JPH0773654B2 - Method of manufacturing moisture exchange element - Google Patents

Method of manufacturing moisture exchange element

Info

Publication number
JPH0773654B2
JPH0773654B2 JP4129045A JP12904592A JPH0773654B2 JP H0773654 B2 JPH0773654 B2 JP H0773654B2 JP 4129045 A JP4129045 A JP 4129045A JP 12904592 A JP12904592 A JP 12904592A JP H0773654 B2 JPH0773654 B2 JP H0773654B2
Authority
JP
Japan
Prior art keywords
impregnating
acid
strip
weight
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4129045A
Other languages
Japanese (ja)
Other versions
JPH06323A (en
Inventor
ツェン ペンチャン
チュアー ユーキョイ
ファン チェンウネ
チュ シャオチュン
チャン ハンチン
ファン チンシュアーン
チェン チャンチン
チェン ポユイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/880,532 external-priority patent/US5254195A/en
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to JP4129045A priority Critical patent/JPH0773654B2/en
Priority to DE4217451A priority patent/DE4217451C2/en
Priority claimed from DE4217451A external-priority patent/DE4217451C2/en
Publication of JPH06323A publication Critical patent/JPH06323A/en
Publication of JPH0773654B2 publication Critical patent/JPH0773654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は湿気交換素子の製造法に
関する。詳しくは、表面に固体吸着剤が沈着しているハ
ニカム型湿気交換素子の製造法に関する。
FIELD OF THE INVENTION The present invention relates to a method of manufacturing a moisture exchange element. More specifically, it relates to a method for manufacturing a honeycomb type moisture exchange element in which a solid adsorbent is deposited on the surface.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】固体
乾燥剤による空気または湿気ガス混合物の除湿法とし
て、従来から静態乾燥法と動態乾燥法がよく知られてい
る。そのうち、静態乾燥法は、湿気を硫酸カルシウム、
水酸化カリウム、塩化カリウムなどの吸湿乾燥剤と接触
させることにより除湿する方法である。この静態乾燥法
は固体乾燥剤を吸湿後その場で再生できないので、長時
間行なうばあい、満足できる吸湿能を確保できない。し
たがって、湿気の大量循環による除湿には適しない。他
方、動態乾燥法は吸湿と吸着剤の再生とを同時にそれぞ
れ行なう連続方法であり、普通、たとえば、シリカゲ
ル、モレキュラーシーブ、アルミナなどを使用し、二塔
式固定床除湿機または回転式ハニカムロータ除湿機で行
なう。二塔式固定床除湿機には主に、それぞれ吸着剤粒
子を充填している二つの塔と、湿気を第1塔から第2塔
へ送ると共に再生熱空気を第2塔から第1塔へ送る弁と
がある。この型の除湿機には、固定粒子床の大きな圧力
傾斜による顕著なエネルギー消耗と、除湿された空気の
湿度変動などの欠点がある。一方、回転式ハニカムロー
除湿機には長方向通路を有する円筒状マトリックスよ
りなる低速回転ロータと、マトリックスの表面に沈着す
る吸着剤とがあり、湿気と再生熱空気をそれぞれ同時に
回転ロータの二つの異なる部分に導入し、連続除湿工程
中に吸着剤を定期的に脱吸着させる。この回転式ハニカ
ロータ除湿機にはつぎのような利点がある。すなわ
ち、ロータを通しての圧力傾斜が低く、単位容積毎の吸
収面積が増加し、吸収/脱吸着が速く有効である。その
結果として、エネルギー消耗が低く、除湿効能が増大
し、二塔式固定床除湿機に比べ操作も容易である。
2. Description of the Related Art As a method of dehumidifying an air or a moisture gas mixture with a solid desiccant, a static drying method and a dynamic drying method have been well known. Among them, the static drying method removes moisture from calcium sulfate,
It is a method of dehumidifying by bringing it into contact with a hygroscopic desiccant such as potassium hydroxide or potassium chloride. Since this static drying method cannot regenerate the solid desiccant in situ after absorbing moisture, it cannot secure a satisfactory moisture absorbing ability when it is carried out for a long time. Therefore, it is not suitable for dehumidification by mass circulation of moisture. On the other hand, the dynamic drying method is a continuous method in which moisture absorption and regeneration of the adsorbent are simultaneously performed, and usually, for example, silica gel, molecular sieve, alumina, etc. are used, and a two-column fixed bed dehumidifier or a rotary honeycomb rotor dehumidifier is used. Machine. The two tower type fixed bed dehumidifier is mainly composed of two towers, which are respectively filled with adsorbent particles, and moisture is sent from the first tower to the second tower, and regenerated hot air is sent from the second tower to the first tower. There is a valve to send. This type of dehumidifier has the drawbacks of significant energy consumption due to the large pressure gradient of the fixed particle bed and humidity fluctuations of the dehumidified air. On the other hand, rotary honeycomb low
The dehumidifier has a low-speed rotating rotor consisting of a cylindrical matrix with long passages and an adsorbent that deposits on the surface of the matrix, and introduces moisture and regenerated hot air into two different parts of the rotating rotor simultaneously. Desorb the adsorbent periodically during the continuous dehumidification process. This rotary honeycomb rotor dehumidifier has the following advantages. That is, the pressure gradient through the rotor is low, the absorption area per unit volume is increased, and absorption / desorption is fast and effective. As a result, the energy consumption is low, the dehumidification efficiency is increased, and the operation is easier than that of the double tower fixed bed dehumidifier.

【0003】上記回転式除湿機に使われる好ましい湿気
交換素子(湿気交換ハニカムロータ)として、熱容量が
小さく、かつ重量が軽く、すぐれた機械特性と高い吸湿
能力を有するものが望まれている。
As a preferable moisture exchange element (moisture exchange honeycomb rotor ) used in the rotary dehumidifier, one having a small heat capacity, a light weight, excellent mechanical characteristics and a high moisture absorption capacity is desired.

【0004】従来、湿気交換素子の製造法としてはつぎ
のような方法が知られている。
Conventionally, the following method has been known as a method for manufacturing a moisture exchange element.

【0005】特開昭55−142522号公報に公開さ
れた湿気交換素子の製造法は、塩化カルシウム水溶液な
どの吸湿剤溶液に紙などの平面状通気性シートを含浸さ
せ、乾燥したのち、波形シートに糊付け積層後、所定寸
法に裁断し、補強剤を含浸し交互に積層し、ブロック状
湿気交換素子を形成する方法で、波形シートは吸湿剤溶
液に含浸させないので、強度を損なうことがない。
The method of manufacturing a moisture exchange element disclosed in Japanese Patent Laid-Open No. 55-142522 is such that a flat air-permeable sheet such as paper is impregnated with a solution of a hygroscopic agent such as an aqueous solution of calcium chloride, and the corrugated sheet is dried. In this method, the corrugated sheet is not impregnated with the hygroscopic agent solution, and the strength is not impaired by a method of forming a block-shaped moisture exchange element by cutting the material into a predetermined size, cutting it to a predetermined size, impregnating it with a reinforcing agent and alternately laminating it.

【0006】特開昭60−175521号公報に公開さ
れた小透孔を有する除湿交換素子の製造法は、有機繊維
と無機繊維よりなる紙を多数の小透孔を有する素子の形
状に成形し、えられた成形体を酸素の不充分な供給下に
加熱して成形体中の有機成分を炭化し、該炭化工程前ま
たは後に成形体に無機質補強剤を含浸し、最後に吸湿剤
を含浸する方法である。
A method of manufacturing a dehumidifying / exchange element having small through holes disclosed in Japanese Patent Laid-Open No. 175521/1985 is a method in which a paper made of organic fibers and inorganic fibers is molded into a shape of an element having a large number of small holes. , The obtained molded body is heated under insufficient supply of oxygen to carbonize the organic components in the molded body, the molded body is impregnated with an inorganic reinforcing agent before or after the carbonization step, and finally with a hygroscopic agent. Is the way to do it.

【0007】しかしながら、これらの方法はいずれも操
作が繁雑で、特開昭55−142522号公報に記載さ
れた方法は含浸液が塩化カルシウム、塩化リチウムであ
るため、吸湿後、水和物となり再生が容易でなく、ま
た、特開昭60−175521号公報に記載された方法
は、繊維成形体中の有機成分を酸素が不充分な条件下で
加熱して炭化させることが特徴であり、含浸液について
は何らの改良も加えられていない。
However, all of these methods are complicated in operation. In the method described in JP-A-55-142522, since the impregnating liquid is calcium chloride or lithium chloride, it becomes a hydrate after moisture absorption and is regenerated. Is not easy, and the method described in JP-A-60-175521 is characterized in that the organic component in the fiber molding is heated and carbonized under the condition of insufficient oxygen. No improvement has been added to the liquid.

【0008】特開昭63−175619号公報に公開さ
れた湿気交換素子の製造法は、セラミックス繊維などの
無機繊維とパルプよりなる紙を水ガラスに含浸し、紙を
半乾燥したのち、一対のローラにてコルゲート加工して
波形紙をえ、これを酸に浸漬してシリカヒドロゲルを生
成せしめ、水洗乾燥する。この波形紙の山に糊を付け、
直ちにシリカヒドロゲル付着平面紙に沿ってローラで巻
き上げ、湿気交換ハニカムロータを形成する方法であ
る。
In the method of manufacturing a moisture exchange element disclosed in Japanese Patent Laid-Open No. 63-175619, water glass is impregnated with paper made of inorganic fibers such as ceramic fibers and pulp, and the paper is semi-dried, and then a pair of Corrugated paper is corrugated with a roller to obtain corrugated paper, which is dipped in acid to form silica hydrogel, washed with water and dried. Put glue on this pile of corrugated paper,
It is a method of immediately rolling up with a roller along a silica hydrogel-coated flat paper to form a moisture exchange honeycomb rotor .

【0009】前記特開昭63−175619号公報の方
法にはその操作の繁雑さに加えて若干の問題がある。そ
れは主に水ガラスの使用によるものである。たとえば、
水ガラスはナトリウムイオンの含有量が高いため、ゲル
化速度が不当に速すぎる。結果的に、水ガラス浴の含浸
寿命が短く、水ガラス浴を一定期間使用すると含浸紙の
性質が変わる。このようにゲル化速度が速すぎるため、
形成されたシリカヒドロゲル吸湿剤の平均孔径は約20オ
ングストロームとなる。このような平均孔径の吸湿剤は
満足な吸湿能力がえられず、頻繁に脱吸着を行なうべき
で、高湿気の吸湿には適しない。またゲル化速度が速す
ぎるため、含浸紙を波形に成形するに適するまで半乾燥
することも困難である。他方、水ガラスのpHは約11.5
であるから、酸接触ゲル化反応に多量の酸を必要とす
る。なお、酸接触ゲル化反応にて副産物として生成した
ナトリウム塩は紙に沈着し、吸湿紙の重量を増加させる
ばかりか、吸湿剤の孔を塞ぐので、洗浄工程が不可欠で
ある。それでもなお洗浄後には紙にナトリウム塩が残
る。残留したナトリウム塩は吸着/脱吸着操作にて次々
と移動し、除湿機の寿命に悪影響を及ぼす。このほか、
紙に形成したシリカヒドロゲルは洗浄工程の際ナトリウ
ム塩と共に洗い落とされる。とくに水洗は時間と労働力
がかかり、大量の水と煩雑な廃水処理を必要とする。
The method disclosed in JP-A-63-175619 has some problems in addition to the complicated operation. It is mainly due to the use of water glass. For example,
Due to the high content of sodium ions in water glass, the gelation rate is unduly fast. As a result, the impregnation life of the water glass bath is short and the properties of the impregnated paper change when the water glass bath is used for a certain period of time. Since the gelation speed is too fast,
The average pore size of the silica hydrogel moisture absorbent formed is about 20 Å. A hygroscopic agent having such an average pore size does not have a satisfactory hygroscopic ability, must be frequently desorbed, and is not suitable for high moisture absorption. Further, since the gelation speed is too high, it is difficult to semi-dry the impregnated paper until it is suitable for forming into a corrugated shape. On the other hand, the pH of water glass is about 11.5
Therefore, a large amount of acid is required for the acid-catalyzed gelation reaction. The sodium salt produced as a by-product in the acid-catalyzed gelation reaction deposits on the paper and not only increases the weight of the absorbent paper, but also closes the pores of the absorbent, so a washing step is indispensable. Nevertheless, the sodium salt remains on the paper after washing. The remaining sodium salts move one after another during the adsorption / desorption operation, which adversely affects the life of the dehumidifier. other than this,
The silica hydrogel formed on the paper is washed off with the sodium salt during the washing process. In particular, washing with water takes time and labor, and requires a large amount of water and complicated wastewater treatment.

【0010】本発明は、上記欠点がなく、かつ従来の技
術より工程数が少なく、操作が容易であり、基材に多量
の吸湿剤を沈着させ、この吸湿剤の吸湿能力を増強した
湿気交換素子の製造法を提供することを目的とする。
The present invention does not have the above-mentioned drawbacks, has a smaller number of steps than the prior art, is easy to operate, deposits a large amount of a hygroscopic agent on a substrate, and enhances the hygroscopic capacity of the hygroscopic agent. An object is to provide a method for manufacturing a device.

【0011】[0011]

【課題を解決するための手段】上記本発明の目的を達成
するため、本発明者らは、有機または無機の繊維からな
る基材を、コロイド珪酸、酸および金属カチオンを含有
する含浸水溶液に含浸し、乾燥、ゲル化する湿気交換素
子の製造法を見出した。
In order to achieve the above-mentioned object of the present invention, the present inventors impregnated a base material composed of organic or inorganic fibers into an impregnation aqueous solution containing colloidal silicic acid , an acid and a metal cation. Then, a method for producing a moisture exchange element which is dried and gelled has been found.

【0012】すなわち、本発明は、有機または無機の繊
維からなる基材を、5〜20重量%のコロイド珪酸、0.25
〜2.5 重量%の水溶性金属塩および含浸液のpHを5〜
9に調節するのに充分な量の酸よりなる含浸水溶液に含
浸したのち、基材に沈着している含浸液を加熱下乾燥し
ゲル化させることを特徴とする湿気交換素子の製造法に
関する。
That is, according to the present invention, a base material made of organic or inorganic fibers is added to 5 to 20% by weight of colloidal silicic acid , 0.25
~ 2.5% by weight of water-soluble metal salt and pH of impregnating solution 5 ~
The present invention relates to a method for producing a moisture exchange element, which comprises impregnating an impregnating aqueous solution containing an acid in an amount sufficient to adjust to 9 and then drying the impregnating solution deposited on the base material under heating to cause gelation.

【0013】なお、この素子はハニカム構造であること
が好ましい。
The device preferably has a honeycomb structure.

【0014】[0014]

【実施例】本製造法に使われる繊維基材は密度が0.5g/c
m 以下の多孔性材料であり、好ましくは、セラミック繊
維、カーボン繊維、ガラス繊維、重合体繊維などで、織
布または不織布のいずれでもよい。基材は厚さ0.10〜0.
60mmの平面条か、この平面条より作成された波高0.4 〜
2.0mm 、波長0.4 〜4.0mm の波形条か、またはこの平面
条と波形条とを一つ毎に積層してなるハニカムブロック
体またはロータでもよい。なお、ここでいう「条」と
は、長いテープ状(ストリップ(strip ))を意味す
る。
[Example] The fiber substrate used in this production method has a density of 0.5 g / c.
A porous material having a size of m or less, preferably a ceramic fiber, a carbon fiber, a glass fiber, a polymer fiber or the like, which may be a woven cloth or a non-woven cloth. The base material has a thickness of 0.10-0.
60mm flat strip or wave height 0.4 made from this flat strip ~
It may be a corrugated strip having a 2.0 mm wavelength and a wavelength of 0.4 to 4.0 mm, or a honeycomb block body or rotor formed by laminating the planar strip and the corrugated strip one by one. The term "strip" as used herein means a long tape shape (strip).

【0015】波形条およびハニカムブロック体または
ータは、公知のいかなる適する方法で作成することがで
きる。好ましくは、平面条を一対の特定ローラまたはギ
ヤーローラ/歯状板を通して、直ぐ波面にコロイド珪酸
接着水溶液を塗り、80〜120℃にて40〜90分加熱乾燥し
て波形を固定し、波形条を形成する。この波形条と平面
条の積層は、まず平面条を接着液に含浸したのち、波形
条の上に置き、積層条を80〜120 ℃にて40〜90分加熱す
ることにより行なわれる。接着液中のコロイド珪酸の濃
度は5〜25重量%、好ましくは8〜15重量%である。こ
の濃度が高すぎると、コロイド珪酸が平面条と波形条中
の孔を塞ぎ、これらの条で形成した湿気交換素子におい
て基材に対する吸湿剤の比が低下する。また、この濃度
が低すぎると、波形条およびハニカムブロック体または
ロータの機械強度が不十分となる。好ましい具体例にお
ける湿気交換ハニカムロータの製造法は、含浸液を接着
液として波形条を作成し、平面条を含浸液に含浸し、こ
の含浸条に沿って波形条を巻き上げ、250 ℃にて3時間
加熱する。この方法では1種類のコロイド珪酸溶液しか
使わないので、湿気交換素子は全体の構造が均一で、波
形条と平面条との間の付着が強い。
[0015] waveforms conditions and the honeycomb block body or b
The data can be made by any suitable method known in the art. Preferably, the flat strip is passed through a pair of specific rollers or a gear roller / toothed plate, and the corrugated silicic acid adhesive aqueous solution is immediately applied to the wave surface, and dried by heating at 80 to 120 ° C. for 40 to 90 minutes to fix the waveform. , Forming corrugations. The lamination of the corrugated strip and the flat strip is performed by first impregnating the flat strip with an adhesive solution, placing it on the corrugated strip, and heating the laminated strip at 80 to 120 ° C. for 40 to 90 minutes. The concentration of colloidal silicic acid in the adhesive liquid is 5 to 25% by weight, preferably 8 to 15% by weight. If this concentration is too high, the colloidal silicic acid will block the pores in the flat and corrugated strips, reducing the ratio of hygroscopic agent to substrate in the moisture exchange element formed by these strips. If this concentration is too low, the corrugated strips and the honeycomb block body or
The mechanical strength of the rotor becomes insufficient. The method for manufacturing a moisture exchange honeycomb rotor in a preferred embodiment is such that a corrugated strip is formed by using an impregnating liquid as an adhesive liquid, a flat strip is impregnated with the impregnating liquid, the corrugated strip is wound up along the impregnating strip, and the corrugated strip is wound at 250 ° C. for 3 hours. Heat for hours. Since only one type of colloidal silicic acid solution is used in this method, the entire structure of the moisture exchange element is uniform, and the adhesion between the corrugated strip and the flat strip is strong.

【0016】本発明の方法に用いる金属塩は、水溶液に
溶解し、含浸基材に悪影響を及ぼさないものであれば、
いずれも含浸液の金属カチオンを提供するものとして用
いられる。好ましくは、無機塩、たとえばハライド、硝
酸塩、水酸化物、硫酸塩などがあげられる。用いられる
金属カチオンは、Li、Ca、Al、Mg、Ni、F
e、Zn、Cuなどのカチオンがあげられ、なかでもL
i、Caが好ましい。
The metal salt used in the method of the present invention may be any one as long as it dissolves in an aqueous solution and does not adversely affect the impregnated substrate.
Both are used to provide the metal cations of the impregnating liquid. Preferred are inorganic salts such as halides , nitrates, hydroxides and sulfates. The metal cations used are Li, Ca, Al, Mg, Ni, F
Examples include cations such as e, Zn, and Cu. Among them, L
i and Ca are preferable.

【0017】また、本発明に用いる酸はたとえば硫酸、
硝酸、塩酸などの無機酸が好ましい。
The acid used in the present invention is, for example, sulfuric acid,
Inorganic acids such as nitric acid and hydrochloric acid are preferred.

【0018】本発明の方法において、含浸した基材に沈
着した含浸溶液の乾燥、ゲル化は含浸基材を100 〜400
℃にて40分から8時間加熱することにより実施される。
In the method of the present invention, the impregnating solution deposited on the impregnated substrate is dried and gelled by applying 100-400 to the impregnated substrate.
It is carried out by heating at 40 ° C. for 40 minutes to 8 hours.

【0019】本製造法ではコロイド珪酸の含浸水溶液を
用いるが、これは水ガラスに比べナトリウムイオンの含
有量が顕著に低く、シリカのゲル化反応時にほとんどナ
トリウムイオンが生成しないので、水洗工程が不要であ
る。また、酸を加える前のpHは約9.0 であるので、水
ガラスに比べ、中和に要する酸の量は顕著に低い。か
つ、含浸溶液は適量の金属カチオンを含んでいるので、
室温で相当長時間安定なゾル−ゲル状態を維持すること
ができるうえ、当然、乾燥、ゲル化の加熱にて、金属カ
チオンは触媒としてゲル化反応が含浸溶液に発生するの
を促進する。また、本発明による湿気交換素子は水ガラ
スを用いる方法と比べ、基材に対する吸湿剤の比が高
く、しかもそこに沈着した吸湿剤の平均孔径は約60〜70
オングストロームである。したがって、本発明による湿
気交換素子は吸湿/脱着能力がすぐれたものである。好
ましい実施例においては、相対湿度80%で1グラムの吸
湿剤が水分を0.7 〜0.8 グラム吸収した。
In this production method, an aqueous solution impregnated with colloidal silicic acid is used, but the content of sodium ions is remarkably lower than that of water glass, and since sodium ions are hardly generated during the gelation reaction of silica, a water washing step is unnecessary. Is. Further, since the pH before the addition of acid is about 9.0, the amount of acid required for neutralization is remarkably lower than that of water glass. And since the impregnation solution contains an appropriate amount of metal cations,
In addition to being able to maintain a stable sol-gel state for a considerably long time at room temperature, naturally, upon heating for drying and gelation, metal cations act as catalysts to promote the gelation reaction to occur in the impregnating solution. Further, the moisture exchange element according to the present invention has a higher ratio of the hygroscopic agent to the substrate than the method using water glass, and the average pore diameter of the hygroscopic agent deposited therein is about 60 to 70.
Angstrom. Therefore, the moisture exchange element according to the present invention has excellent moisture absorption / desorption ability. In the preferred embodiment, 1 gram of the absorbent at 80% relative humidity absorbed 0.7 to 0.8 grams of water.

【0020】つぎに実施例をあげて本発明をさらに詳細
に説明するが、本発明はもとよりかかる実施例のみに限
定されるものではない。なお、別に規定しない限り、全
ての部と%はそれぞれ重量部、重量%であり、平均孔径
はBET窒素吸着法により、マイクロメリティック デ
ィジソルブ(Micromeritic Digisorb )2600計器(マイ
クロメリティックス(Micromeritics )社(米国)製)
にて測定した。また、除湿試験は20℃、79.5%相対湿度
にて行ない、湿気交換素子の特性と吸湿度は下記の定義
で表した: 吸湿剤沈着比(ADR)%={(湿気交換素子の重量)−(繊維基剤の重量)}/ (繊維基剤の重量) ×100 素子の吸湿度(MAE)%={(素子吸湿後の重量)−(素子吸湿前の重量)}/ (素子吸湿前の重量)×100 吸湿剤の吸湿度(MAA)%={(素子吸湿後の重量)−(素子吸湿前の重量)}/ {(素子の重量)−(繊維基剤の重量)}×100 実施例1:ハニカムロータの製造 12.5kgの40%コロイド珪酸(ルドックス(Ludox )SM
(デュポン(Dupont)社(米国)製)水溶液に37.5kgの
水を攪拌しながら加え、接着液(溶液A)を作成した。
幅30cm、厚さ0.5mm のセラミック紙条(カオーウール株
式会社(KaowoolInc.)製)425.1 gを歯状板上に置
き、歯状ローラで成形し、その波面上に溶液Aを塗り、
100 ℃で1時間加熱し、波長0.6mm 、波高0.4mm の波形
条を454.9 gえた。同じセラミック紙を溶液Aに含浸
し、直ぐ波形条とともに巻き上げ、100℃で1時間加熱
した。えられたハニカムロータは重さ920.7 gで、直径
が40cmであった。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to such examples as a matter of course. Unless otherwise specified, all parts and% are parts by weight and% by weight, respectively, and the average pore size is determined by the BET nitrogen adsorption method according to the Micromeritic Digisorb 2600 instrument (Micromeritics). (Made in USA)
It was measured at. Further, the dehumidification test was conducted at 20 ° C. and 79.5% relative humidity, and the characteristics and moisture absorption of the moisture exchange element were defined as follows: Moisturizer deposition ratio (ADR)% = {(weight of moisture exchange element) − (Weight of fiber base)} / (Weight of fiber base) x 100 Element moisture absorption (MAE)% = {(weight after element moisture absorption)-(weight before element moisture absorption)} / (before element moisture absorption) Weight) x 100 Moisture absorption (MAA)% = {(weight after absorbing element)-(weight before absorbing element)} / {(weight of element)-(weight of fiber base)} x 100 Example 1: Manufacture of honeycomb rotor 12.5 kg of 40% colloidal silicic acid (Ludox SM)
An adhesive solution (solution A) was prepared by adding 37.5 kg of water to an aqueous solution (manufactured by Dupont (USA)) with stirring.
425.1 g of a ceramic paper strip (made by Kaowool Inc.) having a width of 30 cm and a thickness of 0.5 mm is placed on the tooth plate and formed by the tooth roller, and the solution A is applied on the wave front thereof,
After heating at 100 ° C for 1 hour, 454.9 g of a corrugated strip having a wavelength of 0.6 mm and a wave height of 0.4 mm was obtained. The same ceramic paper was impregnated with solution A, immediately rolled up with a corrugated strip and heated at 100 ° C. for 1 hour. The obtained honeycomb rotor weighed 920.7 g and had a diameter of 40 cm.

【0021】実施例2:含浸液の製造と吸湿剤の沈着 1.0kg のLiClを1.0 Lの水に加え、15分攪拌してえ
た溶液を実施例1の溶液Aに注ぎ、pHが7.0 になるま
で 0.1N硫酸を加え、さらに15分攪拌した。この中性溶
液に実施例1のハニカムロータを1時間浸してから、取
り出して室温で乾燥させ、オーブンで250 ℃にて3時間
加熱した。えられたハニカムロータは重さ1316.9gで、
その特性と吸湿度は表1に示した。
Example 2: Preparation of impregnation liquid and deposition of hygroscopic agent 1.0 kg of LiCl was added to 1.0 L of water, and the solution obtained by stirring for 15 minutes was poured into the solution A of Example 1 to obtain pH 7.0. 0.1N sulfuric acid was added to and stirred for 15 minutes. The honeycomb rotor of Example 1 was immersed in this neutral solution for 1 hour, then taken out, dried at room temperature, and heated in an oven at 250 ° C. for 3 hours. The obtained honeycomb rotor weighs 1316.9 g,
The characteristics and moisture absorption are shown in Table 1.

【0022】実施例3 本例はハニカム基材の製造にて、接着液を含浸液に替
え、直接湿気交換素子として使用しうる湿気交換ハニカ
ロータをえるものである。
Example 3 In this example, in the manufacture of a honeycomb substrate, the adhesive liquid is replaced with an impregnating liquid to obtain a moisture exchange honeycomb rotor which can be directly used as a moisture exchange element.

【0023】418.5 gのセラミックと実施例2の含浸液
を使用する以外は、実施例1と同じく波形条447.8 gを
製造した。含浸液は平面条と波形条の接着にも用い、ハ
ニカムロータ(1146.3g、直径40cm)をえた。その特性
と吸湿度は表1に示した。
A corrugated strip 447.8 g was prepared as in Example 1, except that 418.5 g of the ceramic and the impregnating liquid of Example 2 were used. The impregnating liquid was also used for bonding the flat strip and the corrugated strip to obtain a honeycomb rotor (1146.3 g, diameter 40 cm). The characteristics and moisture absorption are shown in Table 1.

【0024】実施例4 0.5kg のLiClを使用する以外は、実施例2と同じく
湿気交換ロータを製造した。その特性と吸湿度は表1に
示した。
Example 4 A moisture exchange rotor was prepared as in Example 2 except that 0.5 kg of LiCl was used. The characteristics and moisture absorption are shown in Table 1.

【0025】実施例5 2.0kg のLiClを使用する以外は、実施例2と同じく
湿気交換ロータを製造した。その特性と吸湿度は表1に
示した。
Example 5 A moisture exchange rotor was prepared as in Example 2, except that 2.0 kg of LiCl was used. The characteristics and moisture absorption are shown in Table 1.

【0026】比較例1 LiClを使用しない以外は、実施例2と同じく湿気交
ロータを製造した。その特性と吸湿度は表1に示し
た。
Comparative Example 1 A moisture exchange rotor was manufactured in the same manner as in Example 2 except that LiCl was not used. The characteristics and moisture absorption are shown in Table 1.

【0027】比較例2 48Lの水に3kgの水ガラスを加え、充分攪拌したの
ち、1.0kg のLiClを1.0 Lの水に溶かした溶液を加
え、15分攪拌した。えられた水ガラス溶液に実施例1に
より製造したハニカムロータ931.2 gを1時間浸して、
攪拌しながら 0.1N硫酸をpHが7.0 になるまで加え
た。溶液がゲル化する前にロータを取り出し、室温で乾
燥してから、250 ℃のオーブンに3時間置いた。乾燥し
ロータは重量が1286.3gで、その特性と吸湿度は表1
に示した。本比較例の含浸液のゲル化速度は速く、ゲル
化したのちは使用できなかった。
Comparative Example 2 3 kg of water glass was added to 48 L of water, and after sufficiently stirring, a solution of 1.0 kg of LiCl in 1.0 L of water was added and stirred for 15 minutes. 931.2 g of the honeycomb rotor manufactured in Example 1 was immersed in the obtained water glass solution for 1 hour,
0.1N sulfuric acid was added with stirring until the pH was 7.0. The rotor was removed before the solution gelled, dried at room temperature and then placed in an oven at 250 ° C for 3 hours. The dry rotor weighs 1286.3g and its characteristics and moisture absorption are shown in Table 1.
It was shown to. The gelling rate of the impregnating liquid of this comparative example was high, and it could not be used after gelling.

【0028】比較例3 含浸液にLiClを使用しない以外は、比較例2と同じ
く湿気交換ロータを製造した。その特性と吸湿度は表1
に示した。本比較例の含浸液は30分内にゲル化して使用
できなかった。
Comparative Example 3 A moisture exchange rotor was manufactured in the same manner as in Comparative Example 2 except that LiCl was not used as the impregnating liquid. Its characteristics and moisture absorption are shown in Table 1.
It was shown to. The impregnating liquid of this comparative example gelled within 30 minutes and could not be used.

【0029】実施例6 含浸液を、基材を含浸する前、室温で5日置いた以外
は、実施例2と同じく操作した。その結果は表2に示し
た。
Example 6 The same operation as in Example 2 was carried out except that the impregnating liquid was left at room temperature for 5 days before impregnating the substrate. The results are shown in Table 2.

【0030】実施例7 含浸液を、基材を含浸する前、室温で3日置いた以外
は、実施例5と同じく操作した。その結果は表2に示し
た。
Example 7 The same operation as in Example 5 was carried out except that the impregnating liquid was left at room temperature for 3 days before impregnating the substrate. The results are shown in Table 2.

【0031】比較例4 含浸液を、基材を含浸する前、室温で5日置いた以外
は、比較例1と同じく操作した。その結果は表2に示し
た。
Comparative Example 4 The same operation as in Comparative Example 1 was carried out except that the impregnating liquid was left at room temperature for 5 days before impregnating the substrate. The results are shown in Table 2.

【0032】比較例5 含浸液を、基材を含浸する前、室温で3日置いた以外
は、比較例2と同じく操作した。その結果は表2に示し
た。
Comparative Example 5 The same operation as in Comparative Example 2 was carried out except that the impregnating liquid was left at room temperature for 3 days before impregnating the substrate. The results are shown in Table 2.

【0033】比較例6 含浸液を、基材を含浸する前、室温で1時間置いた以外
は、比較例3と同じく操作した。その結果は表2に示し
た。
Comparative Example 6 The same operation as in Comparative Example 3 was carried out except that the impregnating liquid was left at room temperature for 1 hour before impregnating the substrate. The results are shown in Table 2.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】表1および表2に示した結果より、本方法
は水ガラス法に比べ、吸湿度と安定性が優れていること
がわかる。
From the results shown in Tables 1 and 2, it can be seen that this method is superior in moisture absorption and stability to the water glass method.

【0037】実施例8〜15 含浸液に異なる組成物を使用した以外は、実施例2と同
じく操作した。その結果は表3に示した。実施例8の含
浸液は40%コロイド珪酸水溶液を12.5kgの替わりに25kg
使用し、実施例9〜13はLiClの替わりにそれぞれ
LiOH、LiNO3 、CaCl2 、Al2 (SO4
3 、CuSO4 を使用し、実施例14と15はpH6.0
と8.3 の含浸液をそれぞれ使用した。
Examples 8 to 15 The procedure was the same as in Example 2 except that different compositions were used for the impregnating liquids. The results are shown in Table 3. The impregnating solution of Example 8 was 25 kg instead of 12.5 kg of 40% colloidal silicic acid aqueous solution.
Examples 9 to 13 used LiOH, LiNO 3 , CaCl 2 , Al 2 (SO 4 ) instead of LiCl, respectively.
3 , CuSO 4 was used, and Examples 14 and 15 had a pH of 6.0.
And 8.3 impregnating solutions were used respectively.

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【発明の効果】本発明の方法によれば少ない工程で容易
に、多量の吸湿剤を含有し適切な孔径を有する吸湿能の
高い湿気交換素子をえることができる。
According to the method of the present invention, it is possible to easily obtain a moisture exchange element having a high hygroscopic capacity, containing a large amount of a hygroscopic agent and having an appropriate pore size, in a small number of steps.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 シャオチュン チュ 台湾、シンチュ、カン フ ロード、セク ション2、321 (72)発明者 ハンチン チャン 台湾、シンチュ、カン フ ロード、セク ション2、321 (72)発明者 チンシュアーン ファン 台湾、シンチュ、カン フ ロード、セク ション2、321 (72)発明者 チャンチン チェン 台湾、シンチュ、カン フ ロード、セク ション2、321 (72)発明者 ポユイ チェン 台湾、シンチュ、カン フ ロード、セク ション2、321 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Xiao Chun Chu Taiwan, Xin Chu, Kang Road, Section 2, 321 (72) Inventor Han Qin Chang Taiwan, Xin Chu, Kang Road, Section 2, 321 (72) Inventor Qing Xuan Fan Taiwan, Xin Chu, Kang Road, Section 2, 321 (72) Inventor Chang Qing Cheng Taiwan, Xin Chu, Kang Road, Section 2, 321 (72) Inventor Po Yui Cheng Taiwan, Xin Chu, Kang Flood, Section 2, 321

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 有機または無機の繊維からなる基材を、
5〜20重量%のコロイド珪酸、0.25〜2.5 重量%の水溶
性金属塩および含浸液のpHを5〜9に調節するのに充
分な量の酸よりなる含浸水溶液に含浸したのち、基材に
沈着している含浸液を加熱下乾燥しゲル化させることを
特徴とする湿気交換素子の製造法。
1. A substrate comprising organic or inorganic fibers,
After impregnating an aqueous solution containing 5 to 20% by weight of colloidal silicic acid , 0.25 to 2.5% by weight of a water-soluble metal salt and a sufficient amount of acid to adjust the pH of the impregnating solution to 5 to 9, A method for producing a moisture exchange element, characterized in that the deposited impregnating liquid is dried under heating to be gelled.
【請求項2】 金属塩がハライド、硝酸塩、水酸化物お
よび硫酸塩からなる群より選ばれたものである請求項1
記載の製造法。
2. The metal salt is selected from the group consisting of halides , nitrates, hydroxides and sulfates.
The manufacturing method described.
【請求項3】 金属がLi、Ca、Al、Mg、Ni、
Fe、CuおよびZnからなる群より選ばれたものであ
る請求項2記載の製造法。
3. The metal is Li, Ca, Al, Mg, Ni,
The method according to claim 2, wherein the method is selected from the group consisting of Fe, Cu and Zn.
【請求項4】 酸が無機酸である請求項1記載の製造
法。
4. The method according to claim 1, wherein the acid is an inorganic acid.
【請求項5】 乾燥とゲル化を100 〜400 ℃にて40分〜
8時間行なう請求項1記載の製造法。
5. Drying and gelling at 100-400 ° C. for 40 minutes-
The method according to claim 1, which is carried out for 8 hours.
【請求項6】 基材が波高0.4 〜2.0mm 、波長0.4 〜4.
0mm の波形条と厚さ0.10〜0.60mmの平面条を積層してな
るハニカム構造である請求項1記載の製造法。
6. The base material has a wave height of 0.4 to 2.0 mm and a wavelength of 0.4 to 4.
2. The manufacturing method according to claim 1, wherein the honeycomb structure has a corrugated strip of 0 mm and a flat strip having a thickness of 0.10 to 0.60 mm.
【請求項7】 平面状繊維条を波形にプレスし、その波
形面に5〜20重量%のコロイド珪酸、0.25〜2.5 重量%
の水溶性金属塩および含浸液のpHを5〜9に調節する
のに充分な量の酸よりなる含浸水溶液を塗布し、この塗
布条を加熱により波形に固定し、別に平面状繊維条を上
記含浸液に含浸し、直ちにこの含浸平面状繊維条を波形
条と一緒にハニカムロータに巻き上げ、このハニカム
ータを加熱し、そこに含まれている含浸液を乾燥しゲル
化させることを特徴とする湿気交換ハニカムロータの製
造法。
7. A flat fiber strip is pressed into a corrugated surface, and the corrugated surface has 5 to 20% by weight of colloidal silicic acid and 0.25 to 2.5% by weight.
Of the water-soluble metal salt and the impregnating solution of an acid in an amount sufficient to adjust the pH of the impregnating solution to 5 to 9 are applied, and the applied strip is fixed to the corrugation by heating. was impregnated with the impregnation solution, immediately rolled up honeycomb rotor the impregnated flat fiber strip with the waveform conditions, the honeycomb b
A method for manufacturing a moisture exchange honeycomb rotor , which comprises heating a rotor and drying the impregnating liquid contained therein to cause gelation.
JP4129045A 1992-05-08 1992-05-21 Method of manufacturing moisture exchange element Expired - Lifetime JPH0773654B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4129045A JPH0773654B2 (en) 1992-05-08 1992-05-21 Method of manufacturing moisture exchange element
DE4217451A DE4217451C2 (en) 1992-05-08 1992-05-26 Method of making a moisture exchange element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/880,532 US5254195A (en) 1992-05-08 1992-05-08 Process for manufacturing moisture exchange element
JP4129045A JPH0773654B2 (en) 1992-05-08 1992-05-21 Method of manufacturing moisture exchange element
DE4217451A DE4217451C2 (en) 1992-05-08 1992-05-26 Method of making a moisture exchange element

Publications (2)

Publication Number Publication Date
JPH06323A JPH06323A (en) 1994-01-11
JPH0773654B2 true JPH0773654B2 (en) 1995-08-09

Family

ID=27203788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4129045A Expired - Lifetime JPH0773654B2 (en) 1992-05-08 1992-05-21 Method of manufacturing moisture exchange element

Country Status (1)

Country Link
JP (1) JPH0773654B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3345596B2 (en) * 1999-11-30 2002-11-18 株式会社西部技研 Adsorbent for moisture exchange
JP5835914B2 (en) * 2010-03-19 2015-12-24 大阪瓦斯株式会社 Water absorbent material composition and water absorbent sheet
JP5904833B2 (en) * 2012-03-21 2016-04-20 大阪瓦斯株式会社 Water absorbent material composition and method for producing water absorbent sheet

Also Published As

Publication number Publication date
JPH06323A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
JP2579767B2 (en) Ultra-low concentration gas adsorption element and gas adsorption removal device
US4911775A (en) Method of manufacturing dehumidifier element
JP3346680B2 (en) Adsorbent for moisture exchange
US5683532A (en) Method of manufacturing an active silica gel honeycomb adsorbing body usable in an atmosphere having 100% relative humidity
US11612857B2 (en) Honeycomb matrix comprising macroporous desiccant, process and use thereof
EP2804694A1 (en) Desiccant based honeycomb chemical filter and method of manufacture thereof
CN100352540C (en) Method for preparing titanium modified silica gel adsorption block
TWI406710B (en) Dehumidification rotor, method of manufacturing the same, and dehumidifier
US5254195A (en) Process for manufacturing moisture exchange element
JP2015509832A (en) Desiccant-supporting honeycomb chemical filter and manufacturing method thereof
KR100724298B1 (en) Humidity adsorbent element
JPH02160046A (en) Production of gas adsorbing element
JPH0773654B2 (en) Method of manufacturing moisture exchange element
JP3273788B2 (en) Treatment method of contact body for exchange of heat, moisture, etc.
JP5140278B2 (en) Desiccant material and air dehumidification method using the same
US4162934A (en) Method of producing sorption bodies
JP2707330B2 (en) Continuous production method of elements for gas adsorber
TW199922B (en) Method of preparing honeycomb rotary wheel
JP3305602B2 (en) Manufacturing method of dehumidifying element
JPH0225107B2 (en)
JP3345596B2 (en) Adsorbent for moisture exchange
JP2937437B2 (en) Manufacturing method of activated silica gel honeycomb adsorbent
KR100513791B1 (en) Manufacturing method of body capable of adsorbing humidity
JPS63218235A (en) Production of element for dehumidification
JP4589044B2 (en) Dehumidifier and dehumidifying member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 17