JPH0677668B2 - Method for manufacturing moisture exchange element - Google Patents
Method for manufacturing moisture exchange elementInfo
- Publication number
- JPH0677668B2 JPH0677668B2 JP62006975A JP697587A JPH0677668B2 JP H0677668 B2 JPH0677668 B2 JP H0677668B2 JP 62006975 A JP62006975 A JP 62006975A JP 697587 A JP697587 A JP 697587A JP H0677668 B2 JPH0677668 B2 JP H0677668B2
- Authority
- JP
- Japan
- Prior art keywords
- paper
- water glass
- exchange element
- moisture
- moisture exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
- F24F3/1423—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1032—Desiccant wheel
- F24F2203/1036—Details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1048—Geometric details
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Drying Of Gases (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は多数の小透孔を有するブロツクを湿気を可逆的
に吸着する固体吸湿剤によつて成形し、該小透孔内に処
理気体と脱着用気体とを交互に通し除湿された気体たと
えば乾き空気を得る除湿用その他湿気交換用素子の製造
法に関するものである。The present invention relates to a block having a large number of small pores formed by a solid moisture absorbent that reversibly adsorbs moisture, and desorbs the treated gas into the small pores. The present invention relates to a method for manufacturing a dehumidifying or other moisture exchanging element for obtaining a dehumidified gas, for example, dry air, by alternately passing a working gas.
従来の技術 本件特許出願人は昭和59年特許願第206849号「湿気交換
用素子の製造法」において、セラミツクス繊維等無機繊
維を用いて低密度に抄造した紙を積層して多数の小透孔
を有する湿気交換用素子の形状に成形し、該成形工程の
前または後において該紙に水ガラスを含浸し成形工程後
含水量3〜20%の和水水ガラス状なるまで濃縮乾燥し、
酸に浸漬してシリカヒドロゲルを生成せしめ、水洗乾燥
して無機繊維を骨格としシリカエロゲルを主成分とする
強固な湿気交換用素子を得ることを提案した。2. Description of the Related Art In the patent application No. 206849, “Method for manufacturing a moisture exchange element” in 1984, the applicant of the present patent claims that a large number of small through-holes are formed by laminating papers with a low density using inorganic fibers such as ceramic fibers. To the shape of a moisture exchange element having, the paper is impregnated with water glass before or after the molding step, and after the molding step, concentrated and dried until it becomes a water water glass with a water content of 3 to 20%,
It has been proposed to obtain a strong moisture exchange element having an inorganic fiber skeleton as a main component and silica erogel as a main component by soaking in an acid to form silica hydrogel, washed with water and dried.
この湿気交換用素子において使用する無機繊維紙には抄
紙の都合上少量の木材パルプその他の植物性パルプまた
は合成繊維系パルプが含まれており、一方除湿の操作に
おいては空気その他処理気体を素子の小透孔に通して該
気体中の湿気を素子中の吸湿剤に吸着させる除湿工程と
高温の脱着用気体を素子の小透孔に通して吸着された湿
気を脱着する再生工程とを交互に行なうものであり、素
子が高温にさらされる再生工程において無機繊維紙に含
まれる上記のバルブ等有機成分が発火するおそれがある
ため、素子製造の最終工程において空気の存在下に400
℃前後に加熱焼成して素子中の有機成分を除去する方法
が行なわれている。The inorganic fiber paper used in this element for moisture exchange contains a small amount of wood pulp or other vegetable pulp or synthetic fiber pulp for the convenience of paper making, while air or other treated gas is used as the element in the dehumidification operation. Alternately, a dehumidifying step of adsorbing the moisture in the gas to the hygroscopic agent in the element through a small through hole and a regeneration step of desorbing the adsorbed moisture by passing a high temperature desorption gas through the small through hole of the element. Since the organic components such as the above-mentioned valves contained in the inorganic fiber paper may be ignited in the regeneration process in which the device is exposed to high temperature, 400% in the presence of air in the final process of device production.
A method of removing the organic component in the device by heating and baking at around ℃ is used.
発明が解決しようとする問題点 上記の高温の気体を使用して脱着を行なう除湿法所謂熱
スイング法に対し、熱を使用せず気体圧の変化により吸
着および脱着を行なう圧力スイング法がある(たとえば
鈴木謙一郎・北川浩著1983年5月1日株式会社講談社発
行「圧力スイングサイクルシステム」参照)。この圧力
スイング法は処理空気を加圧して塔に充填した吸湿剤粒
子の層を通過させることにより処理空気中に含まれる湿
気を吸湿剤粒子に吸着させ、常温の再生用空気を常圧ま
は減圧下に吸湿剤粒子の層を通過させることにより吸湿
剤粒子より湿気を離脱させ吸湿剤を再生するものであ
る。この圧力スイング法による装置は吸着・脱着の切換
時間が短かく吸着する水分の総量が少ないため少量の吸
着剤があればよく、熱スイング法における吸着・脱着の
切換時間が6時間であるのに対し圧力スイング法におけ
る上記切換時間が5分間(但し吸着剤層の径、深さには
関係なくまたその粒子の大小にも関係なし)であるとす
ると両者の水分負は72:1となり圧力スイング法では極め
て小型に設計できるように思われるが、圧力スイング法
においても最低限必要な吸着剤層の長さがあり、また吸
着に有効な流速は一般に10〜25cm/sec.に限定されこの
流速を得るためには吸着剤層の断面積を可成り広くする
必要があり実質的には加熱再生法による吸着装置と大差
ない塔径を要し、装置は小型にはなり得ない。また吸湿
剤粒子の表面積を大きくするために該粒子を小さくする
と処理空気または再生空気の流れにより粒子が流動して
粉砕され易くなり空気の通過が漸次困難となり10〜25cm
/sec.の実用風速の範囲では有効表面積の増大即ち吸湿
剤粒子の微粒化によって塔をコンパクト化することはで
きない。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In contrast to the so-called heat swing method, which is a dehumidification method that uses a high-temperature gas for desorption, there is a pressure swing method that performs adsorption and desorption by changing gas pressure without using heat ( For example, see Kenichiro Suzuki and Hiroshi Kitagawa, "Pressure Swing Cycle System", published by Kodansha Ltd. on May 1, 1983). This pressure swing method adsorbs moisture contained in the treated air to the moisture absorbent particles by pressurizing the treated air and passing through a layer of the moisture absorbent particles packed in the tower, and the normal temperature regeneration air is By passing the layer of hygroscopic agent particles under reduced pressure, moisture is released from the hygroscopic agent particles to regenerate the hygroscopic agent. The device using this pressure swing method requires only a small amount of adsorbent because the adsorption / desorption switching time is short and the total amount of adsorbed water is small, and the adsorption / desorption switching time in the thermal swing method is 6 hours. On the other hand, assuming that the above switching time in the pressure swing method is 5 minutes (however, regardless of the diameter and depth of the adsorbent layer and regardless of the size of the particles), the negative water content of both is 72: 1 and the pressure swing. It seems that the method can be designed to be extremely small, but the pressure swing method also has the minimum required adsorbent layer length, and the effective flow rate for adsorption is generally limited to 10 to 25 cm / sec. In order to obtain the above, it is necessary to make the cross-sectional area of the adsorbent layer as large as possible, and a column diameter that is substantially the same as that of the adsorption device by the heat regeneration method is required, and the device cannot be downsized. Also, if the particles are made smaller to increase the surface area of the hygroscopic agent particles, the particles are liable to be crushed by the flow of the processing air or the regenerated air and the passage of the air becomes gradually difficult, and 10 to 25 cm.
In the practical wind speed range of / sec., The tower cannot be made compact by increasing the effective surface area, that is, atomizing the particles of the hygroscopic agent.
上述の吸湿剤粉砕による難点を避けるには前述の先願に
示したシリカエロゲルを主成分とするハニカム成形体を
使用すれば解決できるが、このハニカム成形体の単位容
積当りの有効表面積を圧力スイング法に適する程度に増
加し、吸湿・再生の速度を上げようとすると種々問題が
ある。即ち前述の湿気交換用素子は波長3mm以上、波高
1.5mm以上の波形紙と平面紙とを積層て製造することは
できるが、小透孔の大きさを更に小さくたとえば波形紙
の波の波長を1〜2mm、波高を0.4〜1mm程度まで小さ
くして単位容積当りの有効表面積を大きくしようとする
と、無機繊維の主成分とする紙では波形紙の成形が困難
になり、一方積層成形後の水ガラス水溶液および酸の浸
漬に当つてはかかる液体の表面張力の影響が著しく大き
くなつて、特に水ガラス含浸の場合には水ガラス水溶液
の粘度が高いので浸漬含浸の工程において水ガラスがハ
ニカム成形体の小透孔に目詰りをおこし、後の化学処理
工程が不可能となり、即ち多数の小透孔壁における水ガ
ラスと酸との接触即ちシリカゲルの生成が困難となり、
従つて湿気交換用素子を製造することはできず、また副
生物として生成する塩の小透孔からの除去も困難であ
り、小透孔内における酸の濃度が下つても小透孔外から
の酸の補充ができず、小透孔壁に付着している和水水ガ
ラスまたは半固形状の水ガラスが液中に溶出して液中に
おいてシリカゲル生成反応を起こし、生成したシリカゲ
ルが流出して無駄になり、あるいは小透孔を閉塞して所
要の成形品を得ることができず、またたとえ成形品が得
られたとしても湿気交換用素子の容積当りの製造コスト
は原料使用量の増大による分をも含め上述の波長3mm、
波高2mm程度のものに比し2〜3倍にもなり、到底実用
化はできない。In order to avoid the above-mentioned difficulties due to the pulverization of the hygroscopic agent, it is possible to solve the problem by using the honeycomb molded body containing silica erogel as a main component shown in the above-mentioned prior application. However, there are various problems when trying to increase the speed of moisture absorption / regeneration by increasing the amount suitable for. That is, the above-mentioned moisture exchange element has a wavelength of 3 mm or more and a wave height.
Although it is possible to manufacture by laminating corrugated paper of 1.5 mm or more and flat paper, the size of the small through holes is further reduced, for example, the wave wavelength of corrugated paper is reduced to 1 to 2 mm and the wave height is reduced to about 0.4 to 1 mm. If an attempt is made to increase the effective surface area per unit volume, it becomes difficult to form corrugated paper with paper containing inorganic fiber as the main component, while on the other hand, when dipping a water glass aqueous solution and acid after lamination molding, such liquid Since the influence of surface tension becomes significantly large, especially in the case of water glass impregnation, the viscosity of the water glass aqueous solution is high, so water glass causes clogging of the small through-holes of the honeycomb formed body in the process of dipping and impregnation, and the subsequent chemical The treatment process becomes impossible, that is, contact between water glass and acid on many small pore walls, that is, formation of silica gel becomes difficult,
Therefore, it is not possible to manufacture a moisture exchange element, and it is difficult to remove the salt generated as a by-product from the small pores, and even if the acid concentration in the small pores is low, it can be removed from outside the small pores. Acid cannot be replenished, and the water water glass or semi-solid water glass adhering to the small pore walls elutes into the liquid, causing a silica gel formation reaction in the liquid, and the generated silica gel flows out. Wasteful, or it is not possible to obtain the required molded product by closing the small through holes, and even if a molded product is obtained, the manufacturing cost per volume of the moisture exchange element increases the amount of raw material used. 3mm including the above wavelength,
The wave height is 2 to 3 times as high as that of a wave height of about 2 mm, and practically impossible.
問題点を解決するための手段 本発明は上記の欠点を除去し、圧力スイング法除湿に特
に適するよう小透孔の径を小さくした湿気交換用素子を
製造することを目的とするものである。即ち無機繊維に
パルプ即ち有機繊維を加えて混合抄造した厚さ0.1〜0.3
mmの紙に水ガラスを含浸し、紙がコルゲート成形できる
程度まで該水ガラスを半乾燥し、波長1.0〜6.0mm、波高
0.4〜3.0mm、好ましくは波長1.0〜4.0mm、波高0.4〜2.0
mmにコルゲート加工した波形紙と平面紙とを酸に浸漬し
水ガラスと酸との反応によりシリカヒドロゲルを生成せ
しめ、水洗しして余剰の酸および液中に分散しているシ
リカヒドロゲル並に反応副生物を除去した後乾燥して紙
に付着しているシリカヒドロゲルをシリカエロゲルとな
し、平面紙と波形紙とを交互に積層して多数の小透孔を
有する素子の形状に成形し、紙を骨格としシリカエロゲ
ルを主成分とする湿気交換用素子を得ることを特徴とす
るものである。以下実施例を図面について詳細に説明す
る。Means for Solving the Problems The present invention eliminates the above-mentioned drawbacks, and an object of the present invention is to produce a moisture exchange element having a small diameter of a small through hole which is particularly suitable for pressure swing dehumidification. That is, pulp, that is, organic fibers are added to inorganic fibers to form a mixed paper, and the thickness is 0.1 to 0.3.
mm paper is impregnated with water glass, and the water glass is semi-dried until the paper can be corrugated.
0.4 to 3.0 mm, preferably wavelength 1.0 to 4.0 mm, wave height 0.4 to 2.0
mm corrugated corrugated paper and flat paper are soaked in acid to generate silica hydrogel by reaction between water glass and acid, washed with water and reacted with excess acid and silica hydrogel dispersed in liquid After removing the by-products, the silica hydrogel adhering to the paper is dried to form silica erogel, and flat paper and corrugated paper are alternately laminated to form an element having a large number of small holes, and the paper is A feature is to obtain a moisture exchange element having a silica erogel as a main component as a skeleton. Hereinafter, embodiments will be described in detail with reference to the drawings.
実施例 第1図は本発明の方法および該方法の実施に使用する装
置の一例を示し、図中1,1は水ガラス水溶液含浸装置で
夫々水ガラス水溶液容器1a,1a、ガイドローラ1b,1b、搾
りローラ1c,1cにより成り、水ガラス水溶液容器1a,1aに
は水ガラス水溶液2,2を入れガイドローラ1b,1bの一部ま
たは全部を浸漬する。3,3は乾燥機、4,4は所望の歯型を
有する一対の成形ギアで互に噛合わせる。5,5は酸含浸
装置で、夫々酸容器5a,5a、ガイドローラ5b,5bより成
り、酸容器5a,5aには酸6,6を入れガイドローラ5b,5bの
一部または全部を浸漬する。7,7は水洗装置で夫々水溶
液7a,7a、ガイドローラ7b,7b、噴霧ノズル7c,7cよりな
り水容器7a,7aには水8,8を入れガイドローラ7b,7bの一
部または全部を浸漬する。9,9は乾燥機、10は接着剤塗
布装置で接着剤容器10a,接着剤塗布ローラ10bより成
り、11は同じく接着剤塗布装置で接着剤容器11a,接着剤
塗布ローラ11bより成り、接着剤容器10a,11aには接着剤
12,12を入れ接着剤塗布ローラ10b,11bの一部を浸漬す
る。尚図中13,13…はガイドローラである。EXAMPLE FIG. 1 shows an example of the method of the present invention and an apparatus used for carrying out the method. In the figure, 1 and 1 are water glass aqueous solution impregnating apparatuses, respectively, water glass aqueous solution containers 1a and 1a, and guide rollers 1b and 1b. The squeezing rollers 1c, 1c are provided, and the water glass aqueous solution 2, 2 is put in the water glass aqueous solution container 1a, 1a to immerse part or all of the guide rollers 1b, 1b. 3 and 3 are dryers, and 4 and 4 are a pair of molding gears having a desired tooth profile and mesh with each other. Reference numerals 5 and 5 are acid impregnating devices, which are composed of acid containers 5a and 5a and guide rollers 5b and 5b, respectively. The acid containers 5a and 5a are filled with acid 6 and 6 and part or all of the guide rollers 5b and 5b are immersed. . 7 and 7 are water washing devices, each consisting of an aqueous solution 7a and 7a, guide rollers 7b and 7b, and spray nozzles 7c and 7c. Water 8 and 8 are put in water containers 7a and 7a, and part or all of the guide rollers 7b and 7b are put. Soak. 9, 9 is a dryer, 10 is an adhesive coating device, which is composed of an adhesive container 10a and an adhesive coating roller 10b, and 11 is also an adhesive coating device, which is composed of an adhesive container 11a and an adhesive coating roller 11b. Adhesive on the containers 10a and 11a
Insert 12 and 12 and immerse a part of the adhesive application rollers 10b and 11b. Incidentally, reference numerals 13, 13 ... In the figure are guide rollers.
セラミツクス繊維100部(以下すべて重量部)、パルプ
(木材パルプまたは合成パルプ)20〜50部、ガラス繊維
0〜10部、バインダー3〜10部より成り、厚さ0.1〜0.3
mm、密度0.5g/cm3以下の多孔質な紙14,15を図に示す如
くロール状に捲いて用意し、紙14,15はガイドローラ1b,
1bの下に通して水ガラス水溶液2,2を含浸し、搾りロー
ラ1c,1cにより余分の付着水ガラス水溶液を搾つて除去
した後乾燥機3,3により含浸した水ガラス水溶液を含水
量5〜45%の和水水ガラス乃至半固形状になるまで乾燥
し、一方の紙14を成形ギア4,4の噛合せ部に導いて波長
1.0〜1.4mm、波高0.4〜2.0mmの波形紙4aとなし、波形紙
14aと平面紙15とを夫々ガイドローラ5b,5bの下に通し硫
酸の15%水溶液6に浸漬し水ガラスと硫酸との反応によ
りシリカヒドロゲルを生成せしめ、つづいてガイドロー
ラ7b,7bの下に通し副生物の硫酸ナトリウムおよび余剰
の硫酸並に紙に付着していないシリカヒドロゲルを水8,
8および噴霧ノズル7c,7cより噴霧される水により洗浄除
去し乾燥機9,9により加熱乾燥し、波形紙14aの両面の波
頂部に接着剤塗布ローラ10b,11bにより水ガラスその他
適宜の接着剤12,12を塗布し、平面紙15と波形紙14aとを
重ねて芯材16の周りに捲付け必要に応じ接着剤12を乾燥
して紙を骨格としシリカエロゲルを主成分とした湿気交
換用素子を得る。Ceramics fiber 100 parts (all weight parts below), pulp (wood pulp or synthetic pulp) 20-50 parts, glass fiber 0-10 parts, binder 3-10 parts, thickness 0.1-0.3
Prepare porous paper 14 and 15 with a diameter of 0.5 mm and a density of 0.5 g / cm 3 or less by rolling them into rolls as shown in the figure.
Water glass aqueous solution 2,2 is passed under 1b to squeeze and remove excess adhered water glass aqueous solution by squeezing rollers 1c, 1c, and then water glass solution impregnated by dryer 3, 3 45% Japanese water water glass or dried until it becomes a semi-solid state, guide one paper 14 to the meshing part of the molding gears 4, 4 and
Without corrugated paper 4a with 1.0-1.4mm, wave height 0.4-2.0mm, corrugated paper
14a and the flat paper 15 are passed under the guide rollers 5b, 5b, respectively, and immersed in a 15% aqueous solution 6 of sulfuric acid to form silica hydrogel by the reaction between water glass and sulfuric acid, and then under the guide rollers 7b, 7b. Through-product sodium sulphate and excess sulfuric acid as well as silica hydrogel not attached to the paper are treated with water 8,
8 and the spray nozzles 7c, 7c to wash and remove with water sprayed and dried by the dryer 9,9, water glass or other appropriate adhesive on the corrugated crests of both sides of the corrugated paper 14a with adhesive application rollers 10b, 11b Moisture exchange element mainly composed of silica erogel and coated with 12, 12 and laying flat paper 15 and corrugated paper 14a and wrapping around core material 16 and drying adhesive 12 if necessary To get
使用する水ガラスは1号、2号、3号何れの水ガラス
(珪酸ナトリウム)をも使用することができ、また珪酸
カリウムを使用してもよい。また使用する酸としては理
論的には珪酸より強い酸であればすべて使用することが
できるが、経費、作業環境その他より見て硫酸が最も好
適である。一方使用する紙としては上述のセラミツクス
繊維以外にガラス繊維、鉱滓繊維、カーボン繊維、アス
ベスト繊維、山皮等鉱物繊維あるいはその混合物とパル
プたとえば広葉樹、針葉樹等から得られる木材パルプ、
がんび、こうぞ、みつまた、わら、エスパルト、竹、黄
麻、大麻、マニラ麻、亜麻等の植物繊維系パルプ、叩解
したアクリル繊維、ポリエチレン繊維、ポリアミド繊維
等の合成パルプとを混合抄造した紙を使用し、本発明の
主目的である圧力スイング法除湿に使用する場合には、
耐熱性、耐火性は必要としないので有機繊維の含有率を
適宜増大することができる。耐熱性が必要とされる場合
には上述の紙の有機成分含有率をやや少な目たとえば10
%以下にして抄紙し、好ましくはシリカゲル、アルミナ
ゾル等の無機質バインダーを適量含浸し乾燥した後、40
0〜500℃で焼成し有機物を除去して使用する。焼成した
紙はそのままでは脆くコルゲート成形はできないが、こ
れに水ガラスを含浸し可撓性を有する程度に乾燥すれば
水ガラスの粘性により紙のコルゲート成形が可能とな
る。As the water glass to be used, any of No. 1, No. 2, and No. 3 water glasses (sodium silicate) can be used, and potassium silicate may be used. The acid used can theoretically be any acid stronger than silicic acid, but sulfuric acid is most preferable in view of cost, working environment and the like. On the other hand, as the paper to be used, in addition to the above-mentioned ceramic fibers, glass fibers, slag fibers, carbon fibers, asbestos fibers, mountain fibers such as mountain bark or a mixture thereof and pulp, for example, hardwood, wood pulp obtained from softwood, etc.,
Ganbi, Kozo, Mitsumata, Straw, Esparto, Bamboo, Burlap, Cannabis, Manila hemp, flax, and other plant fiber pulp, beaten acrylic fiber, polyethylene fiber, synthetic fiber such as polyamide fiber When used for pressure swing dehumidification, which is the main purpose of the present invention,
Since heat resistance and fire resistance are not required, the content rate of organic fibers can be appropriately increased. When heat resistance is required, the content of organic components in the above-mentioned paper should be slightly lower, for example 10
40% or less after papermaking, preferably after impregnation with an appropriate amount of an inorganic binder such as silica gel or alumina sol and drying.
It is used by firing at 0 to 500 ° C to remove organic substances. The calcined paper is brittle and cannot be corrugated as it is, but if it is impregnated with water glass and dried to such an extent that it has flexibility, the viscosity of water glass enables corrugation of paper.
第1図の方法により製造した円筒形の湿気交換用素子の
例を第2図に示す。また上記方法において紙14a,15を乾
燥機9,9で乾燥した後適宜寸法に截断し積層して得た並
行流型の湿気交換用素子の例を第3図に示す。An example of a cylindrical moisture exchange element manufactured by the method of FIG. 1 is shown in FIG. An example of a parallel flow type moisture exchange element obtained by drying the papers 14a and 15 by the dryers 9 and 9 and cutting them into appropriate dimensions and laminating in the above method is shown in FIG.
発明の作用 本発明で得られた湿気交換用素子はその多数の小透孔内
に加圧した処理空気を通して該処理空気中の湿気を小透
孔壁のシリカエロゲルに吸着させ、つづいて常温の再生
用空気を常圧または減圧下に小透孔内に通してシリカエ
ロゲルに吸着された湿気を脱着させ、以上の吸着工程と
再生工程とを交互に繰返す。空気以外の不活性気体の処
理の場合も全く同様である。The function of the present invention is as follows. The moisture exchanging element obtained in the present invention has a large number of small pores through which treated air is pressurized so that moisture in the treated air is adsorbed by silica gel on the walls of the small pores, followed by regeneration at room temperature. Air for use is passed through the small through holes under normal pressure or reduced pressure to desorb the moisture adsorbed on the silica gel, and the above adsorption step and regeneration step are repeated alternately. The same applies to the case of treating an inert gas other than air.
以上が圧力スイング法であるが、固定型または回転型の
熱スイング法に用いてもよい。第4図は円筒形の湿気交
換用素子を回転型として除湿機を組立てた態様を示すも
ので、湿気交換用素子17をケーシング18内に回転可能に
保持したセパレータ19により吸着ゾーン20と再生ゾーン
21とに分離し、ギヤドモータ22、駆動ベルト23により素
子17を回転させ処理空気24を吸着ゾーン20に送入し加熱
した再生用空気25を再生ゾーン21に送入し、処理空気24
を連続的に除湿して乾燥空気26を得るとともに再生ゾー
ン21において連続的にまたは間欠的に素子に吸着された
湿気を脱着し素子を再生する。尚第4図中27は再生用空
気加熱用ヒータ、28はプーリー、29はテンシヨンプーリ
ー、30はゴムシールである。Although the pressure swing method has been described above, the pressure swing method may be used for a fixed type or a rotary type heat swing method. FIG. 4 shows an embodiment in which a dehumidifier is assembled by using a cylindrical moisture exchange element as a rotary type. The moisture exchange element 17 is rotatably held in a casing 18 by a separator 19 and an adsorption zone 20 and a regeneration zone are provided.
21, the element 17 is rotated by the geared motor 22 and the drive belt 23 to feed the treated air 24 into the adsorption zone 20 and the heated regeneration air 25 into the regeneration zone 21, and the treated air 24
Is continuously dehumidified to obtain dry air 26, and moisture adsorbed on the element is desorbed continuously or intermittently in the regeneration zone 21 to regenerate the element. In FIG. 4, 27 is a heater for heating the air for regeneration, 28 is a pulley, 29 is a tension pulley, and 30 is a rubber seal.
発明の効果 本発明は上記の如く構成したので、先願の湿気交換用素
子の場合と同様シリカゲルの乾燥時の収縮はごく僅かで
シリカエロゲルに亀裂を生じまたは微細片に割れるおそ
れなく、マトリツクスとなる紙に強固に固着したシリカ
エロゲルの成形体が得られる。本発明の湿気交換用素子
の製造においては圧力スイング法に要求される波長・波
高の小さい波形紙の成形も紙の有機質含有率を多くすれ
ば容易であり、製品における小透孔のサイズが小さいた
め強度が大で先願の湿気交換用素子の耐圧強度が2.0kg/
cm2程度であつたのに対し本願の素子では5.5kg/cm2に達
し、雰囲気圧力が高い場合または雰囲気圧力の急激な変
動その他機械的シヨツクにも充分耐えることができ、高
圧容器内での除湿あるいは吸着・脱着のサイクルが5〜
20分間と非常に短い圧力スイング法除湿には特に好適で
ある。圧力スイング法による除湿に使用する場合には再
生サイクルにおいて高温を使用しないため再生用気体と
して空気を使用する場合でも素子が焼損するおそれがな
く、従つて有機質を多量に含有する紙を使用して製造し
しかも焼成の必要がないので容易に廉価に製造すること
ができる。波形紙の波長・波高を小さくすることによつ
て素子の単位容積当り有効表面積が著しく広くなり、従
来の粒状吸着剤を塔に詰めた圧力スイング法の装置とそ
の有効表面積を比較すれば の如く格段の差がある。これにより吸湿剤による除湿効
果を検討すると、出口における空気の乾燥度は直線平衡
系の破過曲線の理論式から C=C0exp(−KFavz/u) 但し C:出口水分濃度[g/m3] C0:入口水分濃度[g/m3] KF:総括物質移動係数[cm/sec.] av:有効表面積[m2/m3] z:層高[cm] u:流速[cm/sec.] の式により求められ、本願の素子を充填した場合におい
て従来のシリカゲル粒子を充填した場合に比し有効表面
積avを2倍にすれば流速uを2倍にしても出口におけ
る空気の乾燥度Cは同じになるため、同一性能を得るた
めには本願の素子は従来のシリカゲル粒子に比し遥かに
小容積のもので足り、圧力スイング塔をコンパクト化
し、更に除湿・再生の速度を上昇することができる。ま
た本願の素子は多数の小透孔を有するハニカム状に一体
に成形されているので通過する気体の流速を速くしても
粒子の流動による破砕、粉末化など生ずることなく、ま
た本願の素子においては多数の小透孔に処理気体を通す
ことによつて除湿するので、吸湿剤粒子層を通す場合に
比し圧力損失は遥かに少なくなる。第5図は球状シリカ
ゲル層と本発明によるハニカム型除湿エレメントの圧力
損失を示すもので、図中Aは粒径2.0〜3.4mmの球状シリ
カゲル、Bは粒径3.4〜4.8mmの球状シリカゲル、Cは粒
径4.8〜7.0mmの球状シリカゲル、Dは本発明の波長1.5m
m、波高2.0mmの波形紙で成形した素子の単位長さ〔m〕
当り圧力損失を示す。EFFECTS OF THE INVENTION Since the present invention is configured as described above, shrinkage during drying of silica gel is very small as in the case of the moisture exchange element of the prior application, and there is no risk of cracking silica silica gel or breaking into fine pieces and forming a matrix. A molded product of silica erogel firmly adhered to paper is obtained. In the production of the element for exchanging moisture of the present invention, it is easy to form corrugated paper having a small wavelength and wave height required for the pressure swing method if the organic content of the paper is increased, and the size of the small through holes in the product is small. Therefore, the strength is high, and the pressure resistance of the moisture exchange element of the previous application is 2.0 kg /
The device of the present contrast been filed in cm 2 is reached 5.5 kg / cm 2, can also be sufficiently resistant to sudden fluctuations other mechanical Shiyotsuku when the ambient pressure is high or ambient pressure, in a high pressure vessel Dehumidification or adsorption / desorption cycle is 5
It is particularly suitable for pressure swing dehumidification, which is as short as 20 minutes. When used for dehumidification by the pressure swing method, high temperature is not used in the regeneration cycle, so even if air is used as the regeneration gas, there is no risk of the element burning out, and therefore paper with a large amount of organic matter is used. Since it is manufactured and there is no need for firing, it can be manufactured easily and inexpensively. By reducing the wavelength and wave height of the corrugated paper, the effective surface area per unit volume of the device is remarkably widened, and comparing the effective surface area with the conventional pressure swing device packed with granular adsorbent in the column. There is a marked difference like this. When the dehumidifying effect of the hygroscopic agent is examined by this, the dryness of the air at the outlet can be calculated from the theoretical equation of the breakthrough curve of the linear equilibrium system as C = C 0 exp (−K F a v z / u) where C: outlet water concentration [G / m 3 ] C 0 : Inlet water concentration [g / m 3 ] K F : Overall mass transfer coefficient [cm / sec.] Av : Effective surface area [m 2 / m 3 ] z: Bed height [cm] u: flow velocity [cm / sec.], and when the device of the present application is filled, the flow velocity u is doubled by doubling the effective surface area a v as compared with the case where the conventional silica gel particles are filled. However, since the dryness C of the air at the outlet is the same, in order to obtain the same performance, the device of the present application requires a much smaller volume than the conventional silica gel particles, and the pressure swing tower is made compact. The speed of dehumidification and regeneration can be increased. Further, since the element of the present application is integrally formed in a honeycomb shape having a large number of small through holes, even if the flow velocity of the gas passing therethrough is increased, there is no crushing or pulverization due to the flow of particles, and Since it dehumidifies by passing the processing gas through a large number of small holes, the pressure loss is much smaller than that in the case of passing the hygroscopic agent particle layer. FIG. 5 shows the pressure loss of the spherical silica gel layer and the honeycomb type dehumidifying element according to the present invention. In the figure, A is a spherical silica gel having a particle size of 2.0 to 3.4 mm, B is a spherical silica gel having a particle size of 3.4 to 4.8 mm, and C is a spherical silica gel. Is spherical silica gel having a particle size of 4.8 to 7.0 mm, D is the wavelength of the present invention of 1.5 m
Unit length [m] of the element formed by corrugated paper with m and wave height of 2.0 mm
Indicates the pressure loss per hit.
上記実施例によつて得られた湿気交換用素子の吸湿性能
を測定した結果を第6図乃至第9図に示す。第6図は上
記実施例に従い同一の紙を使用して1号水ガラス(酸化
珪素対酸化ナトリウム2.1:1)と3号水ガラス(酸化珪
素対酸化ナトリウム3.1:1)との40〜45%水溶液および1
5%硫酸を使用して得られた湿気交換用素子で シリカゲル付着量 1号水ガラス 149.4% シリカゲル付着量 3号水ガラス 172.5% の条件でシリカゲルを付着させた場合の付着シリカゲル
量に対する吸湿量[wt%]、第7図は同一の紙を1号水
ガラスの40〜45%水溶液に浸漬しこれに15%の硫酸と塩
酸とを反応させ成形して得られた湿気交換用素子につい
て相対湿度75%で測定した付着シリカゲル量に対する吸
湿量[wt%]、第8図および第9図は1号水ガラスの40
〜45%水溶液に浸漬し15%の硫酸および塩酸を反応させ 水ガラス 酸 シリカゲル付着量 1号 硫 酸 141.5% 1号 塩 酸 138.6% の条件でシリカゲルを付着させた場合の紙の表面積に対
する平衡吸湿量〔g/m2〕および紙重量に対する平衡吸湿
量を示す。試験時の温度は何れも18〜23℃である。この
データで明らかなように、吸湿性能においてはほぼ先願
の湿気交換用素子と同程度の好成績が得られた。The results of measuring the moisture absorption performance of the moisture exchange element obtained according to the above example are shown in FIGS. 6 to 9. FIG. 6 shows 40-45% of No. 1 water glass (silicon oxide to sodium oxide 2.1: 1) and No. 3 water glass (silicon oxide to sodium oxide 3.1: 1) using the same paper according to the above example. Aqueous solution and 1
Moisture absorption amount relative to the amount of silica gel adhered when silica gel is adhered under the conditions of silica gel adhesion amount 19.4 water glass 149.4% silica gel adhesion amount 3 water glass 172.5% in the element for moisture exchange obtained by using 5% sulfuric acid. wt%], Fig. 7 shows the relative humidity of a humidity exchange element obtained by immersing the same paper in a 40-45% aqueous solution of No. 1 water glass and reacting it with 15% sulfuric acid and hydrochloric acid to mold it. Moisture absorption amount [wt%] relative to the amount of adhered silica gel measured at 75%. Figures 8 and 9 show 40 of No. 1 water glass.
Immersed in 45% aqueous solution and reacted with 15% sulfuric acid and hydrochloric acid Water glass acid / silica gel adhesion amount 1 Sulfuric acid 141.5% 1 hydrochloric acid 138.6% Equilibrium moisture absorption on the surface area of paper when silica gel is adhered The amount [g / m 2 ] and the equilibrium moisture absorption amount with respect to the paper weight are shown. The temperature during the test is 18 to 23 ° C in all cases. As is clear from this data, the moisture absorption performance was almost as good as that of the moisture exchange element of the prior application.
図は本発明の実施例を示し、第1図は本発明の湿気交換
用素子の製造法およびそれに使用する装置の概要を示す
説明図、第2図は円筒形の湿気交換用素子、第3図は並
行流型の湿気交換用素子の斜視図、第4図は第2図の円
筒形の湿気交換用素子を使用した回転型除湿機の一部欠
切斜視説明図、第5図は本発明の湿気交換用素子と球状
シリカゲル充填層との圧力損失を示すグラフ、第6図乃
至第9図は本願の湿気交換用素子の吸湿性能を示すグラ
フである。 第1図乃至第3図中1は水ガラス含浸装置、3,9は乾燥
機、4,4は成形ギア、5は酸含浸装置、7は水洗装置、1
0,11は接着剤塗布装置、14,15はセラミツクス繊維等無
機繊維とパルプとを混合抄造した紙を示す。FIG. 1 shows an embodiment of the present invention, FIG. 1 is an explanatory view showing an outline of a method for manufacturing a moisture exchange element of the present invention and an apparatus used therefor, FIG. 2 is a cylindrical moisture exchange element, and FIG. The figure is a perspective view of a parallel flow type moisture exchange element, FIG. 4 is a partially cutaway perspective explanatory view of a rotary dehumidifier using the cylindrical moisture exchange element of FIG. 2, and FIG. FIG. 6 is a graph showing the pressure loss between the moisture exchange element of the present invention and the spherical silica gel packed layer, and FIGS. 6 to 9 are graphs showing the moisture absorption performance of the moisture exchange element of the present application. 1 to 3, 1 is a water glass impregnation device, 3 and 9 are dryers, 4 and 4 are molding gears, 5 is an acid impregnation device, and 7 is a water washing device, 1
Reference numerals 0 and 11 denote adhesive coating devices, and 14 and 15 denote papers produced by mixing pulp with inorganic fibers such as ceramics fibers and pulp.
Claims (1)
混合抄造した厚さ0.1〜0.3mmの紙の水ガラスを含浸し、
紙がコルゲート成形できる程度まで該水ガラスを半乾燥
し、波長1.0〜4.0mm、波高0.4〜2.0mmにコルゲート加工
した波形紙と平面紙とを夫々酸に浸漬してシリカヒドロ
ゲルを生成せしめ、水洗乾燥後平面紙と波形紙とを交互
に積層成形して紙を骨格としシリカエロゲルを主成分と
する素子を得ることを特徴とする湿気交換用素子の製造
法。1. A paper impregnated with water glass having a thickness of 0.1 to 0.3 mm, which is made by mixing inorganic fiber such as ceramic fiber and pulp,
The water glass is semi-dried to the extent that paper can be corrugated, corrugated corrugated paper having a wavelength of 1.0 to 4.0 mm and a wave height of 0.4 to 2.0 mm and a plane paper are each immersed in an acid to form silica hydrogel, and washed with water. A method for producing a moisture exchange element, characterized in that after drying, flat paper and corrugated paper are alternately laminated and molded to obtain an element having a paper skeleton and silica gel as a main component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62006975A JPH0677668B2 (en) | 1987-01-14 | 1987-01-14 | Method for manufacturing moisture exchange element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62006975A JPH0677668B2 (en) | 1987-01-14 | 1987-01-14 | Method for manufacturing moisture exchange element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63175619A JPS63175619A (en) | 1988-07-20 |
JPH0677668B2 true JPH0677668B2 (en) | 1994-10-05 |
Family
ID=11653198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62006975A Expired - Lifetime JPH0677668B2 (en) | 1987-01-14 | 1987-01-14 | Method for manufacturing moisture exchange element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0677668B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63270528A (en) * | 1987-04-30 | 1988-11-08 | Kawai Sekkai Kogyo Kk | Reversible hygroscopic paper |
JP2681381B2 (en) * | 1988-12-14 | 1997-11-26 | 株式会社西部技研 | Gas adsorption element manufacturing method |
US5683532A (en) * | 1990-08-12 | 1997-11-04 | Kabushiki Kaisha Seibu Giken | Method of manufacturing an active silica gel honeycomb adsorbing body usable in an atmosphere having 100% relative humidity |
US5254195A (en) * | 1992-05-08 | 1993-10-19 | Industrial Technology Research Institute | Process for manufacturing moisture exchange element |
KR100901716B1 (en) | 2007-09-04 | 2009-06-08 | 엘지전자 주식회사 | Ductless dryer |
GB2551310B8 (en) * | 2016-05-24 | 2020-01-22 | Thomas Billet Colin | A gas treatment element and a method of forming a gas treatment element |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61101228A (en) * | 1984-10-01 | 1986-05-20 | Seibu Giken:Kk | Preparation of humidity exchange element |
-
1987
- 1987-01-14 JP JP62006975A patent/JPH0677668B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63175619A (en) | 1988-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4886769A (en) | Active gas adsorbing element and method of manufacturing | |
JPH0581831B2 (en) | ||
US4402717A (en) | Apparatus for removing moisture and odors | |
US5683532A (en) | Method of manufacturing an active silica gel honeycomb adsorbing body usable in an atmosphere having 100% relative humidity | |
AU2017208389A1 (en) | Desiccant based honeycomb chemical filter and method of manufacture thereof | |
JPH01293136A (en) | Honeycomb structural body carrying activated carbon and production thereof | |
JPH0125614B2 (en) | ||
JPH0677668B2 (en) | Method for manufacturing moisture exchange element | |
JP2681381B2 (en) | Gas adsorption element manufacturing method | |
US5254195A (en) | Process for manufacturing moisture exchange element | |
JPH01111422A (en) | Production of moisture absorptive sheet and element for exchanging moisture | |
JP2937437B2 (en) | Manufacturing method of activated silica gel honeycomb adsorbent | |
JPS5919727B2 (en) | Manufacturing method of activated carbon adsorption unit | |
JPH0368415A (en) | Production of element for gas sorbing machine | |
JPH0141374B2 (en) | ||
JPH03188918A (en) | Gas adsorption method | |
JP3305602B2 (en) | Manufacturing method of dehumidifying element | |
JPS59100324A (en) | Rotary dehumidifier | |
JPH0649132B2 (en) | Dehumidifying element manufacturing method | |
KR960010898B1 (en) | Method for producing a gas absorptions elements | |
JPH06323A (en) | Method for producing moisture exchange element | |
JP2018099674A (en) | Desiccant based honeycomb chemical filter and method of manufacture thereof | |
DE3907167A1 (en) | Process for producing a dehumidifier element | |
JPS6345859B2 (en) | ||
JPS646809B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |