JPH0364164B2 - - Google Patents

Info

Publication number
JPH0364164B2
JPH0364164B2 JP56205817A JP20581781A JPH0364164B2 JP H0364164 B2 JPH0364164 B2 JP H0364164B2 JP 56205817 A JP56205817 A JP 56205817A JP 20581781 A JP20581781 A JP 20581781A JP H0364164 B2 JPH0364164 B2 JP H0364164B2
Authority
JP
Japan
Prior art keywords
gas adsorption
block
gas
ceramic slurry
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56205817A
Other languages
Japanese (ja)
Other versions
JPS58109118A (en
Inventor
Toshimi Kuma
Hiroshi Okano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP56205817A priority Critical patent/JPS58109118A/en
Publication of JPS58109118A publication Critical patent/JPS58109118A/en
Publication of JPH0364164B2 publication Critical patent/JPH0364164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1048Geometric details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Description

【発明の詳細な説明】 本発明はガス吸着用エレメント特に不燃性で耐
熱性にすぐれ処理すべき空気その他気体または液
体中の湿気およびまたは有害ガスを効率よく吸着
除去し得るガス吸着用エレメントの製造法に関す
るものである。
Detailed Description of the Invention The present invention relates to the production of gas adsorption elements, particularly gas adsorption elements that are nonflammable, have excellent heat resistance, and can efficiently adsorb and remove moisture and/or harmful gases in air, other gases, or liquids to be treated. It is about law.

従来気体たとえば空気中に含まれるガスたとえ
ば水蒸気、炭酸ガス、アンモニア、硫化水素等を
除去して乾燥空気または清浄な空気を得るには充
填塔に詰めた活性炭、シリカゲル等の粒子の堆積
層を通して吸着除去し、あるいは酸またはアルカ
リの水溶液または軽油等適宜の液体に気体たとえ
ば空気中に含まれるアルカリ性成分、酸性成分、
炭化水素成分等を吸収除去する方法が行なわれて
いるが、これらの方法は何れも処理気体たとえば
空気の処理に際し圧損が大きく従つて多大の動力
および大型の設備を要する欠点があつた。
Conventionally, to remove gases such as water vapor, carbon dioxide, ammonia, hydrogen sulfide, etc. contained in the air and obtain dry or clean air, adsorption is carried out through a layer of particles such as activated carbon or silica gel packed in a packed tower. or remove the alkaline components, acidic components, etc. contained in the gas, e.g.
Methods have been used to absorb and remove hydrocarbon components, but all of these methods have the disadvantage that they cause a large pressure drop when processing the gas to be treated, such as air, and therefore require a large amount of power and large equipment.

本発明は上記の欠点を除去し、除湿その他ガス
吸着の能力を保持し、脱着、保全その他の操作も
簡易に行ない得るガス吸着用エレメントの製造法
を提供することを目的とするもので、この目的は
本発明によりガス吸着剤を含むセラミツクにより
ガス吸着用エレメントを形成することにより達成
される。
It is an object of the present invention to provide a method for manufacturing a gas adsorption element that eliminates the above-mentioned drawbacks, retains dehumidification and other gas adsorption abilities, and allows easy removal, maintenance, and other operations. The object is achieved according to the invention by forming the gas adsorption element from ceramic containing a gas adsorption agent.

本発明においてガス吸着剤としてはシリカゲ
ル、アルミナゲル、合成ゼオライト等膨大な数の
マイクロポアー(直径5〜50Å)を有する多孔性
の粒子状をなし、水分によつて潮解乃至崩壊しな
いものを使用し、またセラミツク材料としては上
記ガス吸着剤と混合して焼成した場合ガス吸着剤
の微細孔が消失しない温度範囲で焼結し得るもの
を選択する。
In the present invention, the gas adsorbent used is a porous particulate material having a huge number of micropores (5 to 50 Å in diameter), such as silica gel, alumina gel, or synthetic zeolite, which does not deliquesce or collapse due to moisture. Also, as the ceramic material, one is selected that can be sintered within a temperature range in which the fine pores of the gas adsorbent do not disappear when mixed with the gas adsorbent and fired.

以下実施例により本発明を詳細に説明する。 The present invention will be explained in detail below with reference to Examples.

実施例 1 粘土類100部と合成ゼオライトパウダー(富士
デビソン化学株式会社のDavison Molecular
Sieve3A)40〜200部に適量の分散剤および結合
剤を加え150〜300部の水に分散せしめよく〓練混
和して半固形状となし、これを押出成形により第
1図に示す如く両端面に透通する多数の小透孔1
を有する円筒形の成形体を得、500〜700℃で8時
間焼成して有機成分を消失せしめ、セラミツクを
焼結して両端面に透通する多数の小透孔1を有す
る円筒形で合成ゼオライトが分散したセラミツク
製の除湿用乃至ガス吸着用のエレメントを得る。
Example 1 100 parts of clay and synthetic zeolite powder (Davison Molecular from Fuji Davison Chemical Co., Ltd.)
Sieve3A) Add an appropriate amount of dispersant and binder to 40 to 200 parts, disperse in 150 to 300 parts of water, knead and mix thoroughly to form a semi-solid, and extrude it to form a semi-solid shape with both end faces as shown in Figure 1. Numerous small holes 1 that pass through the
A cylindrical molded body with a cylindrical shape is obtained, which is fired at 500 to 700°C for 8 hours to eliminate organic components, and the ceramic is sintered to form a cylindrical body with numerous small holes 1 penetrating through both end faces. A ceramic dehumidification or gas adsorption element in which zeolite is dispersed is obtained.

実施例 2 第2図はガス吸着用エレメントを製造する第一
工程を示し、図中2,3は所望の歯型を有する一
対の成形ローラで噛合部4において互に噛合い、
一方の成形ローラ2は円周方向に多数の切込溝5
を刻設し、他方の成形ローラ3は圧着ローラ6と
相接し、両ローラの面速はほぼ同一とする。7は
接着剤塗布装置で接着剤容器7aと接着剤塗布ロ
ーラ7bとより成り、接着剤容器7aには接着剤
8を入れる。尚9,10はガイドローラである。
Example 2 FIG. 2 shows the first step of manufacturing a gas adsorption element, in which 2 and 3 are a pair of forming rollers having a desired tooth profile, which mesh with each other at the meshing part 4,
One forming roller 2 has many cut grooves 5 in the circumferential direction.
The other forming roller 3 is in contact with the pressure roller 6, and the surface speeds of both rollers are approximately the same. Reference numeral 7 denotes an adhesive applicator, which comprises an adhesive container 7a and an adhesive applicator roller 7b, and an adhesive 8 is put into the adhesive container 7a. Note that 9 and 10 are guide rollers.

紙、布、アスベスト紙、セラミツク紙、ガラス
繊維紙等適宜の通気性シート11,12をロール
状に捲いて用意し、シート11は成形ローラ2,
3間において波状に成形されボビン13より送ら
れる糸14はガイドローラ10、切込溝5を通
り、シート11と糸14とは共に塗布ローラ7b
により接着剤8を塗布された後シート12ととも
に成形ローラ3と圧着ローラ6との間〓において
接着し、片波成形体15が形成される。
Appropriate breathable sheets 11 and 12 such as paper, cloth, asbestos paper, ceramic paper, glass fiber paper, etc. are rolled up into a roll and prepared.
The thread 14 formed into a wave shape between the sheets 1 and 3 and fed from the bobbin 13 passes through the guide roller 10 and the cut groove 5, and both the sheet 11 and the thread 14 pass through the coating roller 7b.
After the adhesive 8 is applied, the sheet 12 is bonded together with the forming roller 3 and the pressure roller 6 to form a single wave molded body 15.

片波成形体15は図示の如く円筒状に捲取つた
後、粘土50%、長石30%、アルミナゲル粉末20%
の混合物を2倍量の水に分散して得た泥漿に2回
浸漬し、乾燥後 室温〜300℃ 50℃/hr. 300〜1000℃ 100℃/hr. 1000〜1250℃ 50℃/hr. 1250℃ 1hr.保持 1250〜300℃ 11hr. 300℃〜室温 炉外で放冷 の条件で焼成し、有機物を焼失させセラミツクを
焼結してアルミナゲルの微粒子が分散固着したセ
ラミツク製のガス吸着用乃至全熱交換用のエレメ
ントを得る。
The single wave molded body 15 is rolled up into a cylindrical shape as shown in the figure, and then mixed with 50% clay, 30% feldspar, and 20% alumina gel powder.
The mixture was dipped twice in a slurry obtained by dispersing it in twice the amount of water, and after drying it was heated to room temperature to 300℃ 50℃/hr. 300 to 1000℃ 100℃/hr. 1000 to 1250℃ 50℃/hr. 1250℃ 1hr.Hold 1250~300℃ 11hr. 300℃~room temperature A gas adsorption ceramic made of ceramic in which fine particles of alumina gel are dispersed and fixed by firing under the condition of cooling outside the furnace to burn off the organic matter and sintering the ceramic. To obtain an element for total heat exchange.

実施例 3 セラミツク原料たとえば粘土56%、石灰石38
%、珪石6%の微粉末混合物100部を40部の水で
よく〓練混和して半固形状とし、これを押出成形
または型成形により第1図に示す如く両端面に透
過する多数の小透孔1を有する円筒形の成形体に
成形し、1200℃で8時間焼成して完全に焼結せし
めた後、低融点セラミツクたとえば鉛白80%、カ
オリン8%、珪石12%の微粉末混合物30〜70部と
100〜200メツシユのアルミナゲル60〜10部とを適
宜の分散剤を用いて水に分散せしめ200部の泥漿
を得、上記の焼結品を2回浸漬し、乾燥後780℃
前後で約7時間焼成し、両端面に透通する多数の
小透孔1を有する円筒形でアルミナゲルが分散し
たセラミツク製の除湿用乃至全熱交換用のエレメ
ントを得る。
Example 3 Ceramic raw materials: 56% clay, 38% limestone
100 parts of a fine powder mixture of 6% silica stone and 40 parts of water are thoroughly kneaded to form a semi-solid, which is extruded or molded into a large number of small particles that pass through both end faces as shown in Figure 1. After molding into a cylindrical molded body having through holes 1 and completely sintering it by firing at 1200°C for 8 hours, a fine powder mixture of low melting point ceramic such as 80% white lead, 8% kaolin, and 12% silica stone is prepared. 30-70 copies
Disperse 60 to 10 parts of alumina gel of 100 to 200 mesh in water using an appropriate dispersant to obtain 200 parts of slurry, immerse the above sintered product twice, and dry at 780℃.
By firing for about 7 hours before and after, a cylindrical ceramic element for dehumidification or total heat exchange in which alumina gel is dispersed and has a large number of small holes 1 passing through both end faces is obtained.

実施例 4 第3図は第2図とほぼ同様な片波成形体の成形
装置を示し、第2図と同一の部品には同一の番号
をつけて示す。尚図中16,17は泥漿浸漬装置
で夫々泥漿容器16a,17aと塗布ローラ16
b,17bよりなる。18a,18b,19a,
19bは搾りローラ、20,21は赤外線ヒータ
その他適宜のヒータ、22はガイドローラであ
る。
Embodiment 4 FIG. 3 shows a molding apparatus for a single-wave molded body substantially similar to that in FIG. 2, and the same parts as in FIG. 2 are designated by the same numbers. In the figure, reference numerals 16 and 17 indicate slurry dipping devices, which include slurry containers 16a and 17a and an application roller 16, respectively.
b, 17b. 18a, 18b, 19a,
19b is a squeezing roller, 20 and 21 are infrared heaters and other appropriate heaters, and 22 is a guide roller.

本節粘土、蛙目粘土等の粘土類20〜50部と合成
ゼオライトパウダー(富士デビソン化学株式会社
のDavison Molecular Sieve4A)80〜50部とを
水100部に分散せしめて泥漿を得、該泥漿23,
24を泥漿容器16a,17aに入れ、水ガラス
の20%水溶液を接着剤8として接着剤容器7aに
入れ、何れも塗布ローラ16b,17b,7bの
ほぼ下半部を浸漬させる。
A slurry is obtained by dispersing 20 to 50 parts of clay such as Honbushi clay and Frogme clay and 80 to 50 parts of synthetic zeolite powder (Davison Molecular Sieve 4A from Fuji Davison Chemical Co., Ltd.) in 100 parts of water.
24 is placed in slurry containers 16a and 17a, and a 20% aqueous solution of water glass is placed in adhesive container 7a as adhesive 8, and substantially the lower half of application rollers 16b, 17b and 7b is immersed in each case.

紙、布、不織布の如き微細気孔を有するシート
11,12をロール状に捲いて用意し、両シート
11,12を塗布ローラ16b,17bにかけて
泥漿23,24に浸漬し、搾りローラ18a,1
9aにより過剰の泥漿を搾つて除去し、ヒータ2
0,21により乾燥し、必要に応じ搾りローラ1
8b,19bを通して厚さを均一にした後、泥漿
23を含浸したシート11aは成形ローラ2,3
の噛合せ部に導き波形シート11bとなし、波形
シート11bの波の稜線部分に接着剤8を塗布
後、泥漿24を含浸した平面状シート12aとと
もに成形ローラ3と圧着ローラ6との間を通して
互に接着し、得られた片波成形体15を捲取る。
片波成形体15は第4図に示す如く接着剤容器2
5aと塗布ローラ25bよりなる接着剤塗布装置
25により接着剤26を波形シートの稜線部分に
塗布し、片波成形体15をセラミツク製芯材27
に円筒状に捲取る。
Sheets 11 and 12 having fine pores such as paper, cloth, and nonwoven fabric are rolled up and prepared, and both sheets 11 and 12 are applied to coating rollers 16b and 17b, immersed in slurry 23 and 24, and squeezed by squeezing rollers 18a and 1.
9a, the excess slurry is squeezed out and removed by heater 2.
Dry with 0, 21, squeeze roller 1 as necessary.
8b and 19b to make the thickness uniform, the sheet 11a impregnated with the slurry 23 is passed through forming rollers 2 and 3.
After applying the adhesive 8 to the ridgeline portion of the waves of the corrugated sheet 11b, the sheet is passed between the forming roller 3 and the pressure roller 6 together with the planar sheet 12a impregnated with the slurry 24. The single-wave molded product 15 obtained is then rolled up.
The single wave molded body 15 is attached to the adhesive container 2 as shown in FIG.
An adhesive 26 is applied to the ridgeline portion of the corrugated sheet by an adhesive applicator 25 consisting of an adhesive applicator 5a and an applicator roller 25b, and the single-corrugated molded body 15 is applied to a ceramic core material 27.
Roll it up into a cylindrical shape.

円筒状に成形した片波成形体を乾燥後炉に入れ 室温〜350℃ 50℃/hr. 350℃ 1hr.保持 350〜500℃ 100℃/hr. 500℃ 約5hr.保持 500〜200℃ 炉内で徐冷 200℃〜室温 炉外で放冷 の条件で焼成し、第5図に示す如く両端面に透通
する多数の小透孔1を有する円筒形で外表面およ
び各小透孔表面に合成ゼオライトの微粒子が分散
固着したセラミツク製の除湿用乃至全熱交換用エ
レメントを得る。
After drying the cylindrical single wave molded body, put it in a furnace and heat it at room temperature to 350℃ 50℃/hr. 350℃ 1hr. Hold 350~500℃ 100℃/hr. 500℃ Approx. 5hr. Hold 500~200℃ Inside the furnace It is fired under the conditions of slow cooling at 200℃ to room temperature outside the furnace, and as shown in Figure 5, it has a cylindrical shape with a large number of small holes 1 penetrating through both end faces on the outer surface and the surface of each small hole. A ceramic dehumidification or total heat exchange element in which fine particles of synthetic zeolite are dispersed and fixed is obtained.

実施例 5 長石10g、ペタライト125g、タルク50g、ガ
ラス粉12g、アラビアゴム7gを各100メツシユ
以下の微粉末に調整混合し、ポリ酢酸ビニールの
水性エマルジヨン(蒸発残渣41%)60gと水10g
との混合液に分散して水懸濁液23,24とし
(第3図)、これを容器16a,17aに入れ、塗
布ローラ16b,17bの一部を浸漬させる。
Example 5 10 g of feldspar, 125 g of petalite, 50 g of talc, 12 g of glass powder, and 7 g of gum arabic were adjusted and mixed into fine powder of 100 mesh or less each, and mixed with 60 g of aqueous emulsion of polyvinyl acetate (evaporation residue 41%) and 10 g of water.
Aqueous suspensions 23 and 24 are obtained (FIG. 3), which are placed in containers 16a and 17a, and parts of coating rollers 16b and 17b are immersed therein.

紙、布、不織布の如き微細気孔を有するシート
11,12をロール状に捲いて用意し、両シート
11,12を塗布ローラ16b,17bにかけ懸
濁液23,24に浸漬し、搾りローラ18a,1
9aにより過剰の懸濁液を搾つて除去し、ヒータ
ー20,21で乾燥し、必要に応じ搾りローラ1
8b,19bを通して厚さを均一にした後、懸濁
液23を含浸したシート11aは成形ローラ2,
3の噛合せ部に導き波形シート11bとなし、波
形シート11bの波の稜線部分に接着剤8を塗布
後、駆濁液24を含浸した平面状シート12aと
ともに成形ローラ3と圧着ローラ6との間を通し
て互に接着し、得られた片波成形体15を捲取
る。
Sheets 11 and 12 having fine pores such as paper, cloth, and non-woven fabric are rolled up and prepared, and both sheets 11 and 12 are applied to application rollers 16b and 17b and dipped in suspensions 23 and 24, squeezed by squeezing rollers 18a, 1
Excess suspension is squeezed out using 9a, dried using heaters 20 and 21, and squeezed by squeezing roller 1 as necessary.
8b, 19b to make the thickness uniform, the sheet 11a impregnated with the suspension 23 is passed through the forming rollers 2,
After applying the adhesive 8 to the ridgeline portion of the waves of the corrugated sheet 11b, the forming roller 3 and the pressure roller 6 are bonded together with the planar sheet 12a impregnated with the suspension liquid 24. They are adhered to each other through the gaps, and the obtained single-wave molded product 15 is rolled up.

片波成形体15は正方形、長方形、平行四辺形
等に截断後第6図に示す如く接着剤容器28a、
塗布ローラ28b、押えローラ28cよりなる接
着剤塗布装置28のローラ間〓を通して波形シー
トの稜線部分に接着剤29を塗布し、片波成形体
15をその波の方向が一段毎に直交するよう適宜
枚数積層し乾燥後炉に入れ 室温〜300℃ 50℃/hr. 300〜1000℃ 100℃/hr. 1000〜1200℃ 50℃/hr. 1200℃ 1hr.保持 1200〜300℃ 10hr. 300℃〜室温 炉外で放冷 の条件で焼成する。この加熱によつて波形シート
11b、平面状シート12aおよび接着剤中の有
機成分はすべて焼失し、多孔性セラミツクの薄い
平面状シートと波形シートとが互に焼結して一体
の直方体状となる。ここで低融点セラミツクたと
えば鉛白80%、カオリン8%、珪石12%の微粉末
混合物30〜70部と100〜200メツシユの微粒状のシ
リカゲル60〜10部とにアラビアゴム、カルボキシ
メチルセルローズ、ボリビニルアルコール等適宜
の結合剤を加えて100部の水に分散して泥漿を得、
上記の角筒状の焼結セラミツクを2回浸漬し、乾
燥後実施例4とほぼ同一条件で再焼成し、第7図
に示す如く多数の直行する小透孔1群を具えシリ
カゲルの微粒子が分散したセラミツク製のガス吸
着用乃至全熱交換用のエレメントを得る。
After cutting the single wave molded body 15 into a square, rectangle, parallelogram, etc., as shown in FIG. 6, an adhesive container 28a,
The adhesive 29 is applied to the ridgeline portion of the corrugated sheet through the gap between the rollers of the adhesive applicator 28 consisting of the applicator roller 28b and the presser roller 28c, and the single-wave molded product 15 is suitably coated so that the directions of the waves are perpendicular to each other. After stacking several sheets and drying them, put them in an oven at room temperature ~ 300℃ 50℃/hr. 300~1000℃ 100℃/hr. 1000~1200℃ 50℃/hr. 1200℃ 1hr.Hold 1200~300℃ 10hr. 300℃~room temperature Fired outside the furnace under conditions of cooling. By this heating, all the organic components in the corrugated sheet 11b, the flat sheet 12a, and the adhesive are burned out, and the thin flat sheet of porous ceramic and the corrugated sheet are sintered together to form an integral rectangular parallelepiped. . Here, low melting point ceramics, such as 30 to 70 parts of a fine powder mixture of 80% lead white, 8% kaolin, and 12% silica stone, and 60 to 10 parts of fine granular silica gel of 100 to 200 mesh are combined with gum arabic, carboxymethyl cellulose, and silica. Add a suitable binder such as vinyl alcohol and disperse in 100 parts of water to obtain a slurry.
The above-mentioned rectangular cylindrical sintered ceramic was immersed twice, dried, and then refired under almost the same conditions as in Example 4. As shown in FIG. A dispersed ceramic element for gas adsorption or total heat exchange is obtained.

以上実施例の如く本発明において基体として使
用するシート材料は灰分の少ない布帛類、クラフ
ト紙等の他アスベスト紙、セラミツク繊維紙、ガ
ラス繊維布の如く不燃分の著しく多いものあるい
は不燃のものも全く同様に使用し得る。
As shown in the above embodiments, the sheet materials used as the substrate in the present invention include fabrics with low ash content, kraft paper, etc., as well as materials with significantly high incombustible content, such as asbestos paper, ceramic fiber paper, and glass fiber cloth, or non-combustible materials at all. May be used similarly.

またガス吸着剤として上記実施例ではシリカゲ
ル、アルミナゲル、合成ゼオライトを挙げたが、
これ以外でも固体の吸着剤で焼成により活性を失
わず適度の吸着活性を保持するものであれば任意
に選択し得る。換言すれば上記実施例のシリカゲ
ル、アルミナゲル、合成ゼオライトにおいても焼
成温度を高くし過ぎると活性表面の面積が減少し
所望のガス吸着能力が失われる。
In addition, silica gel, alumina gel, and synthetic zeolite were used as gas adsorbents in the above examples, but
Other than these, any solid adsorbent may be selected as long as it does not lose its activity upon calcination and maintains a suitable adsorption activity. In other words, when the calcination temperature is too high for the silica gel, alumina gel, and synthetic zeolite of the above examples, the active surface area decreases and the desired gas adsorption ability is lost.

第1図、第5図に示した円筒状のエレメントは
静止状態でその小透孔に気体その他処理流体を通
して該流体中の水分および活性成分を吸着し、エ
レメントが吸着成分で飽和したとき間歇的に加熱
空気等を通して脱着する方法の他、第8図に示す
如くモーターMにより駆動回転し得る如くケーシ
ング30内に保持し、ケーシング30のパージセ
クター31,31によりガス吸着ゾーン32と脱
着ゾーン33とに分離し、エレメントを低速度で
回転しつつガス吸着ゾーン32に処理空気Aを導
入してガス吸着および除湿を行ない、ガスまたは
湿分が飽和したときはエレメントを回転させたま
ま脱着ゾーン33に高温の水蒸気または空気Bを
通して脱着することができ、また第9図に示す如
くモーターMにより駆動回転し得る如くケーシン
グ30内に保持しケーシング30のパージセクタ
ー31により入気ゾーン34と排気ゾーン35と
に分離し、エレメントを低速度で回転しつつ入気
ゾーン34に外気OAを、排気ゾーン35に還気
RAを導入することにより外気OAと還気RAとの
間で全熱交換を行なうことができる。また第7図
に示す直交流型エレメントは第10図に示す如く
互に直交する小透孔群に外気OAおよび還気RA
を導入することにより両気体に含まれる活性ガス
を吸着し得るとともに外気OAと還気RAとの間
で全熱交換を行なうことができる。
The cylindrical element shown in Figures 1 and 5 adsorbs water and active components in the fluid by passing gas or other processing fluid through its small holes in a stationary state, and when the element is saturated with the adsorbed components, Alternatively, as shown in FIG. 8, the gas adsorption zone 32 and desorption zone 33 can be separated by holding the casing 30 in a casing 30 such that it can be driven and rotated by a motor M as shown in FIG. The treated air A is introduced into the gas adsorption zone 32 while rotating the element at a low speed to perform gas adsorption and dehumidification. When the gas or moisture is saturated, the treated air A is introduced into the desorption zone 33 while the element is rotating. It is held in a casing 30 so that it can be desorbed through high-temperature water vapor or air B, and can be driven and rotated by a motor M as shown in FIG. While rotating the element at low speed, outside air is sent to the intake zone 34 and return air is sent to the exhaust zone 35.
By introducing RA, total heat exchange can be performed between outside air OA and return air RA. In addition, the cross-flow type element shown in Fig. 7 has a group of small through holes that are orthogonal to each other as shown in Fig. 10.
By introducing the air, the active gas contained in both gases can be adsorbed, and total heat can be exchanged between the outside air OA and the return air RA.

前記のシリカゲル、アルミナゲル、合成ゼオラ
イトは何れも吸湿性およびアンモニア、炭酸ガ
ス、硫化水素等のガスの吸着能力が大きく、特に
アルミナゲル、合成ゼオライトは100℃以上の温
度においてもすぐれた吸湿性を有するとともに、
従来の塩化リチウム、塩化カルシウムの如き吸収
型吸湿剤は湿気を捕捉すると漸次水溶液を形成
し、際限なく湿気を吸収し遂にはこの過剰吸湿に
よりブロツク母体が破壊するに至るのに対し、本
願で使用する吸着剤は吸着した物質たとえば水分
で飽和するとそれ以上は吸着が進まないだけで相
の変化はなく、更に本発明においては該吸着剤の
担体として比表面積の著しく大きいセラミツク多
孔質体を使用することにより流体の除湿、ガス吸
着を効果的に行なうことができ、また合成ゼオラ
イトを使用するときは高温の再生空気を使用する
ことにより著しく露点の低い乾燥気体を得ること
ができ、構造上流体の通過による圧力損失も少な
く、加熱再生も高効率に行ない得るとともに広範
囲の流体処理に有効に使用することができ、製造
も確実容易になし得る等の効果を有するものであ
る。
The silica gel, alumina gel, and synthetic zeolite mentioned above all have high hygroscopicity and ability to adsorb gases such as ammonia, carbon dioxide, and hydrogen sulfide.Alumina gel and synthetic zeolite in particular have excellent hygroscopicity even at temperatures of 100°C or higher. In addition to having
Conventional absorbent moisture absorbers such as lithium chloride and calcium chloride gradually form an aqueous solution when they capture moisture, absorb moisture endlessly, and eventually destroy the block matrix due to excessive moisture absorption. When the adsorbent is saturated with the adsorbed substance, for example, water, the adsorption does not proceed any further and there is no phase change. Furthermore, in the present invention, a porous ceramic material with a significantly large specific surface area is used as a carrier for the adsorbent. This makes it possible to effectively dehumidify fluids and adsorb gases, and when using synthetic zeolite, it is possible to obtain dry gas with a significantly low dew point by using high-temperature regenerated air. The pressure loss due to passage is small, heat regeneration can be carried out with high efficiency, it can be effectively used in a wide range of fluid treatments, and it can be manufactured reliably and easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により得られたガス吸着用エレ
メントの一例を示す斜視説明図、第2図は本発明
の他の実施例の第一工程を示す斜視図、第3図は
本発明の更に他の実施例の第一工程を示す一部切
截正面図、第4図は同第二工程を示す要部の断面
図、第5図は同方法により得られた製品を示す斜
視説明図、第6図は本発明の更に他の実施例の第
二工程を示す要部の断面説明図、第7図は同方法
により得られた製品を示す斜視説明図、第8図乃
至第10図は本発明により得られたガス吸着用エ
レメントの使用状態の例を示す説明図である。 図中、2,3は成形ローラ、6は圧着ローラ、
7,25,28は接着剤塗布装置、16,17は
セラミツク泥漿浸漬装置、18a,18b,19
a,19bは搾りローラ、20,21はヒータを
示す。
FIG. 1 is a perspective explanatory view showing an example of a gas adsorption element obtained by the present invention, FIG. 2 is a perspective view showing the first step of another embodiment of the present invention, and FIG. A partially cutaway front view showing the first step of another example, FIG. 4 is a sectional view of the main part showing the second step, and FIG. 5 is a perspective explanatory view showing the product obtained by the same method. FIG. 6 is an explanatory cross-sectional view of the main part showing the second step of still another embodiment of the present invention, FIG. 7 is an explanatory perspective view showing a product obtained by the same method, and FIGS. 8 to 10 are It is an explanatory view showing an example of the usage state of the element for gas adsorption obtained by the present invention. In the figure, 2 and 3 are forming rollers, 6 is a pressure roller,
7, 25, 28 are adhesive application devices, 16, 17 are ceramic slurry dipping devices, 18a, 18b, 19
a and 19b are squeezing rollers, and 20 and 21 are heaters.

Claims (1)

【特許請求の範囲】 1 ガス吸着剤を混入したセラミツク泥漿により
両端面に透通する多数の小透孔を有するブロツク
に成形した後、該ガス吸着剤が失活しない温度で
加熱焼結することを特徴とするガス吸着用エレメ
ントの製造法。 2 ガス吸着剤が吸湿剤でありガス吸着用エレメ
ントが除湿用エレメントである特許請求の範囲第
1項記載のガス吸着用エレメントの製造法。 3 ガス吸着剤を混入したセラミツク泥漿を型成
形または押出し成形により両端面に透通する多数
の小透孔を有するブロツクに成形する特許請求の
範囲第1項または第2項記載のガス吸着用エレメ
ントの製造法。 4 多孔性シートにより両端面に透通する多数の
小透孔を有するブロツク状に成形し、ガス吸着剤
を混入したセラミツク泥漿に該ブロツクを浸漬
し、該ガス吸着剤が失活しない温度に加熱して多
孔性シート中の有機成分を焼失せしめるとともに
セラミツクを焼結する特許請求の範囲第1項また
は第2項記載のガス吸着用エレメントの製造法。 5 ガス吸着剤を混入したセラミツク泥漿に多孔
性シートを浸漬し、多孔性シートに含浸されたセ
ラミツク泥漿を半ば乾燥した後両端面に透通する
多数の小透孔を有するブロツク状に成形し、該ガ
ス吸着剤が失活しない温度に加熱して多孔性シー
ト中の有機成分を焼失せしめるとともにセラミツ
クを焼結する特許請求の範囲第1項または第2項
記載のガス吸着用エレメントの製造法。 6 セラミツク泥漿を型成形または押出し成形に
より両端面に透通する多数の小透孔を有するブロ
ツク状に成形した後加熱焼結してブロツクとな
し、ガス吸着剤を混入したセラミツク泥漿に該ブ
ロツクを浸漬し該ガス吸着剤が失活しない温度で
再焼結することを特徴とするガス吸着用エレメン
トの製造法。 7 セラミツク泥漿に多孔性シートを浸漬し、多
孔性シートに含浸されたセラミツク泥漿を半ば乾
燥した後両端面に透通する多数の小透孔を有する
ブロツク状に成形し、加熱により多孔性シート中
の有機成分を焼失せしめるとともにセラミツクを
焼結して両端面に透通する多数の小透孔を有する
ブロツクとなし、ガス吸着剤を混入したセラミツ
ク泥漿に該ブロツクを浸漬し、該ガス吸着剤が失
活しない温度で再焼結する特許請求の範囲第6項
記載のガス吸着用エレメントの製造法。 8 ガス吸着剤が吸湿剤でありガス吸着用エレメ
ントが除湿用エレメントである特許請求の範囲第
6項または第7項記載のガス吸着用エレメントの
製造法。
[Scope of Claims] 1. Formed into a block having a large number of small holes passing through both end faces using ceramic slurry mixed with a gas adsorbent, and then heated and sintered at a temperature that does not deactivate the gas adsorbent. A method for manufacturing a gas adsorption element characterized by: 2. The method for producing a gas adsorption element according to claim 1, wherein the gas adsorption agent is a moisture absorbent and the gas adsorption element is a dehumidification element. 3. A gas adsorption element according to claim 1 or 2, which is formed by molding or extrusion molding or extrusion molding a ceramic slurry mixed with a gas adsorbent into a block having a large number of small holes penetrating through both end faces. manufacturing method. 4 A porous sheet is formed into a block having a large number of small holes penetrating through both end faces, the block is immersed in ceramic slurry mixed with a gas adsorbent, and heated to a temperature that does not deactivate the gas adsorbent. A method for manufacturing a gas adsorption element according to claim 1 or 2, wherein the organic components in the porous sheet are burnt out and the ceramic is sintered. 5. A porous sheet is immersed in ceramic slurry mixed with a gas adsorbent, and after semi-drying the ceramic slurry impregnated into the porous sheet, it is shaped into a block having a large number of small holes penetrating both end faces. 3. The method for producing a gas adsorption element according to claim 1, wherein the organic components in the porous sheet are burned out by heating to a temperature at which the gas adsorption agent is not deactivated, and the ceramic is sintered. 6 Ceramic slurry is molded or extruded into a block having a large number of small holes penetrating through both end faces, then heated and sintered to form a block, and the block is placed in ceramic slurry mixed with a gas adsorbent. A method for producing a gas adsorption element, which comprises immersing it and resintering it at a temperature that does not deactivate the gas adsorption agent. 7. A porous sheet is immersed in ceramic slurry, and after the ceramic slurry impregnated into the porous sheet is semi-dried, it is formed into a block shape having a large number of small holes penetrating through both end faces, and the porous sheet is heated. At the same time, the organic components of the block are burned out, and the ceramic is sintered to form a block with many small holes penetrating through both end faces.The block is immersed in ceramic slurry mixed with a gas adsorbent, and the gas adsorbent is 7. The method for producing a gas adsorption element according to claim 6, wherein the gas adsorption element is resintered at a temperature that does not cause deactivation. 8. The method for producing a gas adsorption element according to claim 6 or 7, wherein the gas adsorption agent is a moisture absorbent and the gas adsorption element is a dehumidification element.
JP56205817A 1981-12-18 1981-12-18 Element for adsorption of gas and its production Granted JPS58109118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56205817A JPS58109118A (en) 1981-12-18 1981-12-18 Element for adsorption of gas and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56205817A JPS58109118A (en) 1981-12-18 1981-12-18 Element for adsorption of gas and its production

Publications (2)

Publication Number Publication Date
JPS58109118A JPS58109118A (en) 1983-06-29
JPH0364164B2 true JPH0364164B2 (en) 1991-10-04

Family

ID=16513186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56205817A Granted JPS58109118A (en) 1981-12-18 1981-12-18 Element for adsorption of gas and its production

Country Status (1)

Country Link
JP (1) JPS58109118A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115526U (en) * 1984-01-14 1985-08-05 株式会社松井製作所 rotary dehumidifier
JP2579457B2 (en) * 1985-05-09 1997-02-05 花王株式会社 Packing agent
JPH0340340Y2 (en) * 1986-01-08 1991-08-26
JPS63264125A (en) * 1987-04-18 1988-11-01 Kobe Steel Ltd Dry dehumidifying component
JPH01111422A (en) * 1987-10-22 1989-04-28 Seibu Giken:Kk Production of moisture absorptive sheet and element for exchanging moisture
JP2652593B2 (en) * 1991-05-30 1997-09-10 北海道 Production method of humidity control material using Wakkanai diatomaceous earth
JP2651964B2 (en) * 1991-07-25 1997-09-10 株式会社カワタ Adsorbable honeycomb-shaped ceramic laminate and method for producing the same
JPH0523584A (en) * 1991-07-25 1993-02-02 Kawata Mfg Co Ltd Adsorptive ceramic porous element and its manufacture
JP3415446B2 (en) * 1997-07-03 2003-06-09 高砂熱学工業株式会社 Air purification filter, method of manufacturing the same, and advanced cleaning device
US9073000B2 (en) * 2012-03-14 2015-07-07 Corning Incorporated Segmented reactors for carbon dioxide capture and methods of capturing carbon dioxide using segmented reactors
WO2019027047A1 (en) * 2017-08-04 2019-02-07 日立金属株式会社 Adsorption member and production method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615823A (en) * 1979-07-17 1981-02-16 Toshimi Kuma Dehumidifying element and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615823A (en) * 1979-07-17 1981-02-16 Toshimi Kuma Dehumidifying element and its manufacture

Also Published As

Publication number Publication date
JPS58109118A (en) 1983-06-29

Similar Documents

Publication Publication Date Title
JPH0628173Y2 (en) Moisture exchange element
CA2152361C (en) Langmuir moderate type 1 desiccant for air
US4886769A (en) Active gas adsorbing element and method of manufacturing
JPH0364164B2 (en)
WO2007133487A2 (en) Activated carbon honeycomb catalyst bed for removing mercury from combustion flue gas
DE60202508T2 (en) Method and air filter for cleaning air in a clean room
US5683532A (en) Method of manufacturing an active silica gel honeycomb adsorbing body usable in an atmosphere having 100% relative humidity
US5348922A (en) Gas adsorbing element and method for forming same
AU2013210811A1 (en) Desiccant based honeycomb chemical filter and method of manufacture thereof
JP2003038928A (en) Heating regeneration type organic rotor member and method for manufacturing the same
CN111545164B (en) Filtering material for purifying volatile organic compounds and preparation method thereof
EP3151945A1 (en) Gas treatment monolith article
JP2015509832A (en) Desiccant-supporting honeycomb chemical filter and manufacturing method thereof
JPH0710330B2 (en) Dry dehumidifier
JPH06165934A (en) Gas adsorption element, production and use therefor
JP3707573B2 (en) Heat-resistant adsorption element and manufacturing method thereof
JPS63264125A (en) Dry dehumidifying component
JPH08187429A (en) Adsorbing material and adsorbent using the same
JPH0871352A (en) Filter, production thereof and filter apparatus
JPH07204451A (en) Dehumidifing sheet and element using organic moisture absorbent
JP2627466B2 (en) Adsorbable honeycomb-shaped ceramic body and method for producing the same
JP2937437B2 (en) Manufacturing method of activated silica gel honeycomb adsorbent
JPH0677668B2 (en) Method for manufacturing moisture exchange element
JPH0368415A (en) Production of element for gas sorbing machine
JP2023147773A (en) Adsorption filter, adsorption rotor and adsorption treatment device