、ハニカム構造の代表的な例と
しては、図2の波状のコルゲート型、図3の亀甲型、図
4の格子型がある。いずれの型においても、軸方向に空
隙が形成され、これが通風孔21とされる。
As shown in FIG. 1, the dehumidifying rotor 1 is a disc having a honeycomb structure having a gap through which air can pass, and is fixed to a central shaft 2 driven to rotate by a motor. The dehumidifying rotor 1 is manufactured in a shape having a honeycomb structure from a sheet-like substrate 20 such as a cardboard paper, a heat-resistant resin molded product, or the like. Here, typical examples of the honeycomb structure include a corrugated corrugated type shown in FIG. 2, a turtle shell type shown in FIG. 3, and a lattice type shown in FIG. In any of the molds, a gap is formed in the axial direction, and this is used as the ventilation hole 21.

【0020】そして、除湿ローター1のそれぞれの通風
孔21を形成する基材20の表面に除湿材が付着してい
る。すなわち、除湿材をスラリー状にして、基材20に
付着させて焼結したり、除湿材の溶液に基材20をディ
ッピングして焼結したり、除湿材の溶液を基材20に塗
布して、焼結したりすることにより、除湿材は除湿ロー
ター1に担持される。
A dehumidifying material is adhered to the surface of the substrate 20 forming the ventilation holes 21 of the dehumidifying rotor 1. That is, the dehumidifying material is made into a slurry, adhered to the base material 20 and sintered, or the base material 20 is dipped and sintered in a dehumidifying solution, or the dehumidifying material solution is applied to the base material 20. Then, by sintering, the dehumidifying material is carried on the dehumidifying rotor 1.

【0021】除湿材は、吸湿剤と、優れた吸湿特性を有
する粘土鉱物と、両者を保持するバインダーとが混合さ
れてなる。吸湿剤には、ゼオライトが用いられ、粘土鉱
物には、天然に存在する鉱石の一種で学名アロフェンと
称されるアルミナシリカ質ゲルの粘土が用いられる。
The dehumidifying material is obtained by mixing a hygroscopic agent, a clay mineral having excellent hygroscopic properties, and a binder holding both of them. Zeolite is used as the hygroscopic agent, and alumina-silica gel clay, which is a kind of naturally occurring ore and has a scientific name of allophane, is used as the clay mineral.

【0022】ゼオライトとしては、A型、Y型、X型等
の合成ゼオライト、またはモルデナイト、シャバサイ
ト、ホウふっ石、エリオナイト、フェリエライト等の天
然ゼオライトから任意に選択することができる。また、
ゼオライト中の陽イオンをマグネシウム、鉄、銅などの
アルカリ土類や遷移金属、もしくはランタン、セリウ
ム、プラセオジウムなどの希土類元素に置換したものも
有効である。バインダーとしては、コロイダルシリカ、
水ガラス、コロイダルアルミナなど任意に選ぶことが可
能である。
The zeolite can be arbitrarily selected from synthetic zeolites such as A-type, Y-type and X-type, or natural zeolites such as mordenite, shabasite, fluorite, erionite and ferrierite. Also,
It is also effective to replace the cation in the zeolite with an alkaline earth or transition metal such as magnesium, iron or copper, or a rare earth element such as lanthanum, cerium or praseodymium. Colloidal silica,
Water glass, colloidal alumina and the like can be arbitrarily selected.

【0023】ここで、粘土鉱物の中でも特にアルミナシ
リカ質ゲルは吸着特性に優れている。その水分吸着特性
を図5に示す。特徴として、湿度が高くなるにつれて吸
着量が増加する点では、シリカゲルA、B型と類似して
いるが、シリカゲルA型よりも全体に吸着量が高い。ま
た、シリカゲルB型は相対湿度が極端に高い(90%R
H以上)場合には有効であるが、通常の室内ではこのよ
うな高湿度は起こり得ず、室内中の湿度を調湿するなど
の用途の場合、その特性を発揮できる環境の範囲が極め
て狭く実用的でない。以上のように、アルミナシリカ質
ゲルは、高湿度領域において高い吸湿率を有する吸湿剤
の中でもその吸湿性能は優れており、通常の使用環境中
で実用的である。
Here, among the clay minerals, alumina-silica gel is particularly excellent in adsorption characteristics. FIG. 5 shows the moisture adsorption characteristics. Characteristically, it is similar to silica gel types A and B in that the amount of adsorption increases as the humidity increases, but the total amount of adsorption is higher than that of silica gel A type. Silica gel B type has an extremely high relative humidity (90% R
H or more), it is effective, but such high humidity cannot occur in a normal room, and in applications such as humidity control in a room, the range of environments in which the characteristics can be exhibited is extremely narrow. Not practical. As described above, the alumina siliceous gel has excellent moisture absorption performance among moisture absorbents having a high moisture absorption rate in a high humidity region, and is practical in a normal use environment.

【0024】一般的に吸湿剤を保持するために必要なバ
インダーの比率は、乾燥重量の40〜50%程度であ
り、残りの50〜60%が吸湿剤となる。これよりもバ
インダーの比率が少なくなると、吸湿剤の脱落、剥れな
どの不具合を生じてしまう。ところが、粘土鉱物を加え
た場合、粘土鉱物特有の粒子形状と粒子の細かさに起因
するものと推測できるが、バインダーの比率を減らして
もある比率までは、吸湿剤の保持力は減少しないことが
確認できた。具体的にはバインダーの比率を20%まで
減らすことができ、その減った分の最大30%を粘土鉱
物に置換することができる。それゆえ、本来の吸湿剤と
吸湿特性を有する粘土鉱物とを合わせたトータルとして
の吸湿剤の比率を高めることができる。また、粘土鉱物
が少ないと高湿度における吸湿性が得られなくなるの
で、十分な吸湿性能を得るためには、10%以上必要で
ある。
Generally, the ratio of the binder required to hold the moisture absorbent is about 40 to 50% of the dry weight, and the remaining 50 to 60% is the moisture absorbent. If the ratio of the binder is lower than this, problems such as falling off and peeling of the moisture absorbent will occur. However, when the clay mineral is added, it can be guessed that this is due to the specific particle shape and fineness of the clay mineral.However, even if the ratio of the binder is reduced, the holding power of the moisture absorbent does not decrease to a certain ratio. Was confirmed. Specifically, the ratio of the binder can be reduced to 20%, and a maximum of 30% of the reduced amount can be replaced with clay mineral. Therefore, it is possible to increase the ratio of the total hygroscopic agent including the original hygroscopic agent and the clay mineral having the hygroscopic property. On the other hand, if the amount of the clay mineral is small, it becomes impossible to obtain the hygroscopic property at high humidity. Therefore, to obtain sufficient hygroscopic performance, 10% or more is required.

【0025】これより、除湿材における各原料の比率と
しては、ゼオライト50〜60%、粘土鉱物10〜30
%、バインダー20〜30%となる。
From the above, the ratio of each raw material in the dehumidifier is 50 to 60% for zeolite and 10 to 30 for clay mineral.
% And a binder of 20 to 30%.

【0026】したがって、担体への除湿材の結合力を低
下させることなく、除湿材における吸湿剤の比率を高め
ることができ、その結果、除湿材の吸湿性能を向上させ
ることができる。しかも、低湿度で吸湿性能が優れたゼ
オライトと高湿度になるほど吸湿特性が向上する粘土鉱
物とを組み合わせることにより、低露点を得られるゼオ
ライトの含有率を減らすことなく、高湿度領域での水分
吸湿に優れた吸湿剤を付加することができるため、低湿
度から高湿度の広い範囲において、従来の除湿材に比べ
て優れた吸湿性能を示す除湿材を実現することが可能と
なる。
Therefore, the ratio of the moisture absorbent in the dehumidifier can be increased without lowering the bonding strength of the dehumidifier to the carrier, and as a result, the moisture absorption performance of the dehumidifier can be improved. Moreover, by combining a zeolite with excellent moisture absorption performance at low humidity and a clay mineral that improves moisture absorption properties at higher humidity, moisture absorption in a high humidity region can be achieved without reducing the content of zeolite that can obtain a low dew point. Therefore, it is possible to realize a dehumidifying material exhibiting better moisture absorbing performance than conventional dehumidifying materials in a wide range from low humidity to high humidity.

【0027】また、この除湿材を担体に担持させる方法
は従来から用いられている方法であるので、製造コスト
を増大させることはなく、優れた性能を有する除湿装置
を安価に提供することができる。
Further, since the method of supporting the dehumidifying material on the carrier is a conventionally used method, it is possible to provide an inexpensive dehumidifier having excellent performance without increasing the production cost. .

【0028】そして、この除湿材を用いた除湿装置で
は、部屋の湿度が高くなっても吸湿性能が低下すること
なく快適な湿度を短時間で得ることができる。さらに、
加湿が必要なほど湿度が低下した場合には、除湿ロータ
ー1から吸着した水分を部屋に戻し、乾燥空気だけを室
外に排出することで湿度を高めることができ、優れた調
湿機能が得られる。
In the dehumidifying device using this dehumidifying material, comfortable humidity can be obtained in a short time without deteriorating the moisture absorption performance even when the humidity in the room increases. further,
When the humidity is so low that humidification is necessary, the moisture adsorbed from the dehumidifying rotor 1 is returned to the room, and only the dry air is discharged outside the room, whereby the humidity can be increased, and an excellent humidity control function can be obtained. .

【0029】なお、本発明は、上記実施形態に限定され
るものではなく、本発明の範囲内で上記実施形態に多く
の修正および変更を加え得ることは勿論である。例え
ば、除湿材を担持する担体の他の実施形態を図6に示
す。除湿ローター1の内部を隔壁22によって仕切って
複数の収容室23を形成し、収容室23に固形化した上
記の除湿材Aを通風可能な隙間ができるように詰め、除
湿ローター1の両側の開放面は金網24によって覆い、
除湿ローター1を空気が通り抜けるようにする。このよ
うに、担体は、空気が通り抜ける空隙を有していればよ
く、ローターに限らず、例えば繊維状材料でもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that many modifications and changes can be made to the above-described embodiment within the scope of the present invention. For example, FIG. 6 shows another embodiment of a carrier for supporting a dehumidifying material. The inside of the dehumidifying rotor 1 is partitioned by a partition wall 22 to form a plurality of storage chambers 23, and the storage chamber 23 is packed so as to have a gap through which the solidified dehumidifying material A can be ventilated. The surface is covered with wire mesh 24,
The air passes through the dehumidifying rotor 1. As described above, the carrier only needs to have a gap through which air passes, and is not limited to the rotor, and may be, for example, a fibrous material.

【0030】[0030]

【実施例】以下に、本発明の除湿材を使用した実施例に
ついて具体的に説明する。図7に示す乾式除湿装置にお
いて、図1に示すようなハニカム構造の除湿ローターに
除湿材を担持させる。なお、被乾燥空気、再生空気の送
風手段、除湿ローターの回転方法などは公知の技術を使
用した。
EXAMPLES Examples using the dehumidifying material of the present invention will be specifically described below. In the dry dehumidifier shown in FIG. 7, a dehumidifying material is carried on a dehumidifying rotor having a honeycomb structure as shown in FIG. In addition, a known technique was used for the means for sending the air to be dried and the air for regeneration, the method for rotating the dehumidifying rotor, and the like.

【0031】除湿材の各原料の混合比率を表1に示す。
本実施例では、吸湿剤にゼオライトを使用し、粘土鉱物
にアルミナシリカ質ゲル(学名アロフェン)、具体的に
は品川化成(株)から「セカード」の商品名で市販され
ているものを使用した。比較例である従来の除湿材とし
て、ゼオライトとシリカゲルを混合したものを用い、シ
リカゲルは一般的な粉末状A型シリカゲルを使用した。
バインダーにはコロイダルシリカを用いた。
Table 1 shows the mixing ratio of each raw material of the dehumidifying material.
In the present example, zeolite was used as a moisture absorbent, and alumina siliceous gel (scientific name: Allophane) was used as a clay mineral, specifically, a product commercially available from Shinagawa Kasei Co., Ltd. under the trade name of "Secard" was used. . As a conventional dehumidifying material as a comparative example, a mixture of zeolite and silica gel was used, and as the silica gel, general powdery A-type silica gel was used.
Colloidal silica was used as a binder.

【0032】そして、各原料を表1の比率にしたがって
混合してスラリー状にし、除湿ローター(直径250m
m、厚さ30mm、表面積30m2/cc)に担持させ
た後、150℃で2Hr乾燥を行った。なお、担持量は
一定となるように粘度を調整し、担持量は各試料とも7
0g/lに統一した。
Then, the respective raw materials were mixed according to the ratios shown in Table 1 to form a slurry, and a dehumidifying rotor (250 m in diameter) was used.
m, thickness 30 mm, surface area 30 m 2 / cc), and dried at 150 ° C. for 2 hours. The viscosity was adjusted so that the supported amount was constant, and the supported amount was 7 for each sample.
It was unified to 0 g / l.

【0033】[0033]

【表1】 [Table 1]

【0034】実施例A1〜A4、比較例B,C1〜C4
の試料に関して、基材への密着性と水分吸着性能に関し
て評価を行った。すなわち、まず基材への密着性は上記
試料にN2ブローを強く吹きつけて、除湿材の脱離、剥
れなどを目視、重量変化などにより厳密に評価した。一
方、水分吸着性能に関しては、23℃の恒温恒湿槽にて
30、50、80%RHの各一定湿度条件下で吸着容量
を評価した。基材への密着性と水分吸着性能に関する結
果を表2に示す。
Examples A1 to A4, Comparative Examples B and C1 to C4
With respect to the sample (1), evaluation was made on the adhesion to the substrate and the moisture adsorption performance. That is, first, the adhesion to the substrate was strictly evaluated by blowing the N 2 blow on the sample, and visually checking the desorption and peeling of the dehumidifying material and changes in weight. On the other hand, regarding the moisture adsorption performance, the adsorption capacity was evaluated in a constant temperature and humidity chamber of 23 ° C. under each of the constant humidity conditions of 30, 50, and 80% RH. Table 2 shows the results regarding the adhesion to the substrate and the moisture adsorption performance.

【0035】[0035]

【表2】 [Table 2]

【0036】まずは、基材への密着性であるが、実施例
A1〜A4のいずれの場合も、除湿材の粉落ち、剥れ、
重量減少は生じなかった。一方、リファレンスのBと比
較例C1は問題なかったものの、比較例C2〜C4はい
ずれも除湿材の粉落ち、重量減少が発生した。
First, the adhesiveness to the base material will be described. In any of Examples A1 to A4, the powder of the dehumidifying material falls off and peels off.
No weight loss occurred. On the other hand, although the reference B and the comparative example C1 did not have any problem, the comparative examples C2 to C4 all caused powder removal of the dehumidifying material and weight loss.

【0037】上記結果から、バインダー分40%のう
ち、少なくともその半分をアロフェンで置き換えること
が可能になる。密着性が良好である従来の除湿材による
と、吸湿剤合計は65%であるのに対して、本実施例に
よると吸湿剤の合計比率を80%にまで高めることがで
きる。つまり、単純に吸湿剤の含有比率だけで比較して
も、本実施例では従来より15%も吸湿剤の比率を高め
ることが可能になった。
From the above results, at least half of the binder content of 40% can be replaced with allophane. According to the conventional dehumidifier having good adhesiveness, the total amount of the hygroscopic agent is 65%, whereas according to the present embodiment, the total ratio of the hygroscopic agent can be increased to 80%. That is, even if the comparison is made only by the content ratio of the hygroscopic agent, it is possible in this embodiment to increase the ratio of the hygroscopic agent by 15% as compared with the conventional example.

【0038】次に、水分吸着量の評価結果であるが、各
試料とも水分吸着量が飽和した時点での一定容積に対す
る水分吸着量で示している。実施例A1〜A4および比
較例C1〜C4は、いずれもリファレンスとしての比較
例Bよりも性能は向上した。両者とも吸湿剤比率が高ま
るにつれて、吸湿性能は向上している。同じ吸湿剤比率
で実施例と比較例を比べた場合、本実施例の方が優れた
結果となった。これは図5に示したようにシリカゲルに
比べてアロフェンの吸湿特性が優れていることに起因し
ていると考えられる。
Next, the results of the evaluation of the amount of adsorbed water are shown in each sample as the amount of adsorbed water with respect to a fixed volume when the amount of adsorbed water is saturated. In Examples A1 to A4 and Comparative Examples C1 to C4, the performance was improved as compared with Comparative Example B as a reference. In both cases, as the ratio of the hygroscopic agent increases, the hygroscopic performance increases. When the example and the comparative example were compared with the same hygroscopic agent ratio, the result of the present example was superior. This is considered to be due to the fact that allophane has better moisture absorption properties than silica gel as shown in FIG.

【0039】総合評価として、シリカゲルを加えた比較
例C2〜C4は基材に対する密着性が悪く、実使用では
除湿材の粉落ちなど問題を引き起こす危険性が高く、使
用することはできない。一方、本実施例では少なくとも
バインダーを20%までの比率にする場合においては適
用可能であり、その場合の吸湿特性は従来よりも約1.
5倍に向上する。
As a comprehensive evaluation, Comparative Examples C2 to C4 to which silica gel was added had poor adhesion to the substrate, and there was a high risk of causing problems such as powder removal of the dehumidifying material in actual use, so that they could not be used. On the other hand, the present embodiment is applicable at least when the ratio of the binder is up to 20%, and in this case, the hygroscopic property is about 1.
5 times improvement.

【0040】また、アロフェンが5%である実施例A1
では、比較例Bよりも吸湿性能は向上しているが、比較
例C1と比べて飛躍的には向上していない。したがっ
て、アロフェンは10%以上あれば、吸湿性能が大いに
向上する。そして、バインダーは20%以上必要であ
り、ゼオライトは50〜60%含むことより、アロフェ
ンは最大30%まで混合することが可能となる。
Example A1 in which allophane is 5%
In Comparative Example 1, the moisture absorption performance was improved as compared with Comparative Example B, but was not significantly improved as compared with Comparative Example C1. Therefore, if allophane is 10% or more, the moisture absorption performance is greatly improved. Then, the binder needs to be 20% or more, and the zeolite contains 50 to 60%, so that allophane can be mixed up to 30%.

【0041】次に、上記の実施例および比較例の各除湿
材を担持した除湿ローターを作成して、乾式除湿装置に
組み込み、恒温恒湿槽にて吸湿性能を調べた。評価条件
は以下の通りである。また結果を表3に示す。
Next, dehumidifying rotors carrying the respective dehumidifying materials of the above Examples and Comparative Examples were prepared, incorporated in a dry dehumidifier, and the moisture absorption performance was examined in a constant temperature and constant humidity chamber. The evaluation conditions are as follows. Table 3 shows the results.

【0042】 被処理空気風量 :30m3/時 再生空気風量 :22m3/時 ローター回転速度:最適値を用いた(20〜50回転/時) 再生ガス温度 :190℃ 恒温恒湿槽温度 :23℃Air volume to be treated: 30 m 3 / hour Regeneration air volume: 22 m 3 / hour Rotor rotation speed: Using the optimum value (20 to 50 rotations / hour) Regeneration gas temperature: 190 ° C. Constant temperature and humidity chamber temperature: 23 ° C

【0043】[0043]

【表3】 [Table 3]

【0044】この表では、被処理空気の入口側の絶対湿
度(表の上部に記載)が、各除湿ローターを通過した後
に、表中記載の絶対湿度まで低下したことを示してい
る。この表に示したように、比較例B(ゼオライト60
%、バインダー40%)に対し、本実施例A1〜A4は
優れた吸湿性能を示した。また、アロフェンの比率が高
くなるにつれて、効果は一層高くなった。
This table shows that the absolute humidity on the inlet side of the air to be treated (described at the top of the table) decreased to the absolute humidity shown in the table after passing through each dehumidifying rotor. As shown in this table, Comparative Example B (Zeolite 60
%, Binder 40%), Examples A1 to A4 showed excellent moisture absorption performance. Also, the effect became even higher as the proportion of allophane increased.

【0045】以上のように、バインダーの一部を吸湿性
を有する粘土鉱物に置換することにより、広範囲の湿度
領域において、従来の除湿材に比べて優れた吸湿特性を
持つ除湿材を得ることができ、しかも使用に際しても剥
がれ等の欠陥が生じない品質的に優れた除湿材となる。
As described above, by replacing a part of the binder with a clay mineral having hygroscopicity, it is possible to obtain a dehumidifying material having excellent hygroscopic properties as compared with conventional dehumidifying materials in a wide range of humidity. It is a dehumidifier excellent in quality that can be produced and does not cause defects such as peeling during use.

【0046】[0046]

【発明の効果】以上の説明から明らかな通り、本発明に
よると、吸湿剤と、吸湿性を有する粘土鉱物と、バイン
ダーとから除湿材が構成されるので、粘土鉱物がバイン
ダーおよび吸湿剤の両方の機能を果たすことにより、担
体への良好な密着性を維持しながら、吸湿剤の比率が高
まることになり、除湿材の吸湿性能が向上する。
As is apparent from the above description, according to the present invention, the dehumidifying material is composed of the hygroscopic agent, the hygroscopic clay mineral, and the binder, so that the clay mineral contains both the binder and the hygroscopic agent. As a result, the ratio of the hygroscopic agent is increased while maintaining good adhesion to the carrier, and the hygroscopic performance of the dehumidifying material is improved.

【0047】そして、低湿度で吸湿性能が優れたゼオラ
イトと高湿度になるほど吸湿特性が向上する粘土鉱物と
を組み合わせることにより、低露点を得られるゼオライ
トの含有率を減らすことなく、高湿度領域での吸湿性に
優れた吸湿剤を付加することができるため、低湿度から
高湿度の広い範囲において、優れた吸湿性能を示す除湿
材が得られる。
By combining a zeolite having excellent moisture absorption performance at low humidity with a clay mineral having a higher moisture absorption property at higher humidity, the zeolite can obtain a low dew point without reducing the content of zeolite at high humidity. Can be added, so that a dehumidifying material exhibiting excellent moisture absorption performance in a wide range from low to high humidity can be obtained.

【0048】この除湿材を用いた除湿装置では、湿度が
高くなっても吸湿性能が低下することなく快適な湿度を
短時間で得ることができる。さらに、加湿が必要なほど
湿度が低下した場合には、除湿材から吸着した水分を放
出させることにより湿度を高めることができる。したが
って、広範囲な湿度領域において優れた調湿機能を達成
することができる。
In the dehumidifying device using this dehumidifying material, a comfortable humidity can be obtained in a short time without lowering the moisture absorbing performance even when the humidity increases. Further, when the humidity is so low that humidification is required, the humidity can be increased by releasing the moisture adsorbed from the dehumidifier. Therefore, an excellent humidity control function can be achieved in a wide range of humidity.

【0049】また、この除湿材を担体に担持させる方法
は従来から用いられている方法を利用できるので、製造
コストを増大させることはなく、優れた性能を有する除
湿装置を安価に提供することが可能となる。
Further, as the method for supporting the dehumidifying material on the carrier, a conventionally used method can be used, so that it is possible to provide a dehumidifying device having excellent performance at a low cost without increasing the production cost. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の除湿ローターの斜視図FIG. 1 is a perspective view of a dehumidifying rotor according to an embodiment of the present invention.

【図2】除湿ローターのコルゲート型ハニカム構造を示
す図
FIG. 2 is a diagram showing a corrugated honeycomb structure of a dehumidifying rotor.

【図3】除湿ローターの亀甲型ハニカム構造を示す図FIG. 3 is a diagram showing a tortoiseshell honeycomb structure of a dehumidifying rotor.

【図4】除湿ローターの格子型ハニカム構造を示す図FIG. 4 is a diagram showing a lattice-type honeycomb structure of a dehumidifying rotor.

【図5】各種吸湿剤の吸湿性能を示す図FIG. 5 is a diagram showing the hygroscopic performance of various hygroscopic agents.

【図6】他の実施形態の除湿ローターの斜視図FIG. 6 is a perspective view of a dehumidifying rotor according to another embodiment.

【図7】除湿装置の概略構成図FIG. 7 is a schematic configuration diagram of a dehumidifier.

【符号の説明】[Explanation of symbols]

1 除湿ローター 3 被乾燥空気導入用ダクト 4 吸着エリア 5 ファン 6 被乾燥空気排出用ダクト 7 再生空気導入用ダクト 8 熱源 9 再生エリア 10 ファン 11 再生空気排出用ダクト 20 基材 21 通風孔 DESCRIPTION OF SYMBOLS 1 Dehumidification rotor 3 Dry air introduction duct 4 Adsorption area 5 Fan 6 Dry air discharge duct 7 Regeneration air introduction duct 8 Heat source 9 Regeneration area 10 Fan 11 Regeneration air discharge duct 20 Substrate 21 Ventilation hole

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D052 AA08 CB01 DA06 DB01 FA01 GA03 GB01 GB02 GB03 GB09 GB12 GB13 GB14 GB17 HA01 HA02 HA03 HA39 HB02 4G066 AA12D AA20D AA22D AA61B AA62B AA63B AA71D AE06B BA07 BA26 BA36 CA43 DA03 FA15 FA22 FA37 GA02 GA32 ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4D052 AA08 CB01 DA06 DB01 FA01 GA03 GB01 GB02 GB03 GB09 GB12 GB13 GB14 GB17 HA01 HA02 HA03 HA39 HB02 4G066 AA12D AA20D AA22D AA61B AA62B AA63B AA71D AE06 FA23 BA03 GA32

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 吸湿剤と、吸湿性を有する粘土鉱物と、
両者を保持するためのバインダーとが混合されてなるこ
とを特徴とする除湿材。
1. A hygroscopic agent, a hygroscopic clay mineral,
A dehumidifying material characterized by being mixed with a binder for holding both.
【請求項2】 粘土鉱物がアルミナシリカ質ゲルである
ことを特徴とする請求項1記載の除湿材。
2. The dehumidifying material according to claim 1, wherein the clay mineral is an alumina-silica gel.
【請求項3】 粘土鉱物を10〜30wt%含むことを
特徴とする請求項2記載の除湿材。
3. The dehumidifying material according to claim 2, comprising 10 to 30% by weight of a clay mineral.
【請求項4】 吸湿剤が合成ゼオライトもしくは天然ゼ
オライトであることを特徴とする請求項3記載の除湿
材。
4. The dehumidifying material according to claim 3, wherein the hygroscopic agent is a synthetic zeolite or a natural zeolite.
【請求項5】 被乾燥ガスが通り抜け可能な空隙を有す
る担体に、除湿材が担持され、前記担体中を被乾燥ガス
が通過する間に前記除湿材により水分を吸着する除湿装
置において、前記除湿材は、吸湿剤と、吸湿性を有する
粘土鉱物と、両者を保持するためのバインダーとを含む
ことを特徴とする除湿装置。
5. A dehumidifier in which a dehumidifying material is carried on a carrier having a void through which a gas to be dried can pass, and wherein the moisture is adsorbed by the dehumidifying material while the gas to be dried passes through the carrier. A dehumidifier, wherein the material includes a hygroscopic agent, a clay mineral having hygroscopicity, and a binder for holding both.
【請求項6】 担体がハニカム構造とされ、その内表面
に除湿材が付着されたことを特徴とする請求項5記載の
除湿装置。
6. The dehumidifying apparatus according to claim 5, wherein the carrier has a honeycomb structure, and a dehumidifying material is adhered to an inner surface thereof.
JP10247972A 1998-09-02 1998-09-02 Dehumidifying material and dehumidifier Pending JP2000070659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10247972A JP2000070659A (en) 1998-09-02 1998-09-02 Dehumidifying material and dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10247972A JP2000070659A (en) 1998-09-02 1998-09-02 Dehumidifying material and dehumidifier

Publications (1)

Publication Number Publication Date
JP2000070659A true JP2000070659A (en) 2000-03-07

Family

ID=17171300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10247972A Pending JP2000070659A (en) 1998-09-02 1998-09-02 Dehumidifying material and dehumidifier

Country Status (1)

Country Link
JP (1) JP2000070659A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255088A (en) * 2000-03-10 2001-09-21 Mitsubishi Chemicals Corp Heat utilizing method
JP2003038929A (en) * 2001-07-27 2003-02-12 Daikin Ind Ltd Humidity control element and humidity control device
US6843835B2 (en) 2001-03-27 2005-01-18 The Procter & Gamble Company Air cleaning apparatus and method for cleaning air
WO2006079448A1 (en) * 2005-01-26 2006-08-03 Klingenburg Gmbh Humidity- and/or heat-exchange device, for example a plate heat exchanger, sorption rotor, adsorption dehumidifying rotor or the similar
JP2007144417A (en) * 2005-11-04 2007-06-14 Mitsubishi Chemicals Corp Adsorbing element and air humidity conditioner using the same
JP2007167838A (en) * 2005-11-24 2007-07-05 Nichias Corp Dehumidifying rotor and its manufacturing method
JP2007216159A (en) * 2006-02-17 2007-08-30 Nichias Corp Dehumidification rotor, method for manufacturing the same, and dehumidifier
JP2009286672A (en) * 2008-05-30 2009-12-10 National Institute Of Advanced Industrial & Technology Adsorbent for sensing humidity for humidity sensor and humidity conditioning agent for electronic equipment
DE102009000916A1 (en) * 2009-02-17 2010-10-14 Velind Chemie Gmbh & Co. Kg Composition and method for regulating indoor humidity in buildings
JP2011169500A (en) * 2010-02-17 2011-09-01 Mitsubishi Electric Corp Air conditioner
JP2011177712A (en) * 2005-11-04 2011-09-15 Mitsubishi Chemicals Corp Method for producing adsorption element
TWI404687B (en) * 2005-11-24 2013-08-11 Nichias Corp Dehumidification rotor and method for manufacturing same
WO2014193192A1 (en) * 2013-05-31 2014-12-04 (주)엘지하우시스 Porous ceramic tile with high strength and high hygroscopic and desiccative properties

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255088A (en) * 2000-03-10 2001-09-21 Mitsubishi Chemicals Corp Heat utilizing method
US6843835B2 (en) 2001-03-27 2005-01-18 The Procter & Gamble Company Air cleaning apparatus and method for cleaning air
US7147692B2 (en) 2001-03-27 2006-12-12 The Procter & Gamble Company Air cleaning apparatus and method for cleaning air
JP2003038929A (en) * 2001-07-27 2003-02-12 Daikin Ind Ltd Humidity control element and humidity control device
WO2006079448A1 (en) * 2005-01-26 2006-08-03 Klingenburg Gmbh Humidity- and/or heat-exchange device, for example a plate heat exchanger, sorption rotor, adsorption dehumidifying rotor or the similar
JP2011177712A (en) * 2005-11-04 2011-09-15 Mitsubishi Chemicals Corp Method for producing adsorption element
JP2007144417A (en) * 2005-11-04 2007-06-14 Mitsubishi Chemicals Corp Adsorbing element and air humidity conditioner using the same
JP2007167838A (en) * 2005-11-24 2007-07-05 Nichias Corp Dehumidifying rotor and its manufacturing method
TWI404687B (en) * 2005-11-24 2013-08-11 Nichias Corp Dehumidification rotor and method for manufacturing same
JP2007216159A (en) * 2006-02-17 2007-08-30 Nichias Corp Dehumidification rotor, method for manufacturing the same, and dehumidifier
JP2009286672A (en) * 2008-05-30 2009-12-10 National Institute Of Advanced Industrial & Technology Adsorbent for sensing humidity for humidity sensor and humidity conditioning agent for electronic equipment
DE102009000916A1 (en) * 2009-02-17 2010-10-14 Velind Chemie Gmbh & Co. Kg Composition and method for regulating indoor humidity in buildings
JP2011169500A (en) * 2010-02-17 2011-09-01 Mitsubishi Electric Corp Air conditioner
WO2014193192A1 (en) * 2013-05-31 2014-12-04 (주)엘지하우시스 Porous ceramic tile with high strength and high hygroscopic and desiccative properties

Similar Documents

Publication Publication Date Title
US4769053A (en) High efficiency sensible and latent heat exchange media with selected transfer for a total energy recovery wheel
JP3346680B2 (en) Adsorbent for moisture exchange
JP2000070659A (en) Dehumidifying material and dehumidifier
JP2673300B2 (en) Low concentration gas sorption machine
EP1341605A2 (en) Adsorbent sheet, process of preparing, and desiccant process for using the sheet
JP2651964B2 (en) Adsorbable honeycomb-shaped ceramic laminate and method for producing the same
JPH0710330B2 (en) Dry dehumidifier
JP2010063963A (en) Dehumidification element and dehumidifying apparatus using the same
JP2011143358A (en) Moisture absorption filter and humidifier
JP3874187B2 (en) Dehumidifying element and dehumidifying device
JPS63264125A (en) Dry dehumidifying component
JP4263675B2 (en) Dehumidifier
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
JP4674009B2 (en) Gas exchange device
JP2008086870A (en) Dehumidifier
JP2003200016A (en) Element for dehumidification and humidification, and humidifier using the same
JP2006289258A (en) Dehumidification body and desiccant air-conditioner using the same
JP3345596B2 (en) Adsorbent for moisture exchange
JP5844058B2 (en) Dehumidifier and desiccant dehumidifier equipped with the same
JP2003340278A (en) Adsorption sheet and adsorption element using the same
JP3322519B2 (en) Rotor of rotary organic solvent vapor adsorption device
JP2012183460A (en) Dehumidification body and desiccant dehumidifier including the same
JPH0225107B2 (en)
JP2002079045A (en) Dehumidifying material and method for manufacturing the same
JP2002361025A (en) Gas exchange apparatus