JP2011255331A - High performance water vapor adsorbent having alminosilicate compound material as base material - Google Patents

High performance water vapor adsorbent having alminosilicate compound material as base material Download PDF

Info

Publication number
JP2011255331A
JP2011255331A JP2010132991A JP2010132991A JP2011255331A JP 2011255331 A JP2011255331 A JP 2011255331A JP 2010132991 A JP2010132991 A JP 2010132991A JP 2010132991 A JP2010132991 A JP 2010132991A JP 2011255331 A JP2011255331 A JP 2011255331A
Authority
JP
Japan
Prior art keywords
water vapor
adsorbent
adsorption
aluminum silicate
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010132991A
Other languages
Japanese (ja)
Inventor
Masaya Suzuki
正哉 鈴木
Eri Sakayori
英里 酒寄
Chieko Suzuki
智恵子 鈴木
Masaki Maeda
雅喜 前田
Masatoshi Kito
昌利 鬼頭
Naomasa Koike
直正 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsubishi Paper Mills Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2010132991A priority Critical patent/JP2011255331A/en
Publication of JP2011255331A publication Critical patent/JP2011255331A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adsorbent not only having high adsorbing performance in a medium humidity region and a high humidity region but also having excellent adsorbing performance in a low humidity region of approximately 10% of a relative humidity in consideration of a support for a particular environment which needs low dew point air such as in a clean room as a dehumidification agent for desiccant air conditioning.SOLUTION: The adsorbent is obtained by impregnating a compound material comprising a low crystallinity laminar clay mineral and amorphous alminosilicate with a magnesium chloride solution, the adsorbent having not less than 40 wt.% of a difference between an adsorbed amount at 60% humidity when adsorbing and an adsorbed amount at 10% humidity when desorbing, and having water vapor adsorbing performance exhibiting an approximately 30 wt.% of an adsorbed amount even in a low humidity region of approximately 10% of a relative humidity. The adsorbent can be used as a dehumidification agent for desiccant air conditioning.

Description

本発明は、次世代の産業を支える重要な基盤技術として、実用化が強く期待されているナノテクノロジーの技術分野において、その特異な形状に起因する微細構造により吸着能等に優れた特性を示し、革新的な機能性材料としての応用が期待されている物質に関するものであり、特に、優れた水蒸気吸放湿特性を有する低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体を基材とし、その基材に吸湿性塩を担持させた水蒸気吸着剤に関するものである。   The present invention, as an important fundamental technology supporting the next generation industry, exhibits excellent characteristics such as adsorption capacity due to the fine structure resulting from its unique shape in the technical field of nanotechnology, which is expected to be put to practical use. , Which relates to a substance expected to be applied as an innovative functional material, and in particular, a composite composed of a low crystalline layered clay mineral and amorphous aluminum silicate having excellent moisture absorption and desorption characteristics Is a water vapor adsorbent in which a hygroscopic salt is supported on the base material.

サブナノおよびナノサイズの細孔を有する多孔質無機材料は、その特異な微細構造に基づいて、各種物質を吸着することができる特性を有することから、様々な用途に利用されている。また、多孔質無機材料は優れた水蒸気吸着性能を有することから、ヒートポンプ熱交換材、結露防止剤、自律的調湿材料などの応用が期待されている。
特に、デシカント空調では外気から導入される空気中の湿分を取り除くことが目的であるため、夏場の高湿度の空気からでも効率的に湿分を取り除けることが必要とされているばかりでなく、様々な空気の状態においても空気中の湿分を取り除く必要があるため、どの湿度領域においても水蒸気を吸着できる物質が求められている。
Porous inorganic materials having sub-nano and nano-sized pores have characteristics that can adsorb various substances on the basis of their unique fine structure, and thus are used in various applications. In addition, since porous inorganic materials have excellent water vapor adsorption performance, applications such as heat pump heat exchange materials, anti-condensation agents, and autonomous humidity control materials are expected.
In particular, because the purpose of desiccant air conditioning is to remove moisture in the air introduced from outside air, not only is it necessary to efficiently remove moisture even from high humidity air in summer, Since it is necessary to remove moisture in the air even in various air conditions, a substance capable of adsorbing water vapor in any humidity region is required.

その一方でデシカント空調においては、吸着した水蒸気を脱離させるために加熱した空気を送り込み再生を行うが、この送り込む再生空気の温度が高いと、空気を暖めるのに必要なエネルギーが余計にかかってしまう。これまでは再生空気の温度として80℃以上を必要としていたが、未利用熱源の利用等を考慮すると、60℃程度の低温の空気にて再生が可能な素材が求められている。   On the other hand, in desiccant air conditioning, heated air is sent to desorb the adsorbed water vapor, and regeneration is performed. However, if the temperature of the regeneration air that is fed in is high, the energy required to warm the air is extra. End up. Up to now, the temperature of regeneration air has been required to be 80 ° C. or higher. However, considering the use of unused heat sources and the like, a material that can be regenerated with air at a low temperature of about 60 ° C. is required.

上記背景の中、デシカント空調システムとしての性能向上のため、特に低温再生が可能な高性能水蒸気吸着剤の開発が行われた。一般的に低温再生の性能としては再生温度60℃程度が求められており、温度25℃相対湿度60%の空気を、60℃に加熱した際の相対湿度が約10%となることから、水蒸気吸着等温線において、相対湿度10%と60%の吸着量の差が大きい無機材料が求められていた。さらにどの湿度領域においても水蒸気を吸着することができる物質として、水蒸気吸着等温線において、相対湿度と水蒸気吸着量とが直線的な関係を有する無機材料が求められていた。   In the above background, in order to improve the performance as a desiccant air conditioning system, a high-performance water vapor adsorbent capable of low temperature regeneration was developed. Generally, a regeneration temperature of about 60 ° C. is required as a low temperature regeneration performance, and the relative humidity when heated to 60 ° C. at an air temperature of 25 ° C. and a relative humidity of 60% is about 10%. In the adsorption isotherm, an inorganic material having a large difference in adsorption amount between 10% and 60% relative humidity has been demanded. Further, as a substance capable of adsorbing water vapor in any humidity region, an inorganic material having a linear relationship between relative humidity and the amount of water vapor adsorption in a water vapor adsorption isotherm has been demanded.

そのような中で、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩との複合体からなる物質が開発され、従来の無機材料では達し得なかった、水蒸気吸着等温線において吸着時の相対湿度60%と脱離時の相対湿度10%での吸着量の差が約30wt%の値を有し、かつ水蒸気吸着等温線において、相対湿度と水蒸気吸着量とが直線的な関係を有する無機材料が開発された(特許文献1参照)。   Under such circumstances, a substance composed of a composite of a low crystalline lamellar clay mineral and amorphous aluminum silicate was developed, and relative to the adsorption at the water vapor adsorption isotherm that could not be achieved with conventional inorganic materials. The difference in adsorption amount between 60% humidity and 10% relative humidity at the time of desorption has a value of about 30 wt%, and the relative humidity and water vapor adsorption amount have a linear relationship in the water vapor adsorption isotherm. A material was developed (see Patent Document 1).

近年、デシカント空調システムにおいては、クリーンルーム等の施設において、低露点空気を必要とするため、相対湿度が10%程度の低湿度領域においても水蒸気を吸着できる素材が求められている。特許文献1記載の物質は、従来のデシカント空調用素材としては非常に優れたものであったが、相対湿度10%程度の低湿度領域においては、吸着量が少ないため、クリーンルーム等の施設用に対応することはできない、という欠点を有していた。   In recent years, desiccant air conditioning systems require low dew point air in facilities such as clean rooms, and therefore, a material capable of adsorbing water vapor even in a low humidity region with a relative humidity of about 10% is required. The substance described in Patent Document 1 was very excellent as a conventional desiccant air-conditioning material. However, in a low humidity region with a relative humidity of about 10%, the amount of adsorption is small, so that it is used for facilities such as clean rooms. It had the disadvantage that it could not cope.

一方、デシカント空調用の吸着剤において、塩化リチウムや塩化マグネシウムなどの吸湿性の塩を、シリカゲルやメソポーラスシリカ等の多孔質水分吸着剤に担持させることにより、吸着量を増加させることが検討されているが、シリカゲルやメソポーラスシリカに吸湿性塩を担持させると構造劣化が進むことが知られている。   On the other hand, in adsorbents for desiccant air conditioning, it has been studied to increase the amount of adsorption by supporting hygroscopic salts such as lithium chloride and magnesium chloride on porous water adsorbents such as silica gel and mesoporous silica. However, it is known that structural deterioration proceeds when a hygroscopic salt is supported on silica gel or mesoporous silica.

国際公開第2009/084632号International Publication No. 2009/084632 特願2009−047914号Japanese Patent Application No. 2009-047914

本発明は、以上のような事情に鑑みてなされたものであって、中湿度および高湿度領域のみならず、相対湿度10%程度の低湿度領域においても優れた吸湿性能を有し、吸湿性塩を担持させても構造劣化を生じない基材を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and has an excellent hygroscopic performance not only in a medium humidity and high humidity region but also in a low humidity region of about 10% relative humidity. An object of the present invention is to provide a base material that does not cause structural deterioration even when a salt is supported.

本発明者らは、上記目的を達成すべく検討を重ねた結果、Si/Al比が0.7〜1.0で、かつ29Si固体NMRスペクトルにおいて−78ppm及び−87ppm付近にピークを有する非晶質アルミニウムケイ酸塩が、吸湿性塩類を担持する基材として優れていることを見出し、該非晶質アルミニウムケイ酸塩に吸湿性塩類を担持させ、相対湿度30%、50%、90%のいずれにおいても、吸湿性能を向上させることに成功した(特許文献2参照)。
しかしながら、Si/Al比が0.7〜1.0で、かつ29Si固体NMRスペクトルにおいて−78ppm及び−87ppm付近にピークを有する非晶質アルミニウムケイ酸塩の、クリーンルーム用施設に対応できるような相対湿度10%程度の低湿度領域における吸着量向上や、吸湿性塩類の担持に適しているかどうかの判定となる水蒸気吸着機構についての検討は行われていなかった。
As a result of repeated studies to achieve the above object, the present inventors have found that the Si / Al ratio is 0.7 to 1.0, and the 29 Si solid state NMR spectrum has peaks near −78 ppm and −87 ppm. It has been found that crystalline aluminum silicate is excellent as a substrate for supporting hygroscopic salts, and the amorphous aluminum silicate is made to support hygroscopic salts, and has a relative humidity of 30%, 50% and 90%. In any case, the moisture absorption performance was successfully improved (see Patent Document 2).
However, an amorphous aluminum silicate having a Si / Al ratio of 0.7 to 1.0 and peaks in the vicinity of -78 ppm and -87 ppm in a 29 Si solid state NMR spectrum can be used for a clean room facility. No investigation has been made on a water vapor adsorption mechanism that determines whether or not the adsorption amount is improved in a low humidity region with a relative humidity of about 10% and whether it is suitable for supporting hygroscopic salts.

そこで、本発明者らは、中湿度および高湿度領域のみならず、相対湿度10%程度の低湿度領域においても優れた吸湿性能を有し、吸湿性塩を担持させても構造劣化を生じない基材を提供すべく、その水蒸気吸着機構について検討した結果、吸湿性塩を担持させた際に生じる基材の構造劣化は、基材自体の水蒸気吸着機構において、物理的な吸着だけでなく化学的な吸着が存在するためであることを見出した。   Therefore, the present inventors have excellent hygroscopic performance not only in the medium and high humidity regions but also in a low humidity region of about 10% relative humidity, and no structural deterioration occurs even when a hygroscopic salt is supported. As a result of examining the water vapor adsorption mechanism in order to provide a base material, the structural deterioration of the base material that occurs when the hygroscopic salt is supported is not only due to physical adsorption but also to chemical reaction in the water vapor adsorption mechanism of the base material itself. It was found that this is due to the existence of typical adsorption.

そして、水蒸気吸着機構において物理的吸着を主とするものについて更に検討した結果、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体に塩化マグネシウムを担持させることにより、相対湿度10%程度の低湿度領域から、高湿度領域まですべての領域に亘って、水蒸気吸着性能を向上させることに成功した。
また基材の水蒸気吸着機構においては、実測の水蒸気吸着測定による水蒸気吸着等温線の結果と、窒素吸着測定から求められる細孔径分布をもとにケルビンの毛細管凝縮理論から計算によって求めた水蒸気吸着等温線の結果を比較し、相対湿度40%以上の領域において、両者が一致することから、アルミニウムケイ酸塩複合体における水蒸気吸着機構が物理吸着によるものであることを明らかにし、本発明を完成するに至った。
As a result of further investigation on the main adsorption mechanism in the water vapor adsorption mechanism, magnesium chloride was supported on an aluminum silicate complex composed of a low crystalline layered clay mineral and amorphous aluminum silicate. The water vapor adsorption performance was successfully improved over the entire range from a low humidity region with a relative humidity of about 10% to a high humidity region.
In addition, in the water vapor adsorption mechanism of the substrate, the water vapor adsorption isotherm obtained by calculation from the Kelvin capillary condensation theory based on the results of the water vapor adsorption isotherm by the actual water vapor adsorption measurement and the pore size distribution obtained from the nitrogen adsorption measurement. The results of the lines are compared, and in the region where the relative humidity is 40% or more, both agree with each other. Therefore, it is clarified that the water vapor adsorption mechanism in the aluminum silicate complex is due to physical adsorption, and the present invention is completed It came to.

すなわち、上記課題を解決するための本発明は、以下のとおりである。
(1)X線源としてCuを用いた粉末X線回折図形において、2θ=20、26、35、39°付近に4つのブロードなピークを、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体を基材とし、その基材に吸湿性塩を担持させた水蒸気吸着剤。
(2)相対湿度40〜90%以上の領域にて、実測の水蒸気吸着等温線と、ケルビンの毛細管凝集理論に基づいて窒素吸着測定から求められる計算値の水蒸気吸着等温線が合致し、水蒸気吸着機構が物理吸着のよることを示す上記(1)の水蒸気吸着剤。
(3)低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体に対して、吸湿性塩の割合が0.1〜20重量%である上記(1)又は(2)の水蒸気吸着剤。
(4)上記(1)〜(3)のいずれかの水蒸気吸着剤を主成分とするデシカント空調用吸着剤。
That is, the present invention for solving the above-described problems is as follows.
(1) In a powder X-ray diffraction pattern using Cu as an X-ray source, four broad peaks around 2θ = 20, 26, 35, and 39 ° indicate a low crystalline layered clay mineral and amorphous aluminum silicate. A water vapor adsorbent in which an aluminum silicate complex composed of a salt is used as a base material and a hygroscopic salt is supported on the base material.
(2) In the region of relative humidity of 40 to 90% or higher, the measured water vapor adsorption isotherm matches the water vapor adsorption isotherm calculated from the nitrogen adsorption measurement based on the Kelvin capillary aggregation theory. The water vapor adsorbent according to the above (1), which shows that the mechanism is based on physical adsorption.
(3) The above (1) or (1) wherein the proportion of hygroscopic salt is 0.1 to 20% by weight with respect to the aluminum silicate complex comprising the low crystalline layered clay mineral and the amorphous aluminum silicate. 2) Water vapor adsorbent.
(4) A desiccant air-conditioning adsorbent comprising the water vapor adsorbent according to any one of (1) to (3) as a main component.

本発明により得られる低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩との複合体に、吸湿性塩を担持させた物質は、相対湿度10%程度の低湿度領域から、高湿度領域まですべての領域に亘って、優れた水蒸気吸着挙動を有し、かつ吸湿性塩類を担持させても構造劣化が生じない安定な構造を有しているため、水蒸気吸着剤特にデシカント空調用吸着剤として格別の効果が奏される。   A substance in which a hygroscopic salt is supported on a composite of a low crystalline layered clay mineral obtained by the present invention and an amorphous aluminum silicate is from a low humidity region having a relative humidity of about 10% to a high humidity region. As a water vapor adsorbent, especially a desiccant air-conditioning adsorbent, it has excellent water vapor adsorption behavior over all areas and has a stable structure that does not cause structural deterioration even when hygroscopic salts are supported. A special effect is produced.

実施例における基材の粉末X線回折図形を示す図。The figure which shows the powder X-ray-diffraction figure of the base material in an Example. 比較例における水蒸気吸着等温線を示す図。The figure which shows the water vapor | steam adsorption isotherm in a comparative example. 実施例における、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体における実測値と理論値の水蒸気吸着結果を示す図。The figure which shows the water vapor adsorption result of the measured value and theoretical value in the composite_body | complex which consists of a low crystalline layered clay mineral and an amorphous aluminum silicate in an Example. シリカゲルにおける実測値と理論値の水蒸気吸着結果を示す図。The figure which shows the water vapor adsorption result of the actual value and theoretical value in a silica gel. 実施例における基材に塩化マグネシウムを含浸させた後の試料における、粉末X線回折図形を示す図。The figure which shows the powder X-ray-diffraction figure in the sample after making the base material in an Example impregnate a magnesium chloride.

次に、本発明について更に詳細に説明する。
本発明において基材となる低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩との複合体からなる非晶質物質は、構成元素をケイ素(Si)、アルミニウム(Al)、酸素(O)及び水素(H)とし、多数のSi−O−Al結合で組み立てられた水和ケイ酸アルミニウムである。低結晶性層状粘土鉱物としては、水酸化アルミニウムからなる単層あるいは数層程度のギブサイトあるいは層方向の積層をほとんど示さない低結晶性の層状粘土鉱物である。
Next, the present invention will be described in more detail.
In the present invention, an amorphous substance composed of a composite of a low crystalline lamellar clay mineral and an amorphous aluminum silicate as a base material contains silicon (Si), aluminum (Al), and oxygen (O) as constituent elements. And hydrogen (H) and hydrated aluminum silicate assembled with a number of Si-O-Al bonds. The low crystalline lamellar clay mineral is a single crystalline layer or a few layers of gibbsite made of aluminum hydroxide, or a low crystalline lamellar clay mineral showing almost no lamination in the layer direction.

この低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩との複合体は、無機ケイ素化合物溶液と無機アルミニウム化合物溶液をSi/Al比が0.7〜1.0となるように混合し、酸又はアルカリを添加してpHを5〜9に調整し、その後脱塩処理したものを110℃以上にて加熱することにより人工的に得ることが可能である。   The composite of this low crystalline layered clay mineral and amorphous aluminum silicate is prepared by mixing an inorganic silicon compound solution and an inorganic aluminum compound solution so that the Si / Al ratio is 0.7 to 1.0, It can be artificially obtained by adding acid or alkali to adjust the pH to 5 to 9, and then heating the salt desalted at 110 ° C. or higher.

本発明では、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩との複合体に吸湿性塩の一つである塩化マグネシウムを担持させることにより、従来よりデシカント空調用吸着剤として求められていた、水蒸気吸着等温線において吸着時の相対湿度60%と脱離時の相対湿度10%での吸着量の差が41.8wt%の値を有し、かつクリーンルーム用のデシカント吸着剤として求められている、相対湿度10%における29.4wt%の吸着量を有している物質を作成することが可能となった。
すなわち、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体において、吸湿性塩の一つである塩化マグネシウムを担持させることにより、従来では得られなかった、優れた水蒸気吸湿挙動を有する物質の提供が可能となったものである。
In the present invention, magnesium chloride, which is one of hygroscopic salts, is supported on a composite of a low crystalline layered clay mineral and amorphous aluminum silicate, which has been conventionally demanded as an adsorbent for desiccant air conditioning. Further, in the water vapor adsorption isotherm, the difference in adsorption amount between the relative humidity 60% during adsorption and the relative humidity 10% during desorption has a value of 41.8 wt%, and it is obtained as a desiccant adsorbent for clean rooms. It is possible to prepare a substance having an adsorption amount of 29.4 wt% at a relative humidity of 10%.
That is, in an aluminum silicate complex composed of a low crystalline layered clay mineral and an amorphous aluminum silicate, by supporting magnesium chloride, which is one of the hygroscopic salts, it has not been obtained in the past. It has become possible to provide a substance having a water vapor hygroscopic behavior.

本発明において、加熱前の複合体前駆物質の調製には、原料として、通常、無機ケイ素化合物と無機アルミニウム化合物が用いられる。
ケイ素源として使用される試剤は、ケイ酸水溶液であればよく、具体的には、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、無定形コロイド状二酸化ケイ素(エアロジル等)、等が好適なものとして挙げられる。
また、上記ケイ酸塩分子と結合させるアルミニウム源は、アルミニウムイオンであればよく、具体的には、例えば、塩化アルミニウム、硝酸アルミニウムおよびアルミン酸ナトリウム等のアルミニウム化合物が挙げられる。これらのケイ素源及びアルミニウム源は、上記の化合物に限定されるものではなく、それらと同効のものであれば同様に使用することができる。
In the present invention, an inorganic silicon compound and an inorganic aluminum compound are usually used as raw materials for preparing the composite precursor before heating.
The reagent used as the silicon source may be an aqueous silicic acid solution, and specific examples include sodium orthosilicate, sodium metasilicate, amorphous colloidal silicon dioxide (aerosil, etc.) and the like.
Moreover, the aluminum source couple | bonded with the said silicate molecule | numerator should just be an aluminum ion, Specifically, aluminum compounds, such as aluminum chloride, aluminum nitrate, and sodium aluminate, are mentioned, for example. These silicon sources and aluminum sources are not limited to the above-mentioned compounds, and can be used in the same manner as long as they have the same effect.

これらの原料を適切な水溶液に溶解させ、所定の濃度の溶液を調製する。本目的を満たす優れた吸着挙動を示す複合体を合成するには、ケイ素/アルミニウム比は0.7〜1.0となるように混合することが必要である。溶液中のケイ素化合物の濃度は1〜500mmol/Lで、アルミニウム化合物の溶液の濃度は1〜1000mmol/Lであるが、好適な濃度としては1〜200mmol/Lのケイ素化合物溶液と、1〜500mmol/Lのアルミニウム化合物溶液を混合することが好ましい。これらの比率及び濃度に基づいて、アルミニウム化合物溶液にケイ素化合物溶液を混合し、酸又はアルカリを添加してpHを6〜8に調整して、前駆体を形成した後、遠心分離、濾過、膜分離等により、溶液中の共存イオンを取り除き、その後、回収した前駆体を弱酸性〜弱アルカリ性水溶液に分散させたものが、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩との複合体となる前駆体物質を含む懸濁液である。この前駆体物質を含む懸濁液を、110℃以上で所定時間加熱後、洗浄および乾燥を行うことによって、目的の担体となるアルミニウムケイ酸塩複合体が得られる。   These raw materials are dissolved in an appropriate aqueous solution to prepare a solution having a predetermined concentration. In order to synthesize a composite exhibiting excellent adsorption behavior that satisfies this purpose, it is necessary to mix so that the silicon / aluminum ratio is 0.7 to 1.0. The concentration of the silicon compound in the solution is 1 to 500 mmol / L, and the concentration of the aluminum compound solution is 1 to 1000 mmol / L. The preferred concentration is 1 to 200 mmol / L of the silicon compound solution and 1 to 500 mmol. It is preferable to mix a / L aluminum compound solution. Based on these ratios and concentrations, an aluminum compound solution is mixed with a silicon compound solution, acid or alkali is added to adjust the pH to 6-8, and a precursor is formed, followed by centrifugation, filtration, membrane A complex of low crystalline layered clay mineral and amorphous aluminum silicate is obtained by removing coexisting ions in the solution by separation, etc., and then dispersing the recovered precursor in a weakly acidic to weakly alkaline aqueous solution. Is a suspension containing the precursor material. The suspension containing the precursor substance is heated at 110 ° C. or higher for a predetermined time, and then washed and dried to obtain an aluminum silicate complex as a target carrier.

得られたアルミニウムケイ酸塩複合体を基材とし、これに、吸湿性塩を担持させる方法は、特に限定されないが、好ましくは、アルミニウムケイ酸塩複合体に、吸湿性塩の溶液を含浸させる方法が用いられる。
具体的には、乾燥して得られたアルミニウムケイ酸塩複合体を、塩化マグネシウムなどの吸湿性塩の溶液にひたし攪拌の後、60℃にて2日乾燥させることによって、目的の水蒸気吸着特性において優れた吸着剤を得ることができる。
Although the method for supporting the hygroscopic salt on the obtained aluminum silicate composite is not particularly limited, preferably, the aluminum silicate composite is impregnated with the hygroscopic salt solution. The method is used.
Specifically, the target water vapor adsorption characteristic is obtained by drying the aluminum silicate complex obtained by drying in a solution of a hygroscopic salt such as magnesium chloride, followed by drying at 60 ° C. for 2 days. An excellent adsorbent can be obtained.

本発明における吸湿性の塩としては、塩化リチウム、塩化ナトリウム、塩化マグネシウム、塩化カルシウムなどのハロゲン化金属塩、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸亜鉛などの金属硫酸塩、酢酸カリウムなどの金属酢酸塩、塩酸ジメチルアミンなどのアミン塩、オルトリン酸などのリン酸化合物、塩酸グアニジン、リン酸グアニジン、スルファミン酸グアニジンなどのグアニジン塩、水酸化ありウム、水酸化ナトリウム、水酸化マグネシウムなどの金属水酸化物などを挙げることができるが、中でも、ハロゲン化金属塩、グアニジン塩が好ましく、塩化マグネシウム、塩化カルシウムがより好ましく、特に塩化マグネシウムが好ましい。   Examples of the hygroscopic salt in the present invention include metal halides such as lithium chloride, sodium chloride, magnesium chloride, and calcium chloride, metal sulfates such as sodium sulfate, calcium sulfate, magnesium sulfate, and zinc sulfate, and metals such as potassium acetate. Amine salts such as acetate, dimethylamine hydrochloride, phosphoric acid compounds such as orthophosphoric acid, guanidine salts such as guanidine hydrochloride, guanidine phosphate, guanidine sulfamate, metal water such as hydrated hydroxide, sodium hydroxide, magnesium hydroxide Although an oxide etc. can be mentioned, Among these, a metal halide salt and a guanidine salt are preferable, magnesium chloride and calcium chloride are more preferable, and magnesium chloride is particularly preferable.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
(実施例)
本発明における、優れた吸着剤の基材となる低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩との複合体は以下のように合成された。
Si源として0.38mol/Lのオルトケイ酸ナトリウム水溶液100mLと、Al源として0.45mol/Lの塩化アルミニウム水溶液100mLを用いた。塩化アルミニウム水溶液にオルトケイ酸ナトリウム水溶液を加え、約10分間攪拌を行った。このときのSi/Al比は0.84である。攪拌後、1Nの水酸化ナトリウム水溶液を1mL/分の速さで滴下し、pHが6程度になるまで添加した。水酸化ナトリウム水溶液の滴下量は5.5mLであった。このようにして生成させた前駆体懸濁液を遠心分離にて1回脱塩処理を行った。脱塩処理は遠心分離機を用いて、回転速度3000rpm、時間10分で行った。脱塩処理後前駆体を純水に分散させ全体で1Lとなるようにし、10分攪拌を行い前駆体懸濁液を作成した。
調整した1Lの前駆体懸濁液を、100mL用テフロン(登録商標)製容器に70mL測り取った後、ステンレス製回転反応容器に設置し、180℃で6時間加熱を行った。反応後、遠心分離にて2回洗浄し、60℃で1日乾燥させた。
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
(Example)
In the present invention, a composite of a low crystalline layered clay mineral and an amorphous aluminum silicate, which is an excellent adsorbent substrate, was synthesized as follows.
100 mL of 0.38 mol / L sodium orthosilicate aqueous solution was used as the Si source, and 100 mL of 0.45 mol / L aluminum chloride aqueous solution was used as the Al source. A sodium orthosilicate aqueous solution was added to the aluminum chloride aqueous solution and stirred for about 10 minutes. The Si / Al ratio at this time is 0.84. After stirring, a 1N aqueous sodium hydroxide solution was added dropwise at a rate of 1 mL / min and added until the pH reached about 6. The dripping amount of the aqueous sodium hydroxide solution was 5.5 mL. The precursor suspension thus generated was subjected to desalting once by centrifugation. The desalting treatment was performed using a centrifuge at a rotational speed of 3000 rpm and a time of 10 minutes. After the desalting treatment, the precursor was dispersed in pure water so as to be 1 L in total, and stirred for 10 minutes to prepare a precursor suspension.
70 mL of the adjusted 1 L precursor suspension was measured in a 100 mL Teflon (registered trademark) container, then placed in a stainless steel rotating reaction container, and heated at 180 ° C. for 6 hours. After the reaction, it was washed twice by centrifugation and dried at 60 ° C. for 1 day.

得られた生成物については、粉末X線回折測定を行った。図1に得られた生成物の粉末X線回折図形を示す。図1に見られるように、2θ=20、26、35、39°付近にブロードなピークが見られる。このうち20および35°に見られるピークは層状粘土鉱物のhk0面の反射から得られるものであり、層状粘土鉱物に一般的に見られる00l反射が見られないことから、積層方向の厚さがほとんどない低結晶性の層状粘土鉱物であると推定される。また2θ=26、39°付近のブロードなピークは非晶質なアルミニウムケイ酸塩に特徴的なピークである。以上の結果から実施例における優れた吸着剤の基材となる物質は低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなることが確認された。   The obtained product was subjected to powder X-ray diffraction measurement. FIG. 1 shows a powder X-ray diffraction pattern of the product obtained. As can be seen in FIG. 1, broad peaks are seen in the vicinity of 2θ = 20, 26, 35, 39 °. Among them, the peaks observed at 20 and 35 ° are obtained from the reflection of the hk0 plane of the layered clay mineral, and the 00l reflection generally observed in the layered clay mineral is not observed. It is presumed to be a low crystallinity layered clay mineral. A broad peak around 2θ = 26, 39 ° is a characteristic peak of amorphous aluminum silicate. From the above results, it was confirmed that the substance serving as the excellent adsorbent base material in the examples was composed of a low crystalline layered clay mineral and amorphous aluminum silicate.

上記によって得られた基材1gを、8重量%の塩化マグネシウム水溶液10mlに加え含浸させ、よく攪拌させた後に、60℃で1日乾燥させた。乾燥後の試料を乳鉢ですりつぶすことにより、目的の物質を得た。   1 g of the base material obtained as described above was impregnated with 10 ml of an 8% by weight magnesium chloride aqueous solution, thoroughly stirred, and then dried at 60 ° C. for 1 day. The target substance was obtained by grinding the dried sample with a mortar.

(水蒸気吸着評価)
実施例にて得られた低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体を塩化マグネシウム溶液に含浸させたものと、塩化マグネシウムを含浸させていないものの2試料について、日本ベル社製Belsorp18により測定を行った水蒸気吸着等温線から水蒸気吸着評価を行った。図2に、その結果を示す。
水蒸気吸着等温線において吸着時の相対湿度60%と脱離時の相対湿度10%での吸着量の差を求めることにより評価を行った。実施例で得られた低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体を塩化マグネシウム水溶液に含浸させたものでは、吸着時の相対湿度60%の水蒸気吸着量が74.8wt%、脱離時の相対湿度10%における水蒸気吸着量が33.0wt%であることから、相対湿度60%と脱離時の相対湿度10%での吸着量の差は41.8wt%となる。
これに対し、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体を塩化マグネシウム水溶液に含浸させていない未処理の基材そのものについては、吸着時の相対湿度60%の水蒸気吸着量が45.9wt%、脱離時の相対湿度10%における水蒸気吸着量が15.5wt%であることから、相対湿度60%と脱離時の相対湿度10%での吸着量の差は30.4wt%となる。
上記吸着評価より、実施例で得られた物質の水蒸気吸着性能は、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体からなる基材のみでは得られることはできず、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩を塩化マグネシウム水溶液に含浸させることによって初めて得られる性質であることが明らかとなった。
(Water vapor adsorption evaluation)
Two samples, one obtained by impregnating a magnesium chloride solution with the composite composed of the low crystalline layered clay mineral and amorphous aluminum silicate obtained in the examples and the other not impregnated with magnesium chloride, The water vapor adsorption was evaluated from the water vapor adsorption isotherm measured by Belsorp18 manufactured by the company. FIG. 2 shows the result.
Evaluation was carried out by determining the difference in adsorption amount between 60% relative humidity during adsorption and 10% relative humidity during desorption on the water vapor adsorption isotherm. In the case where the composite composed of the low crystalline lamellar clay mineral and amorphous aluminum silicate obtained in the Examples was impregnated with an aqueous magnesium chloride solution, the water vapor adsorption amount at a relative humidity of 60% during adsorption was 74.8 wt. %, The adsorption amount of water vapor at a relative humidity of 10% at the time of desorption is 33.0 wt%, so the difference between the adsorption amount at a relative humidity of 60% and a relative humidity of 10% at the time of desorption is 41.8 wt%. .
On the other hand, with respect to the untreated base material itself which is not impregnated with a magnesium chloride aqueous solution, a composite composed of a low crystalline layered clay mineral and an amorphous aluminum silicate, water vapor adsorption at a relative humidity of 60% during adsorption. Since the amount of water vapor adsorbed at 45.9 wt% and the relative humidity at desorption of 10% is 15.5 wt%, the difference in adsorption amount between the relative humidity of 60% and the desorption relative humidity of 10% is 30. 4 wt%.
From the above-mentioned adsorption evaluation, the water vapor adsorption performance of the substances obtained in the examples cannot be obtained only with a base material composed of a composite composed of a low crystalline layered clay mineral and amorphous aluminum silicate, It became clear that this was the first property obtained by impregnating a crystalline layered clay mineral and amorphous aluminum silicate in an aqueous magnesium chloride solution.

また、本実施例の結果、クリーンルーム等の相対湿度10%程度の低湿度領域における吸着量においては、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体を塩化マグネシウム水溶液に含浸させたものでは29.4wt%であるのに対し、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体からなる基材のみの場合12.5wt%とほぼ2倍の吸着量を向上させる結果であることが明らかとなった。   In addition, as a result of the present example, a magnesium chloride aqueous solution was impregnated with a complex composed of a low crystalline layered clay mineral and amorphous aluminum silicate in the amount of adsorption in a low humidity region of about 10% relative humidity such as in a clean room. In the case of only the base material composed of the composite composed of the low crystalline layered clay mineral and the amorphous aluminum silicate, the adsorbed amount is about 2 times as high as 12.5 wt%. It became clear that it was a result of improving.

(基材および含浸後の構造安定性評価)
水蒸気吸着量を増加させるために、基材に吸湿性塩を含浸させることは、従来から行われているが、シリカゲルやメソポーラスシリカに吸湿性塩を担持させると構造劣化が進むことが知られており、その理由は、基材自体の水蒸気吸着機構において、物理的な吸着だけでなく化学的な吸着が存在するためであると推測される。
基材の水蒸気吸着機構が物理吸着によるものか化学吸着によるものかの判別においては、実測の水蒸気吸着測定による水蒸気吸着等温線の結果と、窒素吸着測定から求められる細孔径分布をもとにケルビンの毛細管凝縮理論から計算によって求めた水蒸気吸着等温線の結果を比較し、相対湿度40%以上の領域において両者実測値と理論値との比較検討を行うことにより評価を行った。相対湿度40%以上としているのは、窒素吸着データから得られる細孔径分布曲線の解析として、BJH法を用いているためであり、細孔孔が小さい情報が解析できないことによる。
低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体における実測値と理論値の水蒸気吸着結果を図3に示す。図3に示される通り、相対湿度40%以上の領域において、実測値と理論値がほぼ一致しており、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体における水蒸気吸着メカニズムは物理吸着からなることが明らかとなった。
比較例として市販のシリカゲルにおける実測値と理論値の水蒸気吸着結果を図4に示す。図4に示される通り、相対湿度40%以上の領域において、実測値と理論値が一致しておらず、シリカゲルは物理吸着理論に基づく吸着機構でないことが明らかとなった。このように物理吸着を主とすることでないことから、シリカゲルの水蒸気吸着は主に化学吸着に起因すると推測される。
以上のことから、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体における水蒸気吸着機構は物理吸着を主とするものであることから、この基材に塩化マグネシウムなどの吸湿性塩を含浸させても、構造劣化が生じないことが明らかとなった。
(Substrate and structural stability evaluation after impregnation)
In order to increase the water vapor adsorption amount, impregnation of the substrate with hygroscopic salt has been conventionally performed, but it is known that structural deterioration proceeds when silica gel or mesoporous silica is supported with hygroscopic salt. The reason for this is presumed to be not only physical adsorption but also chemical adsorption in the water vapor adsorption mechanism of the substrate itself.
In determining whether the water vapor adsorption mechanism of the substrate is based on physical adsorption or chemical adsorption, Kelvin is based on the results of the water vapor adsorption isotherm obtained by the actual water vapor adsorption measurement and the pore size distribution obtained from the nitrogen adsorption measurement. The results of the water vapor adsorption isotherm obtained by calculation from the capillary condensation theory of No. 1 were compared, and evaluation was performed by comparing the measured values with the theoretical values in a region where the relative humidity was 40% or more. The reason why the relative humidity is set to 40% or more is that the BJH method is used for the analysis of the pore diameter distribution curve obtained from the nitrogen adsorption data, and information on small pores cannot be analyzed.
FIG. 3 shows the water vapor adsorption results of measured values and theoretical values in a composite composed of a low crystalline layered clay mineral and amorphous aluminum silicate. As shown in FIG. 3, the measured value and the theoretical value almost coincide with each other in the region where the relative humidity is 40% or more, and the water vapor adsorption mechanism in the composite composed of the low crystalline layered clay mineral and the amorphous aluminum silicate. It was revealed that consists of physical adsorption.
As a comparative example, actual water vapor adsorption results of commercially available silica gel are shown in FIG. As shown in FIG. 4, in the region where the relative humidity is 40% or more, the actual measurement value and the theoretical value do not coincide with each other, and it became clear that silica gel is not an adsorption mechanism based on the physical adsorption theory. Thus, it is assumed that water vapor adsorption of silica gel is mainly caused by chemical adsorption because physical adsorption is not mainly used.
From the above, the water vapor adsorption mechanism in the composite composed of low crystalline lamellar clay mineral and amorphous aluminum silicate is mainly physical adsorption, so this substrate has hygroscopicity such as magnesium chloride. It became clear that even when impregnated with salt, no structural deterioration occurred.

低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体を塩化マグネシウム水溶液に含浸させて得られた粉末における、粉末X線回折図形を図5に示す。塩化マグネシウムに由来するX線回折ピークが見られるが、基本構造に由来するピークは、図1と同じものであり、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体に塩化マグネシウムなどの吸湿性塩を含浸させても、構造劣化が生じないことが明らかとなった。   FIG. 5 shows a powder X-ray diffraction pattern of a powder obtained by impregnating a magnesium chloride aqueous solution with a composite composed of a low crystalline layered clay mineral and amorphous aluminum silicate. An X-ray diffraction peak derived from magnesium chloride is observed, but the peak derived from the basic structure is the same as that shown in FIG. 1, and a complex composed of a low crystalline layered clay mineral and amorphous aluminum silicate is chlorinated. It became clear that even when impregnated with a hygroscopic salt such as magnesium, the structure does not deteriorate.

本発明は、中湿度および高湿度領域ばかりでなく、相対湿度10%程度の低湿度領域においても高性能な吸着性を有する、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなる複合体を塩化マグネシウム水溶液に含浸させることによって得られる吸着剤であり、デシカント空調における一般的な除湿剤のみならず、低露点空気を必要とするクリーンルームなどの特殊空調用吸着剤を提供するものとして有用である。   The present invention is a composite comprising a low crystalline layered clay mineral and an amorphous aluminum silicate having high performance adsorptivity not only in a medium and high humidity region but also in a low humidity region of about 10% relative humidity. Adsorbent obtained by impregnating the body with magnesium chloride aqueous solution, useful not only for general dehumidifiers in desiccant air conditioning, but also for adsorbents for special air conditioning such as clean rooms that require low dew point air It is.

Claims (4)

X線源としてCuを用いた粉末X線回折図形において、2θ=20、26、35、39°付近に4つのブロードなピークを有する、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体を基材とし、その基材に吸湿性塩を担持させた水蒸気吸着剤。   In a powder X-ray diffraction pattern using Cu as an X-ray source, from a low crystalline layered clay mineral and amorphous aluminum silicate having four broad peaks around 2θ = 20, 26, 35, 39 ° A water vapor adsorbent comprising an aluminum silicate complex as a base material and a hygroscopic salt supported on the base material. 相対湿度40〜90%以上の領域にて、実測の水蒸気吸着等温線と、ケルビンの毛細管凝集理論に基づいて窒素吸着測定から求められる計算値の水蒸気吸着等温線が合致し、水蒸気吸着機構が物理吸着によることを示す請求項1に記載の水蒸気吸着剤。   In the region of relative humidity of 40 to 90% or more, the measured water vapor adsorption isotherm matches the water vapor adsorption isotherm calculated from the nitrogen adsorption measurement based on the Kelvin capillary aggregation theory, and the water vapor adsorption mechanism is physical. The water vapor adsorbent according to claim 1, which indicates that it is due to adsorption. 低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体に対して、吸湿性塩の割合が0.1〜10重量%である請求項1又は2に記載の水蒸気吸着剤。   The water vapor according to claim 1 or 2, wherein the proportion of the hygroscopic salt is 0.1 to 10% by weight with respect to the aluminum silicate complex composed of the low crystalline layered clay mineral and the amorphous aluminum silicate. Adsorbent. 請求項1〜3のいずれか1項に記載の水蒸気吸着剤を主成分とするデシカント空調用吸着剤。   The adsorbent for desiccant air conditioning which has the water vapor adsorbent of any one of Claims 1-3 as a main component.
JP2010132991A 2010-06-10 2010-06-10 High performance water vapor adsorbent having alminosilicate compound material as base material Pending JP2011255331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010132991A JP2011255331A (en) 2010-06-10 2010-06-10 High performance water vapor adsorbent having alminosilicate compound material as base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010132991A JP2011255331A (en) 2010-06-10 2010-06-10 High performance water vapor adsorbent having alminosilicate compound material as base material

Publications (1)

Publication Number Publication Date
JP2011255331A true JP2011255331A (en) 2011-12-22

Family

ID=45472118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010132991A Pending JP2011255331A (en) 2010-06-10 2010-06-10 High performance water vapor adsorbent having alminosilicate compound material as base material

Country Status (1)

Country Link
JP (1) JP2011255331A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706970A (en) * 2012-06-08 2012-10-03 云南烟草科学研究院 Method for quickly detecting performance of adsorption material
JP2014129984A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Dehumidification system
WO2014162644A1 (en) * 2013-04-05 2014-10-09 株式会社デンソー Humidification device
JP2020074758A (en) * 2018-10-24 2020-05-21 国立研究開発法人産業技術総合研究所 Dehumidification system for gardening facilities

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084632A1 (en) * 2007-12-27 2009-07-09 National Institute Of Advanced Industrial Science And Technology Aluminum silicate complex, and high-performance adsorbent comprising the same
JP2009183905A (en) * 2008-02-08 2009-08-20 Mitsubishi Paper Mills Ltd Filter medium for dehumidification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084632A1 (en) * 2007-12-27 2009-07-09 National Institute Of Advanced Industrial Science And Technology Aluminum silicate complex, and high-performance adsorbent comprising the same
JP2009183905A (en) * 2008-02-08 2009-08-20 Mitsubishi Paper Mills Ltd Filter medium for dehumidification

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706970A (en) * 2012-06-08 2012-10-03 云南烟草科学研究院 Method for quickly detecting performance of adsorption material
JP2014129984A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Dehumidification system
WO2014162644A1 (en) * 2013-04-05 2014-10-09 株式会社デンソー Humidification device
JP2014202426A (en) * 2013-04-05 2014-10-27 株式会社デンソー Humidifier
CN105247289A (en) * 2013-04-05 2016-01-13 株式会社电装 Humidification device
US9752788B2 (en) 2013-04-05 2017-09-05 Denso Corporation Humidification device
JP2020074758A (en) * 2018-10-24 2020-05-21 国立研究開発法人産業技術総合研究所 Dehumidification system for gardening facilities

Similar Documents

Publication Publication Date Title
JP5212992B2 (en) Aluminum silicate complex and high performance adsorbent comprising the complex
JP4576616B2 (en) Amorphous aluminum silicate with excellent moisture absorption and desorption characteristics in medium humidity range
JP2006240956A (en) Amorphous aluminum silicate, adsorbent having the same, dehumidifying rotor and air conditioner
JPH08299745A (en) Adsorbing body for moisture exchange
JP6761999B2 (en) A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule.
JPH06277440A (en) Material for drying agent for use in device for cooling and dehumidifying combustion gas
EP2488294B1 (en) Honey comb matrix comprising macro porous desiccant, process and use thereof
JP2011255331A (en) High performance water vapor adsorbent having alminosilicate compound material as base material
Rajamani et al. Bundled-firewood like AlOOH-CaCl2 nanocomposite desiccant
JP4936394B2 (en) Amorphous aluminum silicate having excellent adsorption characteristics in high humidity region and method for producing the same
JP6426213B2 (en) Amorphous aluminum silicate and method for producing the same
JP5392121B2 (en) Method for producing hygroscopic agent
JP5140278B2 (en) Desiccant material and air dehumidification method using the same
JP2019127410A (en) Sulfuric acid-modified y-type zeolite and production method of the same
JP5495054B2 (en) Method for producing aluminum silicate composite
JP2004059330A (en) Tubular structure comprising amorphous aluminum silicate, method for manufacturing the same, and adsorbent using the tublar structure
JP6894094B2 (en) Water vapor adsorbent and its manufacturing method
JP4631022B2 (en) Novel aluminum silicate and its synthesis method
JP6656615B2 (en) Aluminum silicate composite and method for producing the same
JP3869136B2 (en) Manufacturing method of humidity control material
JP3398761B2 (en) Humidity control material showing excellent water absorption behavior under high humidity conditions
JP5354561B2 (en) Amorphous substance composed of composite of protoimogolite and phosphoric acid, and desiccant air-conditioning adsorbent and anti-condensation agent using the same
JP6317199B2 (en) Dehumidifier
JP2014148433A (en) Amorphous iron silicate and synthesis method thereof
JP6373173B2 (en) Modified Y-type zeolite dehumidifier

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140319