JP4589044B2 - Dehumidifier and dehumidifying member - Google Patents

Dehumidifier and dehumidifying member Download PDF

Info

Publication number
JP4589044B2
JP4589044B2 JP2004207327A JP2004207327A JP4589044B2 JP 4589044 B2 JP4589044 B2 JP 4589044B2 JP 2004207327 A JP2004207327 A JP 2004207327A JP 2004207327 A JP2004207327 A JP 2004207327A JP 4589044 B2 JP4589044 B2 JP 4589044B2
Authority
JP
Japan
Prior art keywords
type zeolite
sodium
dehumidifying
zeolite
dehumidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004207327A
Other languages
Japanese (ja)
Other versions
JP2006026494A (en
Inventor
晃次 山崎
仁 斎藤
正一 成瀬
潤 島田
晴子 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2004207327A priority Critical patent/JP4589044B2/en
Priority to TW094119561A priority patent/TWI364322B/en
Priority to KR1020050063318A priority patent/KR20060050136A/en
Publication of JP2006026494A publication Critical patent/JP2006026494A/en
Application granted granted Critical
Publication of JP4589044B2 publication Critical patent/JP4589044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form

Description

本発明は、一般にY型と呼ばれる骨格構造を有するゼオライトであって、酸点の対イオンがナトリウムであるゼオライト(以下、ナトリウムY型ゼオライトと記載する。)により構成される除湿剤及び該Y型ゼオライトが担持されている除湿用部材に関する。   The present invention relates to a dehumidifying agent comprising a zeolite generally having a framework structure called Y-type, wherein the counter ion at the acid site is sodium (hereinafter referred to as sodium Y-type zeolite), and the Y-type The present invention relates to a dehumidifying member on which zeolite is supported.

現在、連続的に除湿を行なう除湿装置としては、除湿剤による被処理空気の除湿及び水分を吸着した該除湿剤の再生を同時に行うものが多く使用されている。そのため、該除湿装置に用いられている該除湿剤には、被処理空気中の水分を吸着除去する性能(以下、吸湿性能と記載する。)ばかりではなく、吸着した水分を脱着する性能(以下、脱湿性能と記載する。)にも優れていることが要求される。   Currently, many dehumidifying apparatuses that perform dehumidification continuously perform dehumidification of air to be treated with a dehumidifying agent and regeneration of the dehumidifying agent that has adsorbed moisture. Therefore, the dehumidifying agent used in the dehumidifying apparatus has not only the ability to adsorb and remove moisture in the air to be treated (hereinafter referred to as moisture absorbing performance), but also the ability to desorb the adsorbed moisture (hereinafter referred to as moisture absorbing performance). , Described as dehumidifying performance).

該吸着性能及び該脱湿性能の両方が優れている除湿剤としては、シリカゲルが挙げられ、一般産業用に用いられる除湿装置の除湿剤として広く使用されている。   Silica gel is mentioned as a dehumidifying agent which is excellent in both the adsorption performance and the dehumidifying performance, and is widely used as a dehumidifying agent for a dehumidifying apparatus used for general industrial use.

しかし、シリカゲルは、絶対湿度が高い空気中においては、優れた吸湿性能を発揮するものの、絶対湿度が低い空気中のおいては、殆ど水分を吸着せず、吸湿性能を発揮しない。そのため、例えば、絶対湿度が低い冬に、室内で洗濯物を乾燥させるときに用いる除湿機用の除湿剤としては、シリカゲルを使用することはできない。   However, silica gel exhibits excellent moisture absorption performance in air with high absolute humidity, but hardly absorbs moisture and does not exhibit moisture absorption performance in air with low absolute humidity. Therefore, for example, silica gel cannot be used as a dehumidifier for a dehumidifier used when drying laundry indoors in winter when absolute humidity is low.

絶対湿度が低い空気中の水分を吸着することができる物質しては、ゼオライトが知られている。該ゼオライトとしてはY型ゼオライト、X型ゼオライト及びA型ゼオライトが挙げられ、これらのうち、Y型ゼオライトが、X型ゼオライト又はA型ゼオライトに比べ、低温で水分の脱着をすることができるので、連続的に除湿を行なう除湿装置用の除湿剤としては、最も適していると考えられる。   Zeolite is known as a substance capable of adsorbing moisture in the air having a low absolute humidity. Examples of the zeolite include Y-type zeolite, X-type zeolite, and A-type zeolite. Among these, Y-type zeolite can desorb moisture at a lower temperature than X-type zeolite or A-type zeolite. It is considered to be most suitable as a dehumidifying agent for a dehumidifying apparatus that continuously dehumidifies.

一般に、合成により得られるY型ゼオライトは、該ゼオライトの酸点の対イオンとなる陽イオンがナトリウムイオンであるナトリウムY型ゼオライトである。そして、該ナトリウムY型ゼオライトは、絶対湿度が低い空気中でも、吸湿速度が速く、優れた吸湿性能を発揮する。   In general, the Y-type zeolite obtained by synthesis is a sodium Y-type zeolite in which the cation serving as a counter ion at the acid point of the zeolite is a sodium ion. The sodium Y-type zeolite has a high moisture absorption rate even in air with a low absolute humidity, and exhibits excellent moisture absorption performance.

しかし、該ナトリウムY型ゼオライトは、脱湿性能が十分でないという問題があった。具体的には、加熱により脱湿して該ナトリウムY型ゼオライトの除湿性能を再生させるためには、多量の熱エネルギーが必要であるので、ランニングコストが高くなるという問題があった。   However, the sodium Y-type zeolite has a problem that the dehumidification performance is not sufficient. Specifically, in order to regenerate the dehumidifying performance of the sodium Y-type zeolite by dehumidification by heating, a large amount of heat energy is required, and thus there is a problem that the running cost increases.

そこで、従来より、該ナトリウムY型ゼオライトのナトリウムイオンを他の陽イオンにイオン交換し、Y型ゼオライトの吸湿性能と脱湿性能のバランスを調整することが行われてきた。例えば、特開2001−239156号公報には、該ナトリウムY型ゼオライトが、ナトリウム以外の金属イオンでイオン交換されたY型ゼオライトが開示されている。
特開2001−239156号公報
Therefore, conventionally, the sodium ion of the sodium Y-type zeolite has been ion-exchanged with another cation to adjust the balance between the hygroscopic performance and the dehumidifying performance of the Y-type zeolite. For example, Japanese Patent Laid-Open No. 2001-239156 discloses a Y-type zeolite obtained by ion-exchanging the sodium Y-type zeolite with a metal ion other than sodium.
JP 2001-239156 A

ところが、該ナトリウム以外の金属イオンでイオン交換されたY型ゼオライトは、ナトリウムY型ゼオライトに比べ、脱湿性能に優れるものの、水分の吸脱着を繰り返すと、徐々に吸湿性能が低下するという問題があった。   However, although the Y-type zeolite ion-exchanged with metal ions other than sodium has better dehumidification performance than sodium Y-type zeolite, there is a problem that the hygroscopic performance gradually decreases when moisture adsorption and desorption is repeated. there were.

従って、本発明の課題は、絶対湿度が低い空気中であっても優れた吸湿性能及び脱湿性能を発揮し、且つ水分の吸脱着を繰り返したときの吸湿性の維持性能(以下、乾湿繰り返し耐久性とも記載する。)に優れる除湿剤及び除湿用部材を提供することにある。   Accordingly, an object of the present invention is to exhibit excellent hygroscopic performance and dehumidifying performance even in the air with low absolute humidity, and to maintain hygroscopicity when repeated moisture adsorption and desorption (hereinafter, repeated dry and wet) The object is to provide a dehumidifying agent and a dehumidifying member that are excellent in durability.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、ナトリウムY型ゼオライトの特定の物性を特定の範囲とすることにより、該ナトリウムY型ゼオライトの脱湿性能が向上し、吸湿性能と脱湿性能のバランスが良くなることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-described problems in the prior art, the present inventors set the specific physical properties of the sodium Y-type zeolite within a specific range, so that the dehumidification performance of the sodium Y-type zeolite is improved. As a result, it was found that the balance between moisture absorption performance and dehumidification performance was improved, and the present invention was completed.

すなわち、本発明(1)は、下記一般式(1):
xNa O・Al ・ySiO ・zH O (1)
で表わされ、SiO/Alモル比が4.0〜6.0、NaO/Alモル比が0.5〜1.0、平均粒径が3μm以下のY型ゼオライトであることを特徴とする除湿剤を提供するものである。
That is, the present invention (1) includes the following general formula (1):
xNa 2 O · Al 2 O 3 · ySiO 2 · zH 2 O (1)
Y having a SiO 2 / Al 2 O 3 molar ratio of 4.0 to 6.0, a Na 2 O / Al 2 O 3 molar ratio of 0.5 to 1.0, and an average particle size of 3 μm or less. The present invention provides a dehumidifying agent characterized by being a type zeolite.

下記一般式(1):
xNa O・Al ・ySiO ・zH O (1)
で表わされ、SiO/Alモル比が4.0〜6.0、NaO/Alモル比が0.5〜1.0、平均粒径が3μm以下のY型ゼオライトが担体に担持されていることを特徴とする除湿用部材を提供するものである。
The following general formula (1):
xNa 2 O · Al 2 O 3 · ySiO 2 · zH 2 O (1)
Y having a SiO 2 / Al 2 O 3 molar ratio of 4.0 to 6.0, a Na 2 O / Al 2 O 3 molar ratio of 0.5 to 1.0, and an average particle size of 3 μm or less. The present invention provides a dehumidifying member characterized in that type zeolite is supported on a carrier.

本発明の除湿剤及び除湿用部材は、吸湿性能及び脱湿性能のバランスが良く、且つ乾湿繰り返し耐久性に優れているので、絶対湿度が低い空気中の水分を良好に除去することができ、且つランニングコストを低くすることができる。   The dehumidifying agent and dehumidifying member of the present invention have a good balance between moisture absorption performance and dehumidification performance, and are excellent in repeated dry and wet durability, so that moisture in the air with low absolute humidity can be removed well. In addition, the running cost can be reduced.

本発明の除湿剤は、一般にY型ゼオライトと呼ばれている骨格構造を有し、酸点の対イオンがナトリウムイオンであるY型ゼオライトである。また、該Y型ゼオライトは、一般式(1);
xNaO・Al・ySiO・zHO (1)
で表すことができる。該一般式(1)中、xの値、すなわち、NaO/Alモル比は0.5〜1.0、好ましくは0.6〜0.9である。該xの値が、0.5未満だと水分の吸着能力が低いので、絶対湿度が低い空気中の水分を十分に除去することができず、また、1.0を超えると脱湿し難いので、該Y型ゼオライトが吸着した水分を脱着するために必要な熱エネルギー量(以下、脱湿エネルギー量と記載する。)が多くなる。また、yの値、すなわち、SiO/Alモル比は4.0〜6.0、好ましくは4.0〜5.5である。該yの値が、4.0未満だと脱湿し難いので、脱湿エネルギー量が多くなり、また、6.0を超えると水分の吸着能力が低いので、絶対湿度が低い空気中の水分を十分に除去することができない。
The dehumidifying agent of the present invention is a Y-type zeolite having a skeletal structure generally referred to as a Y-type zeolite and having a counter ion at an acid site as a sodium ion. The Y-type zeolite has the general formula (1);
xNa 2 O · Al 2 O 3 · ySiO 2 · zH 2 O (1)
Can be expressed as In the general formula (1), the value of x, that is, the Na 2 O / Al 2 O 3 molar ratio is 0.5 to 1.0, preferably 0.6 to 0.9. If the value of x is less than 0.5, the moisture adsorption capacity is low, so that moisture in the air with low absolute humidity cannot be sufficiently removed, and if it exceeds 1.0, it is difficult to dehumidify. Therefore, the amount of heat energy necessary for desorbing the moisture adsorbed by the Y-type zeolite (hereinafter referred to as the amount of dehumidification energy) increases. Moreover, the value of y, that is, the SiO 2 / Al 2 O 3 molar ratio is 4.0 to 6.0, preferably 4.0 to 5.5. When the value of y is less than 4.0, it is difficult to dehumidify, so the amount of dehumidification energy increases. When the value of y exceeds 6.0, the moisture adsorption capacity is low. Cannot be removed sufficiently.

なお、ゼオライトがY型ゼオライトであることは、X線回折分析を行なって得られる回折パターンにより確認することができる。   The fact that the zeolite is a Y-type zeolite can be confirmed by a diffraction pattern obtained by performing X-ray diffraction analysis.

該Y型ゼオライトの平均粒径は、3μm以下であり、好ましくは0.8〜2.0μmである。該平均粒径が3μmを超えると、脱湿し難いので、該Y型ゼオライトを再生するための脱湿エネルギー量が多くなる。NaO/Alモル比及びSiO/Alモル比が同程度のナトリウムY型ゼオライトであっても、平均粒径の違いによって、その脱湿エネルギー量は大きく異なる。例えば、平均粒径が3μmのものは、平均粒径が5μmのものに比べ、概ね20%程度脱湿エネルギー量が低い。 The average particle size of the Y-type zeolite is 3 μm or less, preferably 0.8 to 2.0 μm. When the average particle diameter exceeds 3 μm, it is difficult to dehumidify, so the amount of dehumidifying energy for regenerating the Y-type zeolite increases. Even if the sodium Y-type zeolite has the same Na 2 O / Al 2 O 3 molar ratio and SiO 2 / Al 2 O 3 molar ratio, the amount of dehumidifying energy varies greatly depending on the difference in average particle diameter. For example, when the average particle size is 3 μm, the amount of dehumidification energy is approximately 20% lower than that when the average particle size is 5 μm.

なお、本発明において、脱湿エネルギー量とは、該Y型ゼオライトが吸着した水1gを、該Y型ゼオライトから脱湿するために必要な熱エネルギー量をいう。そして、該脱湿エネルギー量は、以下の方法によって求められる。(i)まず、該Y型ゼオライトを、500℃の乾燥機中で、2時間乾燥する。その後、該ゼオライトを乾燥機から取り出し、乾燥剤が入れられているデシケーター中で、該ゼオライトを25℃まで冷却する。そして、該ゼオライトを秤量ビンに入れ、該秤量ビンを密閉し、秤により秤量して、該ゼオライトの乾燥時の重量(乾燥重量X(g))を測定する。(ii)乾燥後の該ゼオライトを、25℃、90%RHに制御されているデシケーター中で、48時間放置する。そして、該ゼオライトを秤量ビンに入れ、該秤量ビンを密閉し、秤により秤量して、該ゼオライトの吸湿時の重量(吸湿重量Y(g))を測定する。(iii)そして、吸湿重量Yの値から、乾燥重量Xの値を減じて、該ゼオライトの飽和吸着水分量を求める。(iv)次に、吸湿後の該ゼオライト20.0mgを秤採り、示差走査熱量計(DSC)を用いて、吸湿後の該ゼオライトから水分が脱湿されるのに要する熱エネルギー量(Z(J))を測定する。(v)下式(2)により、脱湿エネルギー量(J/g)を算出する。
脱湿エネルギー量=(Z×X)/{0.02×(Y−X)} (2)
In the present invention, the amount of dehumidifying energy refers to the amount of heat energy required to dehumidify 1 g of water adsorbed by the Y-type zeolite from the Y-type zeolite. And this dehumidification energy amount is calculated | required with the following method. (I) First, the Y-type zeolite is dried in a dryer at 500 ° C. for 2 hours. Thereafter, the zeolite is removed from the dryer, and the zeolite is cooled to 25 ° C. in a desiccator containing a desiccant. Then, the zeolite is put into a weighing bottle, the weighing bottle is sealed, and weighed by a balance, and the weight of the zeolite when dried (dry weight X (g)) is measured. (Ii) The zeolite after drying is left for 48 hours in a desiccator controlled at 25 ° C. and 90% RH. Then, the zeolite is put into a weighing bottle, the weighing bottle is sealed, and weighed by a balance, and the weight of the zeolite when it absorbs moisture (moisture absorption weight Y (g)) is measured. (Iii) Then, the value of the dry weight X is subtracted from the value of the hygroscopic weight Y to obtain the saturated adsorbed water content of the zeolite. (Iv) Next, 20.0 mg of the zeolite after moisture absorption is weighed, and using a differential scanning calorimeter (DSC), the amount of heat energy (Z ( J)) is measured. (V) The amount of dehumidification energy (J / g) is calculated by the following equation (2).
Dehumidification energy amount = (Z × X) / {0.02 × (Y−X)} (2)

該Y型ゼオライトは、乾湿繰り返し耐久性に優れるので、除湿剤としての寿命が長く、そのためランニングコストを低くすることができる。なお、該Y型ゼオライトの乾湿繰り返し耐久性は、乾湿繰り返し試験前及び試験後の該Y型ゼオライトの吸湿速度を測定することにより把握でき、該乾湿繰り返し試験前の吸湿速度と試験後の吸湿速度に変化がない場合には、乾湿繰り返し耐久性は良好と判断する。また、本発明において、該乾湿繰り返し試験とは、該Y型ゼオライトを800℃で10分間加熱後、乾燥剤が入れられているデシケーター中で25℃まで冷却し、次いで、25℃、50%RHのデシケーター中に10分間放置するという操作を、100回繰り返す試験である。   Since the Y-type zeolite is excellent in repeated wet and dry durability, it has a long life as a dehumidifying agent, and therefore the running cost can be reduced. In addition, the wet and dry repeated durability of the Y-type zeolite can be grasped by measuring the moisture absorption rate of the Y-type zeolite before and after the wet and dry repeated test, and the moisture absorption rate before and after the wet and dry repeated test and the moisture absorbed rate after the test. When there is no change, it is judged that the wet and dry repeated durability is good. In the present invention, the wet and dry repeated test means that the Y-type zeolite is heated at 800 ° C. for 10 minutes, then cooled to 25 ° C. in a desiccator containing a desiccant, and then 25 ° C. and 50% RH. This is a test in which the operation of leaving in a desiccator for 10 minutes is repeated 100 times.

該Y型ゼオライトは、例えば、NaO/Alモル比及びSiO/Alモル比が前記範囲内にあるナトリウムY型ゼオライトを、乾式粉砕、湿式粉砕等の常法により粉砕し、必要に応じて、櫛分け等の常法により分級して得られる。 The Y-type zeolite is prepared by, for example, a sodium Y-type zeolite having a Na 2 O / Al 2 O 3 molar ratio and a SiO 2 / Al 2 O 3 molar ratio within the above ranges by a conventional method such as dry grinding or wet grinding. It is obtained by pulverization and classification by a conventional method such as combing, if necessary.

本発明に係るY型ゼオライトは、NaO/Alモル比、SiO/Alモル比及び平均粒径が、上記範囲にあることにより、絶対湿度が低い空気中の水分を吸着するのに必要な吸湿性能を有し、且つ再生時の脱湿エネルギー量が少ない。従って、該Y型ゼオライトは、吸湿性能と脱湿性能のバランスが良い。 The Y-type zeolite according to the present invention has the Na 2 O / Al 2 O 3 molar ratio, the SiO 2 / Al 2 O 3 molar ratio, and the average particle diameter in the above ranges, so that moisture in the air with low absolute humidity is present. Has a moisture absorption performance necessary for adsorbing water and has a small amount of dehumidifying energy during regeneration. Therefore, the Y-type zeolite has a good balance between moisture absorption performance and dehumidification performance.

このように、乾湿繰り返し耐久性に優れるナトリウムY型ゼオライトの特定の物性を、特定の範囲とすることにより、絶対湿度が低い空気中であっても優れた除湿性能及び脱湿性能を発揮し、且つ乾湿繰り返し耐久性に優れる除湿剤を提供することができる。   Thus, by setting the specific physical properties of the sodium Y-type zeolite excellent in repeated wet and dry durability to a specific range, it exhibits excellent dehumidification performance and dehumidification performance even in the air with low absolute humidity, In addition, it is possible to provide a dehumidifying agent having excellent dry and wet repeated durability.

本発明の除湿剤は、内部に多数の小透孔を備える多孔質ハニカム構造体に除湿剤を担持して構成されているハニカムローターの該除湿剤として、用いられる。該ハニカムローターは、被処理空気の除湿を行なう除湿ゾーン、該除湿剤の再生を行う再生ゾーン及び再生ゾーンで加熱されたハニカムローターを冷却する冷却ゾーンに分割されており、該ハニカムローターが回転することにより、該除湿剤が該除湿ゾーン、該再生ゾーン及び該冷却ゾーンを順に移動する。   The dehumidifying agent of the present invention is used as a dehumidifying agent for a honeycomb rotor configured by supporting a dehumidifying agent on a porous honeycomb structure having a large number of small pores therein. The honeycomb rotor is divided into a dehumidification zone for dehumidifying the air to be treated, a regeneration zone for regenerating the dehumidifying agent, and a cooling zone for cooling the honeycomb rotor heated in the regeneration zone, and the honeycomb rotor rotates. As a result, the dehumidifying agent sequentially moves through the dehumidifying zone, the regeneration zone, and the cooling zone.

本発明の除湿用部材は、SiO/Alモル比が4.0〜6.0、NaO/Alモル比が0.5〜1.0、平均粒径が3μm以下のY型ゼオライトが担体に担持されている。 The dehumidifying member of the present invention has a SiO 2 / Al 2 O 3 molar ratio of 4.0 to 6.0, a Na 2 O / Al 2 O 3 molar ratio of 0.5 to 1.0, and an average particle diameter of 3 μm. The following Y-type zeolite is supported on a carrier.

該担体としては、該Y型ゼオライトを担持することができる多孔質体であれば特に制限されず、好ましくは、ハニカム構造担体であり、特に好ましくは、特開昭59−10345号公報に記載されている高空隙率の無機繊維製紙により構成されるものである。該無機繊維製紙は、アルミナ繊維、シリカアルミナ繊維又はガラス繊維等の無機繊維により製造され、且つ70〜95%の高空隙率を有するものが好ましい。   The carrier is not particularly limited as long as it is a porous body capable of supporting the Y-type zeolite, and is preferably a honeycomb structure carrier, and particularly preferably described in JP-A-59-10345. It is comprised by the high porosity inorganic fiber paper. The inorganic fiber papermaking is preferably made of inorganic fibers such as alumina fibers, silica alumina fibers or glass fibers and having a high porosity of 70 to 95%.

該Y型ゼオライトを担持する方法としては、特に制限されず、常法により行うことができる。例えば、該Y型ゼオライトを、シリカゾル、アルミナゾル又はチタニアゾル等の無機質結合剤と共に水に懸濁させた懸濁液を調製し、該懸濁液に担体を浸漬するか、又は担体に該懸濁液を塗工することにより、該Y型ゼオライトを担体に十分に吸収させ、過剰の懸濁液を除去した後、乾燥して、固定させる方法が挙げられる。この時、使用する無機質結合剤の量は、担体の表面に固定するのに必要最小限度とすることが、該無機質結合剤の硬化物が該Y型ゼオライトの表面を覆うことによる該Y型ゼオライトの吸湿性能の低下を少なくできる点で好ましい。   The method for supporting the Y-type zeolite is not particularly limited, and can be performed by a conventional method. For example, a suspension is prepared by suspending the Y-type zeolite in water together with an inorganic binder such as silica sol, alumina sol or titania sol, and the carrier is immersed in the suspension, or the suspension is suspended in the carrier. The Y-type zeolite is sufficiently absorbed by the carrier by coating, and the excess suspension is removed, and then dried and fixed. At this time, the amount of the inorganic binder to be used is the minimum necessary for fixing to the surface of the carrier. The Y-type zeolite is formed by covering the surface of the Y-type zeolite with the cured product of the inorganic binder. This is preferable in that the decrease in the hygroscopic performance can be reduced.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(ナトリウムY型ゼオライトの製造)
SiO含有量が63重量%、Al含有量が24重量%、NaO含有量が13重量%(SiO/Alモル比が4.46、NaO/Alモル比が0.89)のナトリウムY型ゼオライトAを粉砕及び分級して、平均粒径が1.2μmであるナトリウムY型ゼオライトBを得た。
(Production of sodium Y-type zeolite)
SiO 2 content is 63 wt%, Al 2 O 3 content is 24 wt%, Na 2 O content is 13 wt% (SiO 2 / Al 2 O 3 molar ratio is 4.46, Na 2 O / Al 2 Sodium Y-type zeolite A having an O 3 molar ratio of 0.89) was pulverized and classified to obtain sodium Y-type zeolite B having an average particle size of 1.2 μm.

(吸湿性試験)
試料をあらかじめ破砕してJIS Z 8801の規定による呼び寸法840以下を用いてふるう操作を行わない以外は、JIS Z 0701−1977に準拠して、吸湿性試験を行った。その結果を表1に示す。なお、吸湿性試験時のデシケーター内の温度は、26℃であった。
(Hygroscopic test)
A hygroscopic test was conducted in accordance with JIS Z 0701-1977 except that the sample was not crushed in advance and subjected to a sieving operation using a nominal size of 840 or less according to JIS Z 8801. The results are shown in Table 1. The temperature in the desiccator during the hygroscopic test was 26 ° C.

(脱湿エネルギー量の測定)
まず、ナトリウムY型ゼオライトBを、500℃の乾燥機中で、2時間乾燥した。乾燥後、該ゼオライトを乾燥機から取り出し、乾燥剤が入れられているデシケーター中で、該ゼオライトを25℃まで冷却した。そして、該ゼオライトを秤量ビンに入れ、該秤量ビンを密閉し、秤により秤量して、該ゼオライトの乾燥重量(X)を測定したところ、0.200gであった。次に、乾燥後の該ゼオライトを、25℃、90%RHに制御されているデシケーター中で、48時間放置した。そして、該ゼオライトを秤量ビンに入れ、該秤量ビンを密閉し、秤により秤量して、該ゼオライトの吸湿重量(Y)を測定したところ、0.261gであった。次に、吸湿後の該ゼオライト20.0mgを秤採り、示差走査熱量計(DSC)(DSC8230D、リガク社製)を用いて、30℃から昇温速度10℃/分の昇温条件で昇温して、吸湿後の該ゼオライトから水分が脱湿されるのに要した熱エネルギー量(Z)を測定したところ、19.52Jであった。そして、下式(2)により、脱湿エネルギー量を算出したところ、3.2×10J/gであった。
脱湿エネルギー量(J/g)=(Z×X)/{0.02×(Y−X)}(2)
(Measurement of dehumidification energy)
First, sodium Y-type zeolite B was dried in a dryer at 500 ° C. for 2 hours. After drying, the zeolite was removed from the dryer and cooled to 25 ° C. in a desiccator containing a desiccant. The zeolite was put into a weighing bottle, the weighing bottle was sealed, weighed with a balance, and the dry weight (X) of the zeolite was measured. As a result, it was 0.200 g. Next, the dried zeolite was allowed to stand for 48 hours in a desiccator controlled at 25 ° C. and 90% RH. The zeolite was put into a weighing bottle, the weighing bottle was sealed, weighed with a balance, and the moisture absorption weight (Y) of the zeolite was measured to be 0.261 g. Next, 20.0 mg of the zeolite after moisture absorption was weighed and heated using a differential scanning calorimeter (DSC) (DSC8230D, manufactured by Rigaku Corporation) from 30 ° C. under a temperature rising condition of 10 ° C./min. The amount of heat energy (Z) required for moisture to be dehumidified from the zeolite after moisture absorption was measured to be 19.52 J. And when the amount of dehumidification energy was calculated by the following formula (2), it was 3.2 × 10 3 J / g.
Dehumidification energy amount (J / g) = (Z × X) / {0.02 × (Y−X)} (2)

(乾湿繰り返し試験)
ナトリウムY型ゼオライトB 10gを自動昇降炉中、800℃で10分間加熱後、乾燥剤が入れられているデシケーター中で25℃まで冷却し、次いで、25℃、50%RHのデシケーター中に10分間放置するという操作を、100回繰り返し、乾湿繰り返し試験を行った。
(Dry and wet repeated test)
10 g of sodium Y-type zeolite B was heated at 800 ° C. for 10 minutes in an automatic elevator, cooled to 25 ° C. in a desiccator containing a desiccant, and then 10 minutes in a desiccator at 25 ° C. and 50% RH. The operation of leaving it to stand was repeated 100 times, and the dry and wet test was repeated.

(乾湿繰り返し耐久性の評価)
次に、該乾湿繰り返し試験前及び試験後のナトリウムY型ゼオライトBの吸湿速度を測定し、該乾湿繰り返し試験前後の該吸湿速度の変化量より、乾湿繰り返し耐久性の評価を行った。該吸湿速度の測定は、200℃で1時間加熱後、乾燥剤が入れられているデシケーター中で冷却したナトリウムY型ゼオライトB 1gを、25℃、50%RHに制御されている室内に設置された天秤に載せる。5秒に1回重量を測定し、該重量測定を10分間行う。次に、5秒間隔で行う重量測定毎に、前の重量測定からの重量の増加量を計算し、測定間隔(5秒)で除して、単位時間当たりの重量変化量(mg/秒)を算出する。10分間に行った全ての重量測定毎に重量変化量を算出し、それらの平均値(mg/秒)を求める。そして、該平均値を、ナトリウムY型ゼオライトBの重量1gで除して、1g当りの吸湿速度(mg/秒)とする。ナトリウムY型ゼオライトBの吸湿速度は、試験前は、25℃、50%RHの空気中で、1g当り0.27mg/秒であり、試験後も0.27mg/秒と変化がなかった。
(Evaluation of repeated wet and dry durability)
Next, the moisture absorption rate of the sodium Y-type zeolite B before and after the wet and dry repeat test was measured, and the wet and dry repeated durability was evaluated from the amount of change in the moisture absorption rate before and after the dry and wet repeat test. The moisture absorption rate is measured by heating 1 g of sodium Y-type zeolite B in a desiccator containing a desiccant after heating at 200 ° C. for 1 hour, and installing it in a room controlled at 25 ° C. and 50% RH. Place it on the balance. The weight is measured once every 5 seconds, and the weight measurement is performed for 10 minutes. Next, for each weight measurement made at 5-second intervals, calculate the amount of weight increase from the previous weight measurement and divide by the measurement interval (5 seconds) to change the weight per unit time (mg / second) Is calculated. The weight change is calculated for every weight measurement performed for 10 minutes, and the average value (mg / second) is obtained. Then, the average value is divided by the weight of 1 g of sodium Y-type zeolite B to obtain a moisture absorption rate per 1 g (mg / second). The moisture absorption rate of sodium Y-type zeolite B was 0.27 mg / second per gram in air at 25 ° C. and 50% RH before the test, and remained unchanged at 0.27 mg / second after the test.

(比較例1)
(吸湿性試験)
ナトリウムY型ゼオライトBに代えA型シリカゲル(ガレオン シリカゲルA、水澤化学工業社製)とする以外は、実施例1と同様の方法で行った。その結果を表1に示す。
(Comparative Example 1)
(Hygroscopic test)
The same procedure as in Example 1 was performed except that A type silica gel (Galeon silica gel A, manufactured by Mizusawa Chemical Co., Ltd.) was used instead of sodium Y type zeolite B. The results are shown in Table 1.

(比較例2)
(吸湿性試験)
ナトリウムY型ゼオライトBに代えB型シリカゲル(ガレオン シリカゲルB、水澤化学工業社製)とする以外は、実施例1と同様の方法で行った。その結果を表1に示す。
(Comparative Example 2)
(Hygroscopic test)
The same procedure as in Example 1 was performed except that B-type silica gel (Galeon Silica Gel B, manufactured by Mizusawa Chemical Industry Co., Ltd.) was used instead of sodium Y-type zeolite B. The results are shown in Table 1.

Figure 0004589044
Figure 0004589044

このように、実施例1のナトリウムY型ゼオライトBは、絶対湿度に関係なく一定した吸湿性を有し、絶対湿度が低い空気中でも高い吸湿性を示した。一方、比較例1のA型シリカゲル及び比較例2のB型シリカゲルは、絶対湿度が低くなる程吸湿性が低くなり、絶対湿度が低い空気中では、非常に吸湿性が低かった。   Thus, the sodium Y-type zeolite B of Example 1 had a constant hygroscopicity regardless of the absolute humidity, and showed a high hygroscopic property even in air with a low absolute humidity. On the other hand, the A-type silica gel of Comparative Example 1 and the B-type silica gel of Comparative Example 2 have lower hygroscopicity as the absolute humidity is lower, and the hygroscopicity is very low in the air having a lower absolute humidity.

(比較例3)
(ナトリウムY型ゼオライトの製造)
実施例1で用いたナトリウムY型ゼオライトAを粉砕及び分級して、平均粒径が5.1μmであるナトリウムY型ゼオライトCを得た。
(Comparative Example 3)
(Production of sodium Y-type zeolite)
Sodium Y-type zeolite A used in Example 1 was pulverized and classified to obtain sodium Y-type zeolite C having an average particle size of 5.1 μm.

(脱湿エネルギー量の測定、乾湿繰り返し試験、乾湿繰り返し耐久性)
ナトリウムY型ゼオライトBに代えナトリウムY型ゼオライトCとする以外は、実施例1と同様の方法で行った。その結果、脱湿エネルギー量は4.0×10J/gであった。また、乾湿繰り返し試験前の吸湿速度は、25℃、50%RHの空気中で、1g当り0.26mg/秒であり、試験後も0.26mg/秒と変化がなかった。
(Measurement of dehumidification energy, repeated wet and dry test, repeated wet and dry durability)
The same procedure as in Example 1 was performed except that sodium Y-type zeolite C was used instead of sodium Y-type zeolite B. As a result, the dehumidification energy amount was 4.0 × 10 3 J / g. Further, the moisture absorption rate before the wet and dry repeated test was 0.26 mg / second per 1 g in air at 25 ° C. and 50% RH, and remained unchanged at 0.26 mg / second after the test.

(比較例4)
(ナトリウムY型ゼオライトの製造)
SiO含有量が76.3重量%、Al含有量が16.2重量%、NaO含有量が7.3重量%(SiO/Alモル比が5.1、NaO/Alモル比が0.76)のナトリウムY型ゼオライトDを粉砕及び分級して、平均粒径が4.5μmであるナトリウムY型ゼオライトEを得た。
(Comparative Example 4)
(Production of sodium Y-type zeolite)
SiO 2 content is 76.3% by weight, Al 2 O 3 content is 16.2% by weight, Na 2 O content is 7.3% by weight (SiO 2 / Al 2 O 3 molar ratio is 5.1, Sodium Y-type zeolite D having a Na 2 O / Al 2 O 3 molar ratio of 0.76) was pulverized and classified to obtain sodium Y-type zeolite E having an average particle size of 4.5 μm.

(脱湿エネルギー量の測定、乾湿繰り返し試験、乾湿繰り返し耐久性)
ナトリウムY型ゼオライトBに代えナトリウムY型ゼオライトEとする以外は、実施例1と同様の方法で行った。その結果、脱湿エネルギー量は3.8×10J/gであった。また、乾湿繰り返し試験前の吸湿速度は、25℃、50%RHの空気中で、1g当り0.26mg/秒であり、試験後も0.26mg/秒と変化がなかった。
(Measurement of dehumidification energy, repeated wet and dry test, repeated wet and dry durability)
The same procedure as in Example 1 was performed except that sodium Y-type zeolite E was used instead of sodium Y-type zeolite B. As a result, the dehumidification energy amount was 3.8 × 10 3 J / g. Further, the moisture absorption rate before the wet and dry repeated test was 0.26 mg / second per 1 g in air at 25 ° C. and 50% RH, and remained unchanged at 0.26 mg / second after the test.

(比較例5)
(カリウムY型ゼオライトの製造)
実施例1で用いたナトリウムY型ゼオライトAを、0.9mol/Lの塩化カリウム水溶液に、80℃で12時間浸漬した。該Y型ゼオライトをろ別及び水洗後、200℃で2時間乾燥し、カリウムイオンでイオン交換されたY型ゼオライト(以下、カリウムY型ゼオライトFと記載する。)を得た。得られたカリウムY型ゼオライトFの組成は、SiO含有率が60.0重量%、Al含有率が22.9重量%、KO含有率が13.7重量%、NaO含有率が3.4重量%(SiO/Alモル比が4.5、NaO/Alモル比が0.12)であった。
(Comparative Example 5)
(Manufacture of potassium Y-type zeolite)
Sodium Y-type zeolite A used in Example 1 was immersed in a 0.9 mol / L potassium chloride aqueous solution at 80 ° C. for 12 hours. The Y-type zeolite was filtered off and washed with water, and then dried at 200 ° C. for 2 hours to obtain a Y-type zeolite ion-exchanged with potassium ions (hereinafter referred to as potassium Y-type zeolite F). The composition of the obtained potassium Y-type zeolite F has a SiO 2 content of 60.0% by weight, an Al 2 O 3 content of 22.9% by weight, a K 2 O content of 13.7% by weight, Na 2 The O content was 3.4% by weight (SiO 2 / Al 2 O 3 molar ratio was 4.5 and Na 2 O / Al 2 O 3 molar ratio was 0.12).

(脱湿エネルギー量の測定、乾湿繰り返し試験、乾湿繰り返し耐久性)
ナトリウムY型ゼオライトBに代えカリウムY型ゼオライトFとする以外は、実施例1と同様の方法で行った。その結果、脱湿エネルギー量は4.2×10J/gであった。また、乾湿繰り返し試験前の吸湿速度は、25℃、50%RHの空気中で、1g当り0.26mg/秒であったが、試験後は0.24mg/秒であった。
(Measurement of dehumidification energy, repeated wet and dry test, repeated wet and dry durability)
The same procedure as in Example 1 was performed except that potassium Y-type zeolite F was used instead of sodium Y-type zeolite B. As a result, the dehumidification energy amount was 4.2 × 10 3 J / g. Further, the moisture absorption rate before the wet and dry repeated test was 0.26 mg / second per 1 g in air at 25 ° C. and 50% RH, but was 0.24 mg / second after the test.

(比較例6)
(ランタンY型ゼオライトの製造)
実施例1で用いたナトリウムY型ゼオライトAを、0.3mol/Lの塩化ランタン(LaCl)水溶液に、80℃で12時間浸漬した。該Y型ゼオライトをろ別及び水洗後、200℃で2時間乾燥し、ランタンイオンでイオン交換されたY型ゼオライト(以下、ランタンY型ゼオライトGと記載する。)を得た。得られたランタンY型ゼオライトGの組成は、SiO含有率が60.6重量%、Al含有率が20.8重量%、La含有率が14.7重量%、NaO含有率が3.7重量%(SiO/Alモル比が5.0、NaO/Alモル比が0.3)であった。
(Comparative Example 6)
(Manufacture of lanthanum Y-type zeolite)
Sodium Y-type zeolite A used in Example 1 was immersed in a 0.3 mol / L lanthanum chloride (LaCl 3 ) aqueous solution at 80 ° C. for 12 hours. The Y-type zeolite was filtered off and washed with water, followed by drying at 200 ° C. for 2 hours to obtain a Y-type zeolite ion-exchanged with lanthanum ions (hereinafter referred to as lanthanum Y-type zeolite G). The composition of the obtained lanthanum Y-type zeolite G has a SiO 2 content of 60.6% by weight, an Al 2 O 3 content of 20.8% by weight, a La 2 O 3 content of 14.7% by weight, Na The 2 O content was 3.7% by weight (SiO 2 / Al 2 O 3 molar ratio was 5.0 and Na 2 O / Al 2 O 3 molar ratio was 0.3).

(脱湿エネルギー量の測定、乾湿繰り返し試験、乾湿繰り返し耐久性)
ナトリウムY型ゼオライトBに代えランタンY型ゼオライトGとする以外は、実施例1と同様の方法で行った。その結果、脱湿エネルギー量は3.4×10J/gであった。また、乾湿繰り返し試験前の吸湿速度は、25℃、50%RHの空気中で、1g当り0.24mg/秒であったが、試験後は0.21mg/秒であった。
(Measurement of dehumidification energy, repeated wet and dry test, repeated wet and dry durability)
The same procedure as in Example 1 was carried out except that the lanthanum Y type zeolite G was used instead of the sodium Y type zeolite B. As a result, the dehumidification energy amount was 3.4 × 10 3 J / g. Further, the moisture absorption rate before the wet and dry repeated test was 0.24 mg / second per 1 g in air at 25 ° C. and 50% RH, but was 0.21 mg / second after the test.

(除湿用部材の製造)
シリカアルミナ繊維製紙(厚さ0.2mm、空隙率90%)により構成され、幅3.0mm、高さ1.6mmのセルを有するのハニカム構造担体(ニチアス株式会社製、商品名:ハニクル)を直径270mm、厚さ17mmの円筒状に切り出し、担体とした。
次に、実施例1で得たナトリウムY型ゼオライトBを90重量部、シリカゾル(「商品名:スノーテックス」(固形分30重量%、日産化学社製))30重量部、及び水130重量部を混合し、スラリーを調製した。得られたスラリー中に、上記ハニカム構造担体を浸漬した後、過剰のスラリーの除去、乾燥を行い、除湿用部材Hを得た。
(Manufacture of dehumidifying members)
A honeycomb structure carrier made of silica alumina fiber paper (thickness 0.2 mm, porosity 90%) and having cells having a width of 3.0 mm and a height of 1.6 mm (manufactured by NICHIAS Corporation, trade name: hanicle) It was cut into a cylindrical shape with a diameter of 270 mm and a thickness of 17 mm to obtain a carrier.
Next, 90 parts by weight of the sodium Y-type zeolite B obtained in Example 1, 30 parts by weight of silica sol (“trade name: Snowtex” (solid content 30% by weight, manufactured by Nissan Chemical Co., Ltd.)), and 130 parts by weight of water Were mixed to prepare a slurry. After the above honeycomb structure carrier was immersed in the obtained slurry, excess slurry was removed and dried to obtain a dehumidifying member H.

(乾湿繰り返し試験、乾湿繰り返し耐久性の評価)
ナトリウムY型ゼオライトB 10gに代え、該除湿用部材Hとする以外は、実施例1と同様の方法で行ったところ、吸湿速度は、該除湿用部材に担持されているナトリウムY型ゼオライトB 1g当たり、試験前は0.27mg/秒、試験後も0.27mg/秒と変化がなかった。
(Dry-wet repeat test, dry-wet repeat durability evaluation)
When the dehumidifying member H was used in place of 10 g of sodium Y zeolite B, the moisture absorption rate was 1 g of sodium Y zeolite B supported on the dehumidifying member. The hit was 0.27 mg / sec before the test and 0.27 mg / sec after the test.

(除湿耐久試験)
上記と同様の方法で製造した除湿用部材Hを除湿装置(F−Y100Z3、松下エコシステムズ社製)の除湿用ローターとして取り付け、該除湿装置を25℃、50%RHに制御した恒温恒湿室内に設置し、「自動」の運転条件で、100時間除湿運転を行った。そして、試験開始1時間後から1時間(1時間目〜2時間目の間)の除湿量及び99時間後から1時間(99時間目〜100時間目)の除湿量を測定し、除湿用部材Hの除湿耐久性を求めた。その結果を表2に示す。なお、除湿量は、電子天秤の上に除湿装置を載せて、「自動」の運転条件で運転し、1分ごとに重量増を記録して、1時間の総重量増を測定することにより求めた。また、除湿量の低下率は、1時間後の除湿量をPg/時間、100時間後の除湿量をQg/時間とすると、次式(3)により求められる値である。
除湿量の低下率(%)={(P−Q)/P}×100
(Dehumidification durability test)
A dehumidifying member H manufactured by the same method as described above is attached as a dehumidifying rotor of a dehumidifying device (F-Y100Z3, manufactured by Matsushita Ecosystems), and the dehumidifying device is controlled at 25 ° C. and 50% RH in a constant temperature and humidity chamber. And was dehumidified for 100 hours under “automatic” operating conditions. Then, the dehumidifying amount for 1 hour (between the first hour and the second hour) after 1 hour from the start of the test and the dehumidifying amount for 1 hour (from the 99th hour to the 100th hour) after 99 hours are measured, and the dehumidifying member The dehumidification durability of H was determined. The results are shown in Table 2. The amount of dehumidification is obtained by placing a dehumidifier on the electronic balance, operating under "automatic" operating conditions, recording the weight increase every minute, and measuring the total weight increase for one hour. It was. Further, the dehumidification rate is a value obtained by the following equation (3), assuming that the dehumidification amount after 1 hour is Pg / hour and the dehumidification amount after 100 hours is Qg / hour.
Reduction rate of dehumidification amount (%) = {(PQ) / P} × 100

(比較例7)
(除湿用部材の製造)
実施例1で得たナトリウムY型ゼオライトBを90重量部に代え、比較例6で得たランタンY型ゼオライトGを90重量部とする以外は、実施例2と同様の方法で行い、除湿用部材Jを得た。
(Comparative Example 7)
(Manufacture of dehumidifying members)
Dehumidification is performed in the same manner as in Example 2 except that 90 parts by weight of the sodium Y-type zeolite B obtained in Example 1 is replaced by 90 parts by weight of the lanthanum Y-type zeolite G obtained in Comparative Example 6. Member J was obtained.

(除湿耐久試験)
除湿用部材Hに代え除湿用部材Jとする以外は、実施例2と同様の方法で行った。その結果を表2に示す。
(Dehumidification durability test)
The same procedure as in Example 2 was performed except that the dehumidifying member J was used instead of the dehumidifying member H. The results are shown in Table 2.

Figure 0004589044
Figure 0004589044

このように、実施例2の除湿用部材Hは、100時間の除湿耐久試験を行っても、除湿性の低下が極めて低く、耐久性に優れていた。   As described above, the dehumidifying member H of Example 2 was excellent in durability even when the dehumidification endurance test for 100 hours was performed and the decrease in dehumidifying performance was extremely low.

Claims (3)

下記一般式(1):
xNa O・Al ・ySiO ・zH O (1)
で表わされ、SiO/Alモル比が4.0〜6.0、NaO/Alモル比が0.5〜1.0、平均粒径が3μm以下のY型ゼオライトであることを特徴とする除湿剤。
The following general formula (1):
xNa 2 O · Al 2 O 3 · ySiO 2 · zH 2 O (1)
Y having a SiO 2 / Al 2 O 3 molar ratio of 4.0 to 6.0, a Na 2 O / Al 2 O 3 molar ratio of 0.5 to 1.0, and an average particle size of 3 μm or less. Dehumidifier characterized by being a type zeolite.
下記一般式(1):
xNa O・Al ・ySiO ・zH O (1)
で表わされ、SiO/Alモル比が4.0〜6.0、NaO/Alモル比が0.5〜1.0、平均粒径が3μm以下のY型ゼオライトが担体に担持されていることを特徴とする除湿用部材。
The following general formula (1):
xNa 2 O · Al 2 O 3 · ySiO 2 · zH 2 O (1)
Y having a SiO 2 / Al 2 O 3 molar ratio of 4.0 to 6.0, a Na 2 O / Al 2 O 3 molar ratio of 0.5 to 1.0, and an average particle size of 3 μm or less. A dehumidifying member characterized in that a zeolite is supported on a carrier.
前記担体が、ハニカム構造担体であることを特徴とする請求項2記載の除湿用部材。   The dehumidifying member according to claim 2, wherein the carrier is a honeycomb structure carrier.
JP2004207327A 2004-07-14 2004-07-14 Dehumidifier and dehumidifying member Active JP4589044B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004207327A JP4589044B2 (en) 2004-07-14 2004-07-14 Dehumidifier and dehumidifying member
TW094119561A TWI364322B (en) 2004-07-14 2005-06-14 Dehumidifying agent and dehumidifying material
KR1020050063318A KR20060050136A (en) 2004-07-14 2005-07-13 Dehumidifying agent and member for dehumidification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207327A JP4589044B2 (en) 2004-07-14 2004-07-14 Dehumidifier and dehumidifying member

Publications (2)

Publication Number Publication Date
JP2006026494A JP2006026494A (en) 2006-02-02
JP4589044B2 true JP4589044B2 (en) 2010-12-01

Family

ID=35893460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207327A Active JP4589044B2 (en) 2004-07-14 2004-07-14 Dehumidifier and dehumidifying member

Country Status (3)

Country Link
JP (1) JP4589044B2 (en)
KR (1) KR20060050136A (en)
TW (1) TWI364322B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5453490B2 (en) 2011-12-21 2014-03-26 財團法人工業技術研究院 Dehumidification and release device and system
CN111971110A (en) 2018-04-17 2020-11-20 住友化学株式会社 Humidity control member and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000824A (en) * 2002-05-30 2004-01-08 Tokyo Electron Ltd Dehumidifier and dehumidification method
JP2004132690A (en) * 2002-08-15 2004-04-30 Denso Corp Adsorbent for thermal storage system, thermal storage system using it, iron aluminophosphate, and its manufacturing method
JP2005230797A (en) * 2003-07-30 2005-09-02 Tosoh Corp Adsorbing agent comprising zeolite for heat pump and its production method and its use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555367B2 (en) * 1987-08-13 1996-11-20 水澤化学工業株式会社 Freshness-keeping agent for packaging materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000824A (en) * 2002-05-30 2004-01-08 Tokyo Electron Ltd Dehumidifier and dehumidification method
JP2004132690A (en) * 2002-08-15 2004-04-30 Denso Corp Adsorbent for thermal storage system, thermal storage system using it, iron aluminophosphate, and its manufacturing method
JP2005230797A (en) * 2003-07-30 2005-09-02 Tosoh Corp Adsorbing agent comprising zeolite for heat pump and its production method and its use

Also Published As

Publication number Publication date
TW200603885A (en) 2006-02-01
TWI364322B (en) 2012-05-21
KR20060050136A (en) 2006-05-19
JP2006026494A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US20210138437A1 (en) Methods or producing carbon dioxide sorbents for indoor air quality control
JPH08299745A (en) Adsorbing body for moisture exchange
MX2014008803A (en) Desiccant based honeycomb chemical filter and method of manufacture thereof.
JP6147004B2 (en) Honeycomb matrix containing macroporous desiccant, process and use thereof
TWI406710B (en) Dehumidification rotor, method of manufacturing the same, and dehumidifier
JP5243391B2 (en) Dehumidifying material
JP4263675B2 (en) Dehumidifier
JP4589044B2 (en) Dehumidifier and dehumidifying member
JP5392121B2 (en) Method for producing hygroscopic agent
JP2015509832A (en) Desiccant-supporting honeycomb chemical filter and manufacturing method thereof
EP1160010A2 (en) Humidity adsorbent agent and humidity adsorbent element using thereof
JP4906367B2 (en) How to operate the dehumidifier
JP7169515B2 (en) Deodorizing catalyst for refrigerator and deodorizing material for refrigerator using the same
JP5754927B2 (en) Hygroscopic material
JP2011255331A (en) High performance water vapor adsorbent having alminosilicate compound material as base material
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
JP4119668B2 (en) Porous hygroscopic agent and method for producing the same
JP3322519B2 (en) Rotor of rotary organic solvent vapor adsorption device
JP2008168259A (en) Desiccant material and air dehumidification method using the same
JPH0225107B2 (en)
JP2006027938A (en) Faujasite-type zeolite, dehumidifying member using the same, and method for producing the zeolite
JP5300301B2 (en) Rotary dehumidification rotor
CN1975272B (en) Dehumidifying rotor and its production method
JP3345596B2 (en) Adsorbent for moisture exchange
JP6317199B2 (en) Dehumidifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091221

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100909

R150 Certificate of patent or registration of utility model

Ref document number: 4589044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250