JPH02160046A - Production of gas adsorbing element - Google Patents

Production of gas adsorbing element

Info

Publication number
JPH02160046A
JPH02160046A JP63317277A JP31727788A JPH02160046A JP H02160046 A JPH02160046 A JP H02160046A JP 63317277 A JP63317277 A JP 63317277A JP 31727788 A JP31727788 A JP 31727788A JP H02160046 A JPH02160046 A JP H02160046A
Authority
JP
Japan
Prior art keywords
matrix
water glass
gas adsorption
adsorption element
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63317277A
Other languages
Japanese (ja)
Other versions
JP2681381B2 (en
Inventor
Toshimi Kuma
隈 利実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP63317277A priority Critical patent/JP2681381B2/en
Priority to DE3937863A priority patent/DE3937863C2/en
Priority to SE8904037A priority patent/SE501507C2/en
Publication of JPH02160046A publication Critical patent/JPH02160046A/en
Application granted granted Critical
Publication of JP2681381B2 publication Critical patent/JP2681381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28028Particles immobilised within fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Abstract

PURPOSE:To improve the performance of the gas adsorbing element by integrally and securing fixing and binding active carbon and/or active alumina and metal silicate aerosol having gas adsorbing activity to a matrix. CONSTITUTION:Paper essentially consisting of inorg. fibers sheeted to a low density is laminated to form the matrix having the shape of the gas adsorbing element which has many small through-holes. A dispersion prepd. by dispersing the powdery or short fibrous active carbon and/or active alumina into an aq. water glass soln. is impregnated in this matrix. The matrix is immersed, after drying, into an aq. soln. of a metal salt, such as A1 salt or Mg salt, which is soluble in water and can generate an insoluble gel-like silicate by reacting with the water glass to form the hydrogel of the metal siliate by the reaction of the water and the above-mentioned metal salt. The gel is then rinsed and dried to integrally and securely fix and bind the active carbon and/or active alumina and the metal silicate aerosol having the gas adsorbing activity to the matrix. As a result, the performance of the gas adsorbing element is additionally improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は多数の小透孔を有するブロックを活性ガスを可
逆的に吸着する固体板?T剤によって成形し、該小透孔
内に活性ガスを含有する処理気体と脱着用気体とを交互
に通し連続的に活性ガスを吸着除去された気体を得る除
湿用その他ガス吸着用の素子の製造法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a solid plate that reversibly adsorbs active gas using a block having a large number of small holes. An element for dehumidification and other gas adsorption which is molded with a T agent and passes a processing gas containing an active gas and a desorption gas alternately into the small through holes to obtain a gas from which the active gas is continuously adsorbed and removed. It concerns the manufacturing method.

従来の技術 本件特許出願人は昭和59年特許願第206849号に
おいて、無機繊維を主成分として低密度に抄造した紙を
コルゲート加工しこれを平面紙と交互に積層して多数の
小透孔を有するマトリックスを成形し、該成形工程の前
または後において該紙に水ガラスを含浸して和氷水ガラ
ス状または半固形状になるまで乾燥濃縮し、成形後酸に
浸漬して水ガラスと酸との反応によりシリカヒドロゲル
をマトリックス内に生成せしめ水洗乾燥してシリカエロ
ゲルをマトリックスに一体的に強固に定着結合せしめる
湿気交換用素子の58!造法を開示した。
Conventional Technology In Patent Application No. 206849 filed in 1981, the applicant of this patent applied corrugation processing to paper made with inorganic fibers as a main component to a low density, and laminated this paper alternately with flat paper to form a large number of small holes. Before or after the forming process, the paper is impregnated with water glass, dried and concentrated until it becomes a Japanese ice water glass-like or semi-solid state, and after forming, it is immersed in an acid to combine the water glass and the acid. 58! of a moisture exchange element in which silica hydrogel is produced in a matrix by the reaction of , and the silica hydrogel is integrally and firmly fixed and bonded to the matrix by washing with water and drying. The manufacturing method was disclosed.

また本件特許出願人は昭和60年特許願第86969号
において無機繊維を主成分とし低密度に抄造した紙を積
層して多数の小透孔を有するマトリックスを成形し、該
成形工程の前または後において該紙に水ガラスを含浸し
、成形後アルミニウム塩またはマグネシウム塩またはカ
ルシウム塩の水溶液に浸漬して珪酸塩ヒドロゲルを生成
せしめ、水洗乾燥して珪酸塩エロゲルをマトリックスに
一体的に強固に定着結合せしめる湿気交換用または全熱
交換用素子の製造法を開示した。
In addition, in Patent Application No. 86969 filed in 1985, the applicant of this patent has formed a matrix having a large number of small pores by laminating paper made with inorganic fibers as a main component and having a low density, and the process is carried out either before or after the forming process. The paper is impregnated with water glass, and after shaping, it is immersed in an aqueous solution of aluminum salt, magnesium salt, or calcium salt to form a silicate hydrogel, which is then washed with water and dried to firmly fix and bond the silicate hydrogel to the matrix. A method for manufacturing a moisture exchange or total heat exchange element is disclosed.

更に本件特許出願人は昭和62年特許願第145873
号において低密度に抄造した紙を積層して多数の小透孔
を有するマトリックスを成形し、ゼオライト粉末を水ガ
ラス水溶液に分散した分散体を該マトリックスに含浸し
、乾燥後アルミニウム塩、マグネシウム塩、カルシウム
塩その他金属塩の水溶液に浸漬して金属珪酸塩のヒドロ
ゲルを生成せしめ、水洗乾燥してゼオライトと金属珪酸
塩エロゲルとをマトリックスに一体的に強固に定着結合
せしめる超低濃度ガス吸着素子の製造法を開示した。
Furthermore, the applicant for this patent is Patent Application No. 145873 filed in 1988.
In No. 1, a matrix having many small pores is formed by laminating low-density papers, and the matrix is impregnated with a dispersion of zeolite powder dispersed in a water glass solution. After drying, aluminum salt, magnesium salt, Production of an ultra-low concentration gas adsorption element that is immersed in an aqueous solution of calcium salts or other metal salts to produce a metal silicate hydrogel, washed with water and dried to integrally and firmly bond the zeolite and metal silicate hydrogel to the matrix. disclosed the law.

発明が解決しようとする問題点 上述の先願において吸湿剤その信服着剤として作用する
のはシリカゲル、金属珪酸塩ゲルあるいはゼオライトで
あって何れも吸着作用により不活性気体例えば空気中に
含有される湿気を除去するものである。
Problems to be Solved by the Invention In the above-mentioned prior application, silica gel, metal silicate gel, or zeolite acts as a moisture absorbent, and any of them is contained in an inert gas, such as air, by adsorption. It removes moisture.

一方不活性気体中の活性゛ガス例えば湿気を吸着除去し
得る吸着剤としては上記のシリカゲル、金属珪酸塩ゲル
、ゼオライト以外に活性炭、アルミナゲル、活性白土、
活性マグネシア等の無機質吸着剤および種々の有機質吸
着剤がある。
On the other hand, in addition to the above-mentioned silica gel, metal silicate gel, and zeolite, examples of adsorbents capable of adsorbing and removing active gas such as moisture in an inert gas include activated carbon, alumina gel, activated clay,
There are inorganic adsorbents such as activated magnesia and various organic adsorbents.

本発明はこのような吸着剤のうち熱に対する抵抗にすぐ
れた無機質吸着剤を上記先願のガス吸着素子の成分に加
えることにより該ガス吸着素子の性能を一層向上させよ
うとするものである。
The present invention aims to further improve the performance of the gas adsorption element of the above-mentioned prior application by adding an inorganic adsorbent with excellent heat resistance among such adsorbents to the components of the gas adsorption element of the prior application.

問題点を解決するための手段 本発明者は上記先願の水ガラスル酸、水ガラスル金属塩
水溶液の反応を利用した除湿用その他ガス吸着用の素子
の製造法において、水ガラスに上記の活性炭、活性アル
ミナ、活性白土、活性マグネシア等種々の無機質吸着剤
を混入して同様に製造し性能を試験した結果、水ガラス
に粉末状または短繊維状の活性炭を混入することにより
特に高湿度の処理気体に対し顕著な除湿性能を発揮する
除湿用素子その他ガス吸着素子が得られ、また水ガラス
に活性アルミナを混入すること、によりゼオライトと同
様超低露点の気体を製造し得る除湿用その他ガス吸着用
素子が得られることを発見し、本発明を完成した。
Means for Solving the Problems The present inventor has developed a method for producing an element for dehumidification and other gas adsorption using the reaction of water glass acid and water glass metal salt aqueous solution of the above-mentioned earlier application, in which the above activated carbon, the above activated carbon, and water glass are added to water glass. As a result of similar production and performance testing by mixing various inorganic adsorbents such as activated alumina, activated clay, and activated magnesia, we found that mixing powdered or short fiber activated carbon with water glass made it possible to process gases with particularly high humidity. A dehumidifying element and other gas adsorption element that exhibits outstanding dehumidifying performance against water glass can be obtained, and by mixing activated alumina with water glass, a gas with an ultra-low dew point can be produced like zeolite. They discovered that an element could be obtained and completed the present invention.

ここでマトリックスに使用する紙としては処理すべき気
体およびその中に含有され吸着除去すべき活性ガスに対
し抵抗性のあるものでハニカム状に積層成形し得るもの
であればすべて使用することができるが、再生工程にお
いて加熱する場合たとえば本願ガス吸着素子を除湿に使
用し加熱した再生空気により脱着再生する場合を考慮し
て加熱により発火するおそれのない無機繊維紙たとえば
セラミックス繊維、ガラス繊維、カーボン繊維、岩石繊
維、鉱滓繊維等またはこれ等の混合物を主成分として抄
造した紙を使用する。
As the paper used for the matrix, any paper can be used as long as it is resistant to the gas to be treated and the active gas contained therein and to be adsorbed and removed, and can be laminated into a honeycomb shape. However, in the case of heating in the regeneration process, for example, when the gas adsorption element of the present application is used for dehumidification and the heated regeneration air is used for desorption and regeneration, inorganic fiber paper such as ceramic fiber, glass fiber, carbon fiber, etc., which is not likely to catch fire due to heating, is used. , rock fibers, mineral slag fibers, etc., or a mixture of these as a main component.

水ガラスは1号、2号、3号何れの水ガラス(珪酸ナト
リウム)をも使用することができ、また珪酸カリウムを
使用してもよい。 また酸としては理論的には珪酸より
強い酸であればすべて使用することができるが、経費、
作業環境その他より見て硫酸が最も好適である。水溶性
金属塩としては理論的には2価または3価の金属の塩で
あれば使用し得るが工業的に使用し得るのはアルミニウ
ム、マグネシウム、カルシウムの塩で、このうち珪酸塩
が吸着活性のすぐれたゲル状で得られるのはさきに特願
昭60−86969で明らかにしたようにIIA酸アル
ミニウムと硫酸マグネシウムである。
As the water glass, any of No. 1, No. 2, and No. 3 water glass (sodium silicate) can be used, and potassium silicate may also be used. In addition, theoretically any acid stronger than silicic acid can be used as the acid, but due to the cost and
Sulfuric acid is most suitable from the viewpoint of working environment and other factors. Theoretically, any divalent or trivalent metal salt can be used as a water-soluble metal salt, but salts of aluminum, magnesium, and calcium can be used industrially, and among these, silicates have adsorption activity. As previously disclosed in Japanese Patent Application No. 60-86969, aluminum IIA acid and magnesium sulfate can be obtained in the form of an excellent gel.

水ガラス水溶液を含浸した後マトリックスを酸または金
属塩水溶液に浸漬する工程に先立ってマトリックスを加
熱し水ガラス水溶液を含水率5〜45%の和氷水ガラス
状または半固形状になるまで濃縮すれば酸または金属塩
水溶液に浸漬し化学反応させる場合に水ガラスの溶出に
より損失するのを防ぐことができる。
After impregnating the matrix with the water glass solution, and prior to the process of immersing the matrix in the acid or metal salt aqueous solution, the matrix is heated and the water glass solution is concentrated until it becomes a Japanese ice water glass or semi-solid with a water content of 5 to 45%. When immersed in an aqueous acid or metal salt solution for a chemical reaction, loss due to elution of water glass can be prevented.

以下実施例を図面について詳細に説明する。Embodiments will be described in detail below with reference to the drawings.

実施例1 第1図は本発明の第1工程である成形工程に使用する装
置の一例を示し、図中1.2は所望の歯型なイアする一
対の成形ギアで互に噛合い、一方の成形ギア2は圧着ロ
ーラ3と相接し、両者の重速はほぼ同一とする。 4.
5は接着剤塗布装置で人々接着剤容器4a、5a、接着
剤塗布ローラ4b、5bよりなり、接着剤容器4a、5
aには水ガラス水溶液よりなる接着剤6.6を入れ接着
剤塗布ローラ4b、5bの一部を浸漬させ、接着剤塗布
ローラ4bは成形ギア2に近接して設ける。
Embodiment 1 Figure 1 shows an example of an apparatus used in the molding process, which is the first step of the present invention. The forming gear 2 is in contact with the pressure roller 3, and the heavy speeds of both are approximately the same. 4.
Reference numeral 5 denotes an adhesive applicator, which includes adhesive containers 4a, 5a, adhesive applicator rollers 4b, 5b, and adhesive containers 4a, 5.
An adhesive 6.6 made of a water glass aqueous solution is put in a and a part of the adhesive application rollers 4b, 5b is immersed in the adhesive 6.6, and the adhesive application roller 4b is provided close to the forming gear 2.

セラミックス繊If、70〜90%、バルブ5〜20%
、バインダー5〜10%よりなり厚さ0 、 1〜0 
、5 m m 、見掛は比重O15g / Crn’以
ドの非常に多孔質な紙7.8を図に示す如くロール状に
捲いて用意し、一方の紙7は成形ギア1゜2の噛合せ部
に導いて波形紙7aとなし、つづいて成形ギア2と接着
剤塗布ローラ4bとの接触部に導き接着剤6を波形紙7
aの波頂部に塗布後、他方の紙8とともに成形ギア2と
圧着ローラ3との間に通して両者を接着し、得られた片
波成形体9の波形紙7aの波頂部に接着塗布装置5の接
着剤塗布ローラ5bにより接着剤6を塗布後芯10に捲
取って゛第2図に示す如く両端面間に多数の小透孔が貫
通した円筒状のマトリックス11を得る。
Ceramic fiber If, 70-90%, valve 5-20%
, 5-10% binder, thickness 0, 1-0
A very porous paper 7.8, 5 mm in diameter and with an apparent specific gravity of O15 g/Crn' or more, was prepared by winding it up into a roll as shown in the figure, and one paper 7 was fitted with a forming gear 1°2 The adhesive 6 is applied to the corrugated paper 7a and then introduced to the contact area between the forming gear 2 and the adhesive application roller 4b to form the corrugated paper 7.
After applying the coating to the crest of the corrugated paper 7a, it is passed together with the other paper 8 between the forming gear 2 and the pressure roller 3 to bond them together, and an adhesive application device is applied to the crest of the corrugated paper 7a of the obtained single-wave molded body 9. After applying the adhesive 6 to the core 10 using the adhesive application roller 5b of 5, the core 10 is rolled up to obtain a cylindrical matrix 11 having a large number of small holes penetrating between both end faces as shown in FIG.

1号水ガラス(酸化珪素対酸化ナトリウム2. 1:1
)の水溶液(固形分25〜30%)に用里比で5〜25
%の微粉末状または短繊維状の活性炭を混入し、この水
溶液を上記マトリックスに含浸して50〜100℃で約
1時間乾燥し、水ガラスを含水量5〜20%程度の和水
水ガラスまたは半固形状の水ガラスとする。 マトリッ
クスに対する水ガラスおよび活性炭の含浸室afflは
1里で約1〜2.5倍量が望ましい8次いで硫酸アルミ
ニウムの21%水溶液に浸漬撹拌して水ガラスと硫酸ア
ルミニウムとの化学反応により珪酸アルミニウムのヒド
ロゲルを生成せしめ、副生物のナトリウム塩および余剰
の硫酸アルミニウムを水洗除去し、加熱乾燥して上記無
機繊維紙のマトリックスを補強材とし活性炭が均一に分
散した強固な珪酸アルミニウム・エロゲルのハニカム状
体よりなる除湿用素子を得る。
No. 1 water glass (silicon oxide to sodium oxide 2.1:1
) to an aqueous solution (solid content 25-30%) of 5-25
% of activated carbon in the form of fine powder or short fibers, this aqueous solution is impregnated into the above matrix and dried at 50 to 100°C for about 1 hour to transform water glass into hydrated water glass with a water content of about 5 to 20%. Or semi-solid water glass. The impregnating chamber affl of water glass and activated carbon to the matrix is preferably about 1 to 2.5 times the amount per 1 li.8 Next, it is immersed in a 21% aqueous solution of aluminum sulfate and stirred to form aluminum silicate by a chemical reaction between the water glass and aluminum sulfate. A hydrogel is produced, by-product sodium salts and excess aluminum sulfate are removed by washing with water, and then heated and dried to produce a strong aluminum silicate/erogel honeycomb-like body in which activated carbon is uniformly dispersed using the inorganic fiber paper matrix as a reinforcing material. A dehumidifying element is obtained.

41Fアルミニウムの代わりに第・−燐酸アルミニウム
、(Ii11酸アルミニウム、硫酸マグネシウム等の金
属塩を15〜30%程度の水溶液として使用しても全く
同様である。
The same result can be obtained by using a metal salt such as 41F aluminum in place of 15-30% aqueous solution such as aluminum phosphate, (Ii11 aluminum phosphate, or magnesium sulfate).

実施例2 シリカ・アルミナ系のセラミックス繊維に少量のバルブ
およびバインダーを加え見掛は比重0 :3〜0845
程度の低密度、17さ0.15〜0.25mm程度に抄
造した紙をコルゲート成形し、合成樹脂たとえばポリ酢
酸ビニールと無機質バインダーたとえばシリカゾルとを
混合した接着剤を用いて実施例1と同様にマトリックス
11を成形し、空気中で400℃前後に加熱して有機物
即ち紙に含まれる有機質繊維およびバインダー並にに層
に用いた有機質接着剤を除去する。 3号水ガラス(酸
化珪素対酸化ナトリウム3.1:1)を水で稀釈(固形
分30〜45%)し、これに合成ゼオライトとして東洋
曹達株式会社製の「ゼオラムA−4」を10〜20重犠
%と活性アルミナ粉末を5〜20重M%加え均一に混合
した後、前記のマトリックスに含浸し、加熱乾燥する0
次にこれを硫酸マグネシウムの20%水溶液に3〜4時
間浸漬して水ガラスと硫酸マグネシウムとの化学反応に
より珪酸マグネシウムのヒドロゲルを生成結合せしめ、
水洗して副生物の硫酸ナトリウムおよび余剰の硫酸マグ
ネシウムを除去し、乾燥してセラミックス繊維紙のマト
リックスを補強材とし合成ゼオライトと活性アルミナと
が均一に分散した強固な珪酸マグネシウムエロゲルのハ
ニカム状体よりなる除湿…素子が得られる。
Example 2 Adding a small amount of valve and binder to silica/alumina ceramic fibers gives an apparent specific gravity of 0:3 to 0845
A paper made with a low density of about 17 mm and a width of about 0.15 to 0.25 mm is corrugated and molded in the same manner as in Example 1 using an adhesive made of a mixture of a synthetic resin such as polyvinyl acetate and an inorganic binder such as silica sol. The matrix 11 is formed and heated in air to about 400° C. to remove organic substances, that is, organic fibers and binder contained in the paper, as well as the organic adhesive used in the layer. Dilute No. 3 water glass (silicon oxide to sodium oxide 3.1:1) with water (solid content 30-45%), and add 10 to 10% of "Zeolum A-4" manufactured by Toyo Soda Co., Ltd. as a synthetic zeolite. After adding 20% by weight and 5 to 20% by weight of activated alumina powder and mixing uniformly, the matrix is impregnated and dried by heating.
Next, this is immersed in a 20% aqueous solution of magnesium sulfate for 3 to 4 hours to form and bond a hydrogel of magnesium silicate through a chemical reaction between water glass and magnesium sulfate.
After washing with water to remove the by-product sodium sulfate and excess magnesium sulfate, the product is dried to form a honeycomb-like structure of strong magnesium silicate aerogel, in which synthetic zeolite and activated alumina are uniformly dispersed, using a ceramic fiber paper matrix as a reinforcing material. A dehumidification element consisting of the following can be obtained.

マトリックスを成形するのに便用する紙はセラミックス
mtaとガラス繊維とバルブとを混抄した紙、あるいは
カーボン繊維または活性カーボン繊維を主成分とした紙
としても全く同様である。また硫酸マグネシウムの代り
に硫酸アルミニウム、第一燐酸アルミニウム、硝酸アル
ミニウム等の金属塩を15〜30%程度の水溶液として
使用しても全く同様である。
The paper conveniently used for forming the matrix may be paper made by mixing ceramic mta, glass fiber, and bulb, or paper made mainly of carbon fiber or activated carbon fiber. Furthermore, the same effect can be achieved even if a metal salt such as aluminum sulfate, monobasic aluminum phosphate, or aluminum nitrate is used as an aqueous solution of about 15 to 30% in place of magnesium sulfate.

実施例3 セラミックス1il170〜94%、バルブ2〜22%
、バインダー4〜8%よりなり厚さ0. 1〜0.5m
m、見掛は比重0.3〜0.6g/ct+?の低密度に
抄造した紙を用いて実施例2と同様にマトリックス11
を成形し、空気中で400℃前後に加熱して紙および積
層用接tff剤に含まれる有機物を除去する。  1号
水ガラスの水溶液(固形分25〜45%)に重量比で5
〜25%の粉末状活性炭を加え均一に混合した後前記の
マトリックスに含浸し90℃前後で加熱乾燥して水ガラ
スを含水rit 5〜20%の和水水ガラスまたは半固
形状の水ガラスとする。 マトリックスに対する水ガラ
スと活性炭との含浸量は市川で約1.5〜3倍[dであ
る。 次いで硫酸の3規定水溶液に浸漬撹拌して水ガラ
スと硫酸との反応により活性炭と結合したシリカヒドロ
ゲルをセラミックス繊維のマトリックスと一体的に生成
結合せしめ、副生物の硫酸ナトリウムおよび余剰の硫酸
を水洗除去し、加熱乾燥してマトリックスを補強材とし
活性炭が均一に分散したシリカエロゲルを主体とし、該
シリカエロゲルがマトリックスと強固に結合して一体化
した除湿用素子を得る。
Example 3 Ceramics 1il 170-94%, bulb 2-22%
, 4-8% binder, thickness 0. 1~0.5m
m, apparent specific gravity 0.3-0.6g/ct+? Matrix 11 was prepared in the same manner as in Example 2 using paper made to a low density of
is molded and heated in air to around 400°C to remove organic substances contained in the paper and lamination adhesive. 5 by weight in an aqueous solution of No. 1 water glass (solid content 25-45%)
After adding ~25% of powdered activated carbon and mixing uniformly, it is impregnated into the above matrix and heated and dried at around 90°C to make water glass with 5~20% of hydrohydrated water glass or semi-solid water glass. do. The amount of water glass and activated carbon impregnated into the matrix is about 1.5 to 3 times [d] in Ichikawa. Next, by immersion in a 3N aqueous solution of sulfuric acid and stirring, the reaction between water glass and sulfuric acid causes silica hydrogel bonded to activated carbon to be integrally bonded to the matrix of ceramic fibers, and by-product sodium sulfate and excess sulfuric acid are removed by washing with water. Then, by heating and drying, a dehumidifying element is obtained, which is mainly composed of silica aerogel in which the matrix is used as a reinforcing material and activated carbon is uniformly dispersed, and the silica aerogel is firmly bonded to the matrix and integrated.

硫酸のかわりに塩酸、燐酸など他の酸もセラミックス繊
維、活性炭等に作用し望ましくない変質を起こさない限
り同様に使用し得るが、経費、作業環境その他より見て
硫酸が最も好適である。
Other acids such as hydrochloric acid and phosphoric acid can be used instead of sulfuric acid as long as they do not act on ceramic fibers, activated carbon, etc. and cause undesirable deterioration, but sulfuric acid is the most preferred in terms of cost, working environment, etc.

発明の作用 本発明のガス吸着素子はたとえば除湿機に組み立てて気
体の除湿に使用する。 第3図は回転式除湿機の一例を
示すもので、除湿用素子11aをケーシング12内に駆
動回転可能に保持しセパレーター13により処理ゾーン
14と再生ゾーン15とに分離し、ギヤトモ−ター16
、駆動ベルト17により素子11を5〜20RPH程度
の低速度で回転させ、処理空気18を処理ゾーン14に
、高温低湿度の再生空気19を再生ゾーン15に送入し
、処理空気を除湿して乾燥空気20が得られる。 尚図
中21はプーリー 22はテンションプーリー 23は
ゴムシール、24は再生空気加熱器である。
Effect of the Invention The gas adsorption element of the present invention is assembled into, for example, a dehumidifier and used for dehumidifying gas. FIG. 3 shows an example of a rotary dehumidifier, in which a dehumidifying element 11a is rotatably held in a casing 12, separated into a processing zone 14 and a regeneration zone 15 by a separator 13, and a geared motor 16.
, the element 11 is rotated at a low speed of about 5 to 20 RPH by the drive belt 17, and the treated air 18 is fed into the treatment zone 14 and the high temperature and low humidity regeneration air 19 is fed into the regeneration zone 15, and the treatment air is dehumidified. Dry air 20 is obtained. In the figure, 21 is a pulley, 22 is a tension pulley, 23 is a rubber seal, and 24 is a regenerated air heater.

発明の効果 第4図は種々の相対湿度(RH)において3種除湿用素
T−に含まれる吸着剤の囃位重里当りの平衡吸湿1ij
 (Irrlij%)を示したものである。 図中Cは
実施例1により得られた素子、Sは先願の特願昭60−
86969に従い上記実施例1の活性炭を除いて得られ
た珪酸アルミニウムエロゲルを主成分とする素子、Aは
実施例2により得られた素子、yは先願の特願昭62−
145873に従い実施例2の活性アルミナを除いて得
られた珪酸マグネシウムと合成ゼオライトとを主成分と
する素−F、Bは実施例3により得られた素子、Hは先
願の特願昭59−206849に従い実施例3の活性炭
を除いて得られたシリカエロゲルを主成分とする素子の
データを示す、 図により明らかな如く粒子状または短
繊維状の活性炭を混入した場合には特に高湿度の処理気
体に対し顕著な除湿性能を有することが認められ、また
活性アルミナを混入した場合には合成ゼオライトを混入
した場合と同様特に低湿度の処理気体に対し顕著な除湿
性能を有することが認められた。
Effects of the Invention Figure 4 shows the equilibrium moisture absorption 1ij per volume weight of the adsorbent contained in the three types of dehumidifying element T- at various relative humidity (RH).
(Irrlij%). In the figure, C is the element obtained in Example 1, and S is the earlier patent application filed in 1983.
86969, a device mainly composed of aluminum silicate aerogel obtained in Example 1 except for activated carbon, A is a device obtained in Example 2, and y is a device based on the earlier patent application 1986-
145873, except for the activated alumina of Example 2, and whose main components are magnesium silicate and synthetic zeolite. 206849, excluding the activated carbon of Example 3. As is clear from the figure, when particulate or short fibrous activated carbon is mixed, the processing gas is particularly humid. It was also found that when activated alumina was mixed in, it had a remarkable dehumidifying performance especially against low-humidity process gases, similar to when synthetic zeolite was mixed in.

本発明は上記の如く構成したので、水ガラスは無機繊維
紙との親和性が大きく無機繊維紙の表面−をよく濡らす
のみならず無機Mt帷繊紙内部繊維間隙にもよく浸透し
、その後酸または金属塩の水溶液と反応してシリカまた
は金属珪酸塩のヒドロゲルを生成するので、低密度の紙
のマトリックスの内部に至るまで繊維状または粉末状の
活性炭およびまたは活性アルミナ粉末およびまたはゼオ
ライト粉末が均一に分散したシリカまたは金属珪酸塩の
ヒドロゲルが強固に一体化して結合し、これを乾燥して
エロゲルとなすため、乾燥時の収縮は殆どなくエロゲル
が亀裂を生じまたは微細片に割れることなく強度の高い
エロゲルが得られこの工ロゲルと活性炭およびまたは活
性アルミナおよびまたはゼオライトとの吸湿力が相俟っ
て除湿能力を著しく向上せしめi)るものである。
Since the present invention is configured as described above, water glass has a high affinity with inorganic fiber paper, and not only wets the surface of the inorganic fiber paper well, but also penetrates well into the fiber gaps inside the inorganic Mt paper, and then the water glass or react with aqueous solutions of metal salts to produce silica or metal silicate hydrogels, so that fibrous or powdered activated carbon and/or activated alumina powders and/or zeolite powders are uniformly distributed throughout the interior of the low-density paper matrix. The hydrogel of silica or metal silicate dispersed in the water is strongly integrated and bonded, and this is dried to form the Erogel, so there is almost no shrinkage during drying, and the Erogel maintains its strength without cracking or breaking into fine pieces. A highly aerogel is obtained, and the hygroscopicity of this aerogel and activated carbon and/or activated alumina and/or zeolite together significantly improves the dehumidifying ability i).

以上本発明により得られたガス吸着素子を専ら除湿用素
子として使用する場合についてのみ述べたが、勿論湿気
以外の活性ガスたとえば窒素酸化物、暁黄酸化物、−酸
化炭素、アンモニア、その他種々の有機物系悪臭物質の
吸着除去にも利用することができ、特に活性炭を添加使
用した素子は比較的極性の小さい有機物系の悪臭物置ま
たは溶M蒸気の吸着除去に、また活性アルミナを添加使
用した素子は比較的極性の大きい無機質のガスの吸着除
去に顕著な効果を奏し得るものである。
The above has only described the case where the gas adsorption element obtained by the present invention is used exclusively as a dehumidifying element, but of course it can be used for active gases other than moisture, such as nitrogen oxide, Akatsuki oxide, -carbon oxide, ammonia, and various other types. It can also be used to adsorb and remove organic malodorous substances, and in particular, elements with activated carbon added can be used to adsorb and remove organic malodors with relatively low polarity or dissolved M vapor, and elements with activated alumina added. can have a remarkable effect on the adsorption and removal of relatively highly polar inorganic gases.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示し、第1図は本発明の第1工程
を示す一部断面説明図、第2図はマトリックスの斜視図
、第3図は回転式除湿機の例を示す一部欠截斜視説明図
、第4図は本発明により得られた除湿用素子の性能を示
すグラフである。 図中1.2は成形ギア、3は圧着ローラ、4゜5は接着
剤塗布装置、7.8は低密度に抄造した紙、18は処理
空気、19は再生空気、2oは乾燥空気を示す。
The figures show an embodiment of the present invention, Fig. 1 is a partially cross-sectional explanatory diagram showing the first step of the invention, Fig. 2 is a perspective view of a matrix, and Fig. 3 is an example of a rotary dehumidifier. FIG. 4 is a partially cutaway perspective view and is a graph showing the performance of the dehumidifying element obtained by the present invention. In the figure, 1.2 is a forming gear, 3 is a pressure roller, 4°5 is an adhesive coating device, 7.8 is paper made with low density, 18 is processing air, 19 is recycled air, and 2o is dry air. .

Claims (1)

【特許請求の範囲】 1)低密度に抄造した無機繊維を主成分とする紙を積層
して多数の小透孔を有するガス吸着素子の形状を有する
マトリックスとなし、粉末状または短繊維状の活性炭お
よびまたは活性アルミナを水ガラス水溶液に分散した分
散体を該マトリックスに含浸し、乾燥後アルミニウム塩
またはマグネシウム塩その他水溶性で水ガラスと反応し
て不溶性のゲル状珪酸塩を生じ得る金属塩の水溶液に浸
漬して水ガラスと該金属塩との反応により金属珪酸塩の
ヒドロゲルを生成せしめ、水洗乾燥して活性炭およびま
たは活性アルミナとガス吸着活性を有する金属珪酸塩エ
ロゲルとを該マトリックスに一体的に強固に定着結合せ
しめることを特徴とするガス吸着素子の製造法。 2)ガス吸着素子が除湿用素子である特許請求の範囲第
1項記載のガス吸着素子の製造法。 3)分散体が活性炭およびまたは活性アルミナとゼオラ
イトとを水ガラス水溶液に分散した分散体である特許請
求の範囲第1項または第2項記載のガス吸着素子の製造
法。 4)低密度に抄造した無機繊維を主成分とする紙を積層
して多数の小透孔を有するガス吸着素子の形状を有する
マトリックスとなし、粉末状または短繊維状の活性炭お
よびまたは活性アルミナを水ガラス水溶液に分散した分
散体を該マトリックスに含浸し、乾燥後硫酸その他の酸
に浸漬して水ガラスと酸との反応によりシリカヒドロゲ
ルを生成せしめ、水洗乾燥して活性炭およびまたは活性
アルミナとガス吸着活性を有するシリカエロゲルとを該
マトリックスに一体的に強固に定着結合せしめることを
特徴とするガス吸着素子の製造法。 5)ガス吸着素子が除湿用素子である特許請求の範囲第
4項記載のガス吸着素子の製造法。
[Claims] 1) A matrix having the shape of a gas adsorption element having a large number of small pores is formed by laminating papers mainly composed of inorganic fibers made into low-density paper, and A dispersion of activated carbon and/or activated alumina in an aqueous water glass solution is impregnated into the matrix, and after drying, an aluminum salt or a magnesium salt or other water-soluble metal salt that can react with water glass to form an insoluble gelled silicate is impregnated into the matrix. A hydrogel of metal silicate is generated by the reaction between water glass and the metal salt by immersion in an aqueous solution, and then washed with water and dried to integrate activated carbon and/or activated alumina and a metal silicate hydrogel having gas adsorption activity into the matrix. A method for manufacturing a gas adsorption element characterized by firmly fixing and bonding it to a gas adsorption element. 2) The method for manufacturing a gas adsorption element according to claim 1, wherein the gas adsorption element is a dehumidification element. 3) The method for producing a gas adsorption element according to claim 1 or 2, wherein the dispersion is a dispersion of activated carbon and/or activated alumina and zeolite dispersed in an aqueous water glass solution. 4) A matrix having the shape of a gas adsorption element having a large number of small pores is formed by laminating papers mainly composed of inorganic fibers made into low-density paper, and powdered or short fiber activated carbon and/or activated alumina are added to the matrix. The matrix is impregnated with a dispersion dispersed in an aqueous solution of water glass, dried and immersed in sulfuric acid or other acids to form a silica hydrogel through the reaction of water glass and acid. 1. A method for producing a gas adsorption element, which comprises integrally and firmly fixing and bonding a silica aerogel having adsorption activity to the matrix. 5) The method for manufacturing a gas adsorption element according to claim 4, wherein the gas adsorption element is a dehumidification element.
JP63317277A 1988-12-14 1988-12-14 Gas adsorption element manufacturing method Expired - Fee Related JP2681381B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63317277A JP2681381B2 (en) 1988-12-14 1988-12-14 Gas adsorption element manufacturing method
DE3937863A DE3937863C2 (en) 1988-12-14 1989-11-14 Process for producing a gas adsorption element
SE8904037A SE501507C2 (en) 1988-12-14 1989-11-29 Process for producing a gas adsorbing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317277A JP2681381B2 (en) 1988-12-14 1988-12-14 Gas adsorption element manufacturing method

Publications (2)

Publication Number Publication Date
JPH02160046A true JPH02160046A (en) 1990-06-20
JP2681381B2 JP2681381B2 (en) 1997-11-26

Family

ID=18086436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317277A Expired - Fee Related JP2681381B2 (en) 1988-12-14 1988-12-14 Gas adsorption element manufacturing method

Country Status (3)

Country Link
JP (1) JP2681381B2 (en)
DE (1) DE3937863C2 (en)
SE (1) SE501507C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521441A (en) * 1997-04-18 2001-11-06 カボット、コーポレーション Use of airgel as adsorbent
JP2015509832A (en) * 2013-01-19 2015-04-02 デシカント・ローターズ・インターナショナル・プライヴェート・リミテッド Desiccant-supporting honeycomb chemical filter and manufacturing method thereof
JP2018099674A (en) * 2017-10-12 2018-06-28 デシカント・ローターズ・インターナショナル・プライヴェート・リミテッド Desiccant based honeycomb chemical filter and method of manufacture thereof
CN111774018A (en) * 2020-06-19 2020-10-16 浙江建业化工股份有限公司 Plasticizer DOTP energy-saving reaction system of high-efficient edulcoration

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69117471T2 (en) * 1990-12-25 1996-09-12 Seibu Giken Kk Gas adsorption element, its production method and use
DE9102970U1 (en) * 1991-03-13 1991-10-10 Kalthoff Luftfilter Und Filtermedien Gmbh, 4714 Selm, De
JPH0751209B2 (en) * 1991-06-06 1995-06-05 ベステクス株式会社 Filter material manufacturing method
WO1995028220A1 (en) * 1994-04-18 1995-10-26 Attia Yosry A Aerogel materials and system for the capture and separation of gases and vapors with aerogel materials
KR100209108B1 (en) * 1994-11-30 1999-07-15 곤도 가즈미 Air cleaning filter
SE515612E (en) 1999-12-09 2009-02-26 Proflute Ab Bacteriostatic moisture exchange element and process for its preparation
US20010029843A1 (en) * 2000-01-31 2001-10-18 Nichias Co., Ltd. Chemical filter and manufacturing method thereof
US6806227B2 (en) 2001-11-05 2004-10-19 The Regents Of The University Of California Solid materials for removing metals and fabrication method
CN115196789B (en) * 2022-07-20 2024-03-29 安徽铜冠产业技术研究院有限责任公司 Method for deeply removing thallium from pyrite waste acid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677668B2 (en) * 1987-01-14 1994-10-05 株式会社西部技研 Method for manufacturing moisture exchange element
JP2579767B2 (en) * 1987-06-10 1997-02-12 株式会社 西部技研 Ultra-low concentration gas adsorption element and gas adsorption removal device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521441A (en) * 1997-04-18 2001-11-06 カボット、コーポレーション Use of airgel as adsorbent
JP2015509832A (en) * 2013-01-19 2015-04-02 デシカント・ローターズ・インターナショナル・プライヴェート・リミテッド Desiccant-supporting honeycomb chemical filter and manufacturing method thereof
JP2018099674A (en) * 2017-10-12 2018-06-28 デシカント・ローターズ・インターナショナル・プライヴェート・リミテッド Desiccant based honeycomb chemical filter and method of manufacture thereof
CN111774018A (en) * 2020-06-19 2020-10-16 浙江建业化工股份有限公司 Plasticizer DOTP energy-saving reaction system of high-efficient edulcoration

Also Published As

Publication number Publication date
DE3937863A1 (en) 1990-06-21
SE501507C2 (en) 1995-03-06
JP2681381B2 (en) 1997-11-26
SE8904037D0 (en) 1989-11-29
SE8904037L (en) 1990-06-15
DE3937863C2 (en) 2003-03-20

Similar Documents

Publication Publication Date Title
US4886769A (en) Active gas adsorbing element and method of manufacturing
US4911775A (en) Method of manufacturing dehumidifier element
JP3346680B2 (en) Adsorbent for moisture exchange
JPH02160046A (en) Production of gas adsorbing element
AU2017208389A1 (en) Desiccant based honeycomb chemical filter and method of manufacture thereof
US5683532A (en) Method of manufacturing an active silica gel honeycomb adsorbing body usable in an atmosphere having 100% relative humidity
JP2950453B2 (en) Sheet-shaped sorbent body having a heating element, sorption laminate having a heating element, and dehumidifier using sorption laminate having a heating element
JPH0125614B2 (en)
JP2015509832A (en) Desiccant-supporting honeycomb chemical filter and manufacturing method thereof
US5254195A (en) Process for manufacturing moisture exchange element
JP2707330B2 (en) Continuous production method of elements for gas adsorber
JPS5919727B2 (en) Manufacturing method of activated carbon adsorption unit
JPH06165934A (en) Gas adsorption element, production and use therefor
KR960010898B1 (en) Method for producing a gas absorptions elements
JP4864220B2 (en) Adsorbent, air purification filter and manufacturing method thereof
JPH07204451A (en) Dehumidifing sheet and element using organic moisture absorbent
JP2937437B2 (en) Manufacturing method of activated silica gel honeycomb adsorbent
JPH0677668B2 (en) Method for manufacturing moisture exchange element
JP3305602B2 (en) Manufacturing method of dehumidifying element
JPH0649132B2 (en) Dehumidifying element manufacturing method
JP3345596B2 (en) Adsorbent for moisture exchange
JP2018099674A (en) Desiccant based honeycomb chemical filter and method of manufacture thereof
JP4159145B2 (en) Gas adsorption element
JPH06323A (en) Method for producing moisture exchange element
JP2000084408A (en) Adsorbing sheet and adsorbing element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees