JPH0368110B2 - - Google Patents

Info

Publication number
JPH0368110B2
JPH0368110B2 JP58144645A JP14464583A JPH0368110B2 JP H0368110 B2 JPH0368110 B2 JP H0368110B2 JP 58144645 A JP58144645 A JP 58144645A JP 14464583 A JP14464583 A JP 14464583A JP H0368110 B2 JPH0368110 B2 JP H0368110B2
Authority
JP
Japan
Prior art keywords
temperature
range
treatment
vibration
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58144645A
Other languages
Japanese (ja)
Other versions
JPS6036659A (en
Inventor
Masaki Morikawa
Hideaki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP14464583A priority Critical patent/JPS6036659A/en
Publication of JPS6036659A publication Critical patent/JPS6036659A/en
Publication of JPH0368110B2 publication Critical patent/JPH0368110B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Vibration Prevention Devices (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、防振性にすぐれ、かつ耐食性およ
び耐摩耗性にもすぐれたCu−Mn系防振合金部材
の製造法に関するものである。 従来、例えば船舶のスクリユーや歯車、さらに
羽根車などの防振性が要求される部材は、Mn:
30〜95%を含有し、さらに必要に応じて防振性向
上成分としてAl:0.1〜4%およびCd:0.1〜3%
のうちの1種または2種(ただしAl+Cd:4%
以下)を含有し、残りがCuと不可避不純物から
なる組成(以上重量%、以下同じ)を有するCu
−Mn系合金を用い、これに800〜950℃の範囲内
の温度に1〜10時間保持の条件で溶体化処理を施
した後、防振特性を付与する目的で350〜500℃の
範囲内の温度に1〜10時間保持の条件で時効処理
を施して、α−Mnを析出させることからなる方
法によつて製造されている。 しかし、上記の従来方法で製造されたCu−Mn
系防振合金部材は耐食性および耐摩耗性に劣るも
のであるため、これが、例えば船舶のスクリユー
であればキヤビテイーシヨンやエロージヨンが発
生し易く、また歯車や羽根車であれば摩耗が生じ
易く、この結果いずれの部材も使用寿命の比較的
短かいものにならざるを得ないものであつた。 そこで、本発明者等は、上述のような観点か
ら、防振性は勿論のこと、耐食性および耐摩耗性
にもすぐれたCu−Mn系防振合金部材を得べく研
究を行なつた結果、上記の従来Cu−Mn系防振合
金部材の表面に、800〜950℃の範囲内の温度に1
〜10時間の範囲内の時間保持の条件でほう化処理
を施すと、表面より拡散侵入したBが主として素
地に固溶しているMnと反応してほう化マンガン
を形成し、このほう化マンガンは硬質にして耐食
性のすぐれたものであるから、このほう化マンガ
ンによる表面硬化層を有するCu−Mn系防振合金
部材は、すぐれた耐食性と耐摩耗性をもつように
なり、さらにこれに通常の条件で溶体化処理と時
効処理を施すと、素地に析出したα−Mnによつ
てすぐれた防振特性も合せもつようになるという
知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、少なくともMn:30〜65%を含有す
るCu−Mn系防振合金部材の表面に、800〜950℃
の範囲内の温度に1〜10時間の範囲内の時間保持
の条件でほう化処理を施して、その表面部に硬質
にして耐食性のすぐれたほう化マンガンからなる
表面硬化層を形成し、ついで、前記ほう化処理
後、直ちにほう化処理温度から急冷して、溶体化
処理を行なうか、あるいはほう化処理後放冷し、
別途800〜950℃の範囲内の温度に1〜10時間の範
囲内の時間保持の条件で溶体化処理を行なうか
し、引続いて350〜500℃の範囲内の温度に1〜10
時間の範囲内の時間保持の条件で時効処理を施し
てα−Mnを析出させることによつて、耐食性、
耐摩耗性、および防振性にすぐれたCu−Mn系防
振合金部材を製造する方法に特徴を有するもので
ある。 つぎに、この発明のCu−Mn系防振合金部材の
製造法において、製造条件を上記の通りに限定し
た理由を説明する。 (a) Mn含有量 Mn成分には防振性を付与すると共に、ほう
化処理時にほう化マンガンを形成して耐食性お
よび耐摩耗性を付与する作用があるが、その含
有量が30%未満では前記作用に所望の効果が得
られず、一方95%を越えて含有させると所望の
防振性が得られなくなることから、その含有量
を30〜95%と定めた。 (b) ほう化処理条件 その温度が800℃未満では、ほう処理に際し
ての反応速度がきわめて遅く、所望の表面硬化
層を形成するのが困難であり、一方950℃を越
えた高温にすると、部材に溶融現象が起り易く
なることから、その温度を800〜950℃と定め
た。またこの温度は溶体化処理温度に相当する
ものであつて、その温度が800℃未満では、ほ
う化処理後、急冷の溶体化処理を施した場合に
Mnを完全に素地に固溶させることができず、
後工程の時効処理で防振性向上に寄与するα−
Mnの析出が不十分となるのである。さらにそ
の保持時間が1時間未満では表面硬化層の形成
が不十分であり、一方10時間を越えた保持時間
にすると、表面硬化層が厚くつき過ぎ、溶体化
処理に際しての急冷時に割れが発生するように
なることから、その保持時間を1〜10時間と定
めた。 (c) 溶体化処理条件 その温度が800℃未満にして、その保持時間
が1時間未満ではMnを完全に固溶させること
ができず、一方その温度が950℃を越えると、
上記のように部材に溶融現象が発生するように
なり、また10時間を越えた保持時間は、その温
度が低温側にあつても不必要であることから、
その温度を800〜950℃、その保持時間を1〜10
時間と定めた。 (d) 時効処理条件 その温度が350℃未満でも、その保持時間が
1時間未満でもα−Mnの析出が不十分で、所
望の防振性を確保することができず、一方その
温度が500℃を越えても、またその保持時間が
10時間を越えても過時効となつて所望の防振性
を得ることはできなくなることから、その温度
を350〜500℃、その保持時間を1〜10時間と定
めた。 なお、この発明の方法を実施するに際して、ほ
う化処理後の冷却や溶体化処理は、ArやN2など
の不活性ガスや、真空などの保護雰囲気中で行な
うのが好ましく、これによつて表面硬化層の損傷
を皆無とすることができる。 つぎに、この発明のCu−Mn系防振合金部材の
製造方法を実施例により具体的に説明する。 実施例 通常の高周波数誘導炉を用い、Ar雰囲気とし
た黒鉛るつぼ内で、それぞれ第1表に示される成
分組成をもつたCu−Mn系合金溶湯を5Kgづつ調
製した後、金型に鋳造してインゴツトとし、これ
に面削、熱間鍛造、および熱間圧延を施して板
厚:10mmの熱延板とし、ついでこれより幅:25mm
×長さ:250mmの寸法をもつた試験片を切出し、
この試験片に、B4C:80%、H3BO3:10%、
Na2B4O7:10%からなる組成をもつた溶融フラ
ツクスを用い、それぞれ第1表に示される条件で
ほう化処理を施し、さらに、ほう化処理後放冷
(空冷)した場合には同じく第1表に示される条
件で溶体化処理を施し、引続いて同じく第1表に
示される条件で防振性付与のための時効処理を施
すことによつて、本発明法1〜13を実施し、さら
にほう化処
The present invention relates to a method for manufacturing a Cu--Mn-based vibration-isolating alloy member that has excellent vibration-isolating properties and also has excellent corrosion resistance and wear resistance. Conventionally, components that require vibration isolation, such as ship screws, gears, and even impellers, have traditionally been made of Mn:
Al: 0.1-4% and Cd: 0.1-3% as anti-vibration improving components if necessary.
One or two of the following (Al + Cd: 4%
(below), with the remainder consisting of Cu and unavoidable impurities (the above weight percent, the same below)
-Using a Mn-based alloy, it is subjected to solution treatment at a temperature in the range of 800 to 950°C for 1 to 10 hours, and then heated to a temperature in the range of 350 to 500°C for the purpose of imparting anti-vibration properties. It is produced by a method of precipitating α-Mn by aging treatment at a temperature of 1 to 10 hours. However, Cu−Mn produced by the above conventional method
Anti-vibration alloy members have poor corrosion resistance and wear resistance, so cavitation and erosion are likely to occur if they are a screw in a ship, for example, and wear is likely to occur if they are a gear or impeller. As a result, all the members had to have a relatively short service life. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to obtain a Cu-Mn-based vibration-isolating alloy member that not only has excellent vibration-isolating properties but also has excellent corrosion resistance and wear resistance. The surface of the conventional Cu-Mn vibration-proof alloy member mentioned above is exposed to a temperature of 800 to 950℃.
When the boriding treatment is carried out under conditions of holding time within the range of ~10 hours, the B that has diffused into the surface reacts mainly with Mn dissolved in the substrate to form manganese boride, and this manganese boride is hard and has excellent corrosion resistance, so Cu-Mn-based vibration damping alloy members with a surface hardening layer made of manganese boride have excellent corrosion resistance and wear resistance. They found that when solution treatment and aging are applied under these conditions, the α-Mn precipitated in the base material also provides excellent vibration damping properties. The present invention has been made based on the above findings, and the present invention is based on the above-mentioned findings.
A hardened surface layer made of manganese boride which is hard and has excellent corrosion resistance is formed on the surface by performing boriding treatment at a temperature within the range of 1 to 10 hours. , After the boriding treatment, immediately quench from the boriding temperature and perform solution treatment, or leave it to cool after the boriding treatment,
Separately, solution treatment is performed at a temperature in the range of 800 to 950°C for 1 to 10 hours, and then at a temperature in the range of 350 to 500°C for 1 to 10 hours.
Corrosion resistance and
The present invention is characterized by a method for manufacturing a Cu-Mn-based vibration-proofing alloy member with excellent wear resistance and vibration-proofing properties. Next, the reason why the manufacturing conditions are limited as described above in the method for manufacturing a Cu--Mn-based vibration-damping alloy member of the present invention will be explained. (a) Mn content The Mn component has the effect of imparting anti-vibration properties and also forms manganese boride during boriding treatment to impart corrosion resistance and wear resistance, but if the content is less than 30%, The desired effect cannot be obtained in the above action, and on the other hand, if the content exceeds 95%, the desired vibration damping properties cannot be obtained, so the content was set at 30 to 95%. (b) Boring treatment conditions If the temperature is lower than 800°C, the reaction rate during the bridging process is extremely slow and it is difficult to form the desired surface hardening layer.On the other hand, if the temperature exceeds 950°C, the material The temperature was set at 800 to 950°C since melting phenomenon is likely to occur. Also, this temperature corresponds to the solution treatment temperature, and if the temperature is less than 800℃, it will not work if rapid cooling solution treatment is performed after boriding.
Mn cannot be completely dissolved in the base material,
α- contributes to improving vibration damping properties during post-process aging treatment
This results in insufficient precipitation of Mn. Furthermore, if the holding time is less than 1 hour, the formation of the hardened surface layer will be insufficient, while if the holding time exceeds 10 hours, the hardened surface layer will become too thick and cracks will occur during rapid cooling during solution treatment. Therefore, the holding time was set at 1 to 10 hours. (c) Solution treatment conditions If the temperature is less than 800℃ and the holding time is less than 1 hour, Mn cannot be completely dissolved in solid solution, whereas if the temperature exceeds 950℃,
As mentioned above, melting phenomenon occurs in the parts, and holding time exceeding 10 hours is unnecessary even if the temperature is on the low temperature side.
The temperature is 800-950℃, the holding time is 1-10
It was set as time. (d) Aging treatment conditions Even if the temperature is less than 350°C or the holding time is less than 1 hour, the precipitation of α-Mn is insufficient and the desired vibration damping properties cannot be secured; Even if the temperature exceeds ℃, the retention time
Since even if it exceeds 10 hours, it becomes over-aged and the desired vibration damping properties cannot be obtained, so the temperature was set at 350 to 500°C and the holding time was set at 1 to 10 hours. In carrying out the method of the present invention, it is preferable that the cooling and solution treatment after the boriding treatment be carried out in an inert gas such as Ar or N 2 or in a protective atmosphere such as a vacuum. There can be no damage to the surface hardened layer. Next, the method for manufacturing a Cu--Mn-based vibration-damping alloy member of the present invention will be specifically explained with reference to Examples. Example Using a normal high-frequency induction furnace, 5 kg of Cu-Mn alloy molten metal having the composition shown in Table 1 was prepared in a graphite crucible in an Ar atmosphere, and then cast into a mold. This is made into an ingot, which is subjected to face milling, hot forging, and hot rolling to make a hot rolled plate with a thickness of 10 mm, which is then made into a hot rolled plate with a width of 25 mm.
× Length: Cut out a test piece with dimensions of 250 mm,
This test piece contained B4C : 80%, H3BO3 : 10%,
When a molten flux having a composition of 10% Na 2 B 4 O 7 was subjected to boriding treatment under the conditions shown in Table 1, and then left to cool (air-cooled) after the boriding treatment, Methods 1 to 13 of the present invention were applied to methods 1 to 13 of the present invention by performing solution treatment under the conditions also shown in Table 1, and subsequently performing aging treatment for imparting anti-vibration properties under the conditions also shown in Table 1. carried out and further boriding treatment.

【表】【table】

【表】【table】

【表】 理を行なわず、同じく第1表に示される条件で従
来法1,2をそれぞれ実施した。 つぎに、上記本発明法1〜13および従来法1,
2によつて得られたCu−Mn系防振合金部材とし
ての試験片について、耐摩耗性を評価する目的
で、表面硬さと内部硬さ(ビツカース硬さ)を測
定し、また防振性を評価する目的で振動減衰能を
測定し、さらに耐食性を評価する目的で、JIS規
格にもとづいて塩水噴霧試験とジエツト噴流試験
を行ない、前者の耐食性試験では腐食減量を測定
し、また後者の耐食性試験では最大腐食深さをそ
れぞれ測定した。これらの測定結果を第2表に示
した。 第2表に示される結果から、本発明法1〜13に
よつて製造された防振合金部材は、いずれも従来
法1,2によつて製造された防振合金部材と同等
のすぐれた防振性を示し、かつ耐食性および耐摩
耗性(硬さ)については、これに比して一段とす
ぐれた特性を示すことが明らかである。 上述のように、この発明の方法によれば、従来
Cu−Mn系防振合金部材と同等のすぐれた防振性
を有し、さらにほう化マンガンによる表面硬化層
の形成によつて耐食性と耐摩耗性にもすぐれた
Cu−Mn系防振合金部材を製造することができる
のである。
[Table] Conventional methods 1 and 2 were carried out under the same conditions as shown in Table 1, without performing any process. Next, the above-mentioned methods 1 to 13 of the present invention and conventional methods 1,
The surface hardness and internal hardness (Vickers hardness) of the Cu-Mn-based vibration-isolating alloy member specimens obtained in 2 were measured for the purpose of evaluating the wear resistance, and the vibration-isolating properties were also measured. For the purpose of evaluation, vibration damping ability was measured, and for the purpose of further evaluation of corrosion resistance, salt spray tests and jet jet tests were conducted based on JIS standards.The former corrosion resistance test measured the corrosion weight loss, and the latter corrosion resistance test In each case, the maximum corrosion depth was measured. The results of these measurements are shown in Table 2. From the results shown in Table 2, it can be seen that the anti-vibration alloy members manufactured by methods 1 to 13 of the present invention have excellent anti-vibration properties equivalent to the anti-vibration alloy members manufactured by conventional methods 1 and 2. It is clear that this material exhibits vibration properties and exhibits much superior properties in terms of corrosion resistance and abrasion resistance (hardness). As mentioned above, according to the method of the present invention,
It has excellent vibration damping properties equivalent to Cu-Mn based vibration damping alloy members, and also has excellent corrosion resistance and wear resistance due to the formation of a hardened surface layer made of manganese boride.
This makes it possible to manufacture Cu-Mn-based vibration-proof alloy members.

Claims (1)

【特許請求の範囲】 1 少なくともMn:30〜95重量%を含有するCu
−Mn系防振合金部材に、800〜950℃の範囲内の
温度に1〜10時間の範囲内の時間保持の条件でほ
う化処理を施して、その表面部に硬質にして耐食
性のすぐれたほう化マンガンからなる表面硬化層
を形成し、 ついで、前記ほう化処理後、直ちに前記ほう化
処理温度から急冷の溶体化処理を行ない、 引続いて、350〜500℃の範囲内の温度に1〜10
時間保持の条件で時効処理を施して、α−Mn析
出による防振特性付与を行なうことを特徴とする
耐食性および耐摩耗性のすぐれたCu−Mn系防振
合金部材の製造法。 2 少なくともMn:30〜95重量%を含有するCu
−Mn系防振合金部材に、800〜950℃の範囲内の
温度に1〜10時間の範囲内の時間保持の条件でほ
う化処理を施して、その表面部に硬質にして耐食
性のすぐれたほう化マンガンからなる表面硬化層
を形成した後、放冷し、 ついで、800〜950℃の範囲内の温度に1〜10時
間保持後、急冷の溶体化処理を施し、 引続いて、350〜500℃の範囲内の温度に1〜10
時間保持の条件で時効処理を施して、α−Mn析
出による防振特性付与を行なうことを特徴とする
耐食性および耐摩耗性のすぐれたCu−Mn系防振
合金部材の製造法。
[Claims] 1 Cu containing at least Mn: 30 to 95% by weight
- Mn-based vibration damping alloy members are subjected to boron treatment at a temperature in the range of 800 to 950°C for a period of time in the range of 1 to 10 hours to harden the surface and provide excellent corrosion resistance. A surface hardening layer made of manganese boride is formed, and then, immediately after the boriding treatment, a solution treatment is performed by rapid cooling from the boriding temperature, and then the temperature is lowered to a temperature within the range of 350 to 500°C. ~Ten
A method for manufacturing a Cu-Mn-based vibration-isolating alloy member with excellent corrosion resistance and wear resistance, characterized in that aging treatment is performed under time-holding conditions to impart vibration-isolating properties through α-Mn precipitation. 2 Cu containing at least Mn: 30 to 95% by weight
- Mn-based vibration damping alloy members are subjected to boron treatment at a temperature in the range of 800 to 950°C for a period of time in the range of 1 to 10 hours to harden the surface and provide excellent corrosion resistance. After forming a surface hardening layer made of manganese boride, it is allowed to cool, then maintained at a temperature within the range of 800 to 950°C for 1 to 10 hours, and then subjected to rapid cooling solution treatment, followed by a temperature range of 350 to 950°C. 1-10 for temperatures within the range of 500℃
A method for manufacturing a Cu-Mn-based vibration-isolating alloy member with excellent corrosion resistance and wear resistance, characterized in that aging treatment is performed under time-holding conditions to impart vibration-isolating properties through α-Mn precipitation.
JP14464583A 1983-08-08 1983-08-08 Production of vibration damping cu-mn alloy member Granted JPS6036659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14464583A JPS6036659A (en) 1983-08-08 1983-08-08 Production of vibration damping cu-mn alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14464583A JPS6036659A (en) 1983-08-08 1983-08-08 Production of vibration damping cu-mn alloy member

Publications (2)

Publication Number Publication Date
JPS6036659A JPS6036659A (en) 1985-02-25
JPH0368110B2 true JPH0368110B2 (en) 1991-10-25

Family

ID=15366884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14464583A Granted JPS6036659A (en) 1983-08-08 1983-08-08 Production of vibration damping cu-mn alloy member

Country Status (1)

Country Link
JP (1) JPS6036659A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730882Y2 (en) * 1985-05-24 1995-07-19 トヨタ自動車株式会社 Camshaft for internal combustion engine
JP2005200722A (en) * 2004-01-16 2005-07-28 Daido Steel Co Ltd Method of imparting corrosion resistance to manganese based twin crystal type damper alloy
JP5562749B2 (en) * 2010-07-16 2014-07-30 山陽特殊製鋼株式会社 Cu-Mn brazing wire fine wire and method for producing the same
CN111057982B (en) * 2019-12-09 2022-02-08 中国科学院合肥物质科学研究院 Mn-Cu-based submicron/nano porous high-damping alloy and preparation method thereof
CN114836648A (en) * 2022-06-08 2022-08-02 安阳工学院 Preparation method of copper-manganese-based temperature-control sound-changing alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429807A (en) * 1977-08-10 1979-03-06 Toshiba Corp Wear-resisting sintered damping alloy
JPS57207167A (en) * 1981-06-12 1982-12-18 Toyota Central Res & Dev Lab Inc Production of copper alloy containing dispersed boride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429807A (en) * 1977-08-10 1979-03-06 Toshiba Corp Wear-resisting sintered damping alloy
JPS57207167A (en) * 1981-06-12 1982-12-18 Toyota Central Res & Dev Lab Inc Production of copper alloy containing dispersed boride

Also Published As

Publication number Publication date
JPS6036659A (en) 1985-02-25

Similar Documents

Publication Publication Date Title
CN112941414B (en) High-strength and high-toughness stainless steel for clockwork spring and preparation method thereof
JPS6338418B2 (en)
JPH0368110B2 (en)
US3759758A (en) High strength aluminum casting alloy
JP5618466B2 (en) High rigidity high damping capacity cast iron
JP5618500B2 (en) Mechanical member of high rigidity and high damping capacity cast iron and method for manufacturing the same
JP3029642B2 (en) Casting molds or molten metal fittings with excellent erosion resistance to molten metal
JP3086373B2 (en) Manufacturing method of brake parts with excellent heat crack resistance
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP4337155B2 (en) Machining method of free-cutting martensitic stainless steel and stainless steel parts with excellent outgas resistance and corrosion resistance
JPS6146549B2 (en)
JPS59113155A (en) Vibrationproof zn alloy having excellent ordinary and high temperature strength
JPS6036639A (en) Vibration damping cu-mn alloy member having excellent resistance to corrosion and wear
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
JPS63162840A (en) Tool steel for hot working
KR102403909B1 (en) Method for preparing copper alloy material with excellent workability and machinability and copper alloy material prepared thereby
JPS607014B2 (en) Anti-vibration Zn alloy for casting with excellent strength at room and high temperatures
JPS635464B2 (en)
JP5779749B2 (en) Cast iron material manufacturing method, cast iron material and die casting machine sleeve
WO2024014484A1 (en) Low thermal expansion alloy
JPH046233A (en) Continuous casting mold material made of cu alloy having high cooling power and its manufacture
JPS6144930B2 (en)
JP2006265634A (en) Ni-BASED ALLOY RESISTANT TO CORROSION AT HIGH TEMPERATURE
JPS6237354A (en) Manufacture of co base alloy plate material superior in wear resistance
US3627513A (en) Hydrochloric acid resistant ferrous alloy containing nickel copper and tungsten