JPH0366811B2 - - Google Patents

Info

Publication number
JPH0366811B2
JPH0366811B2 JP57080927A JP8092782A JPH0366811B2 JP H0366811 B2 JPH0366811 B2 JP H0366811B2 JP 57080927 A JP57080927 A JP 57080927A JP 8092782 A JP8092782 A JP 8092782A JP H0366811 B2 JPH0366811 B2 JP H0366811B2
Authority
JP
Japan
Prior art keywords
region
type
conductivity type
gate region
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57080927A
Other languages
Japanese (ja)
Other versions
JPS58197885A (en
Inventor
Nobuyuki Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8092782A priority Critical patent/JPS58197885A/en
Publication of JPS58197885A publication Critical patent/JPS58197885A/en
Publication of JPH0366811B2 publication Critical patent/JPH0366811B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法、特にチヤンネ
ル領域をイオン注入で形成した接合型電界効果ト
ランジスタ(以下JFETと略記する)の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a junction field effect transistor (hereinafter abbreviated as JFET) in which a channel region is formed by ion implantation.

第1図ないし第2図は、チヤンネル領域をイオ
ン注入で形成した汎用演算増幅器などに使用する
従来のJFETの構造を示す。
1 and 2 show the structure of a conventional JFET used in general-purpose operational amplifiers, etc., in which the channel region is formed by ion implantation.

第1図は従来のJFETの平面図であり、第2図
はA−A線による断面図である。第2図におい
て、1はp型半導体基板、その一部にn型埋込み
領域2を設け、さらに、一平面に抵抗率数Ωcmの
n型レピタキシヤル層3を積層し、次にp型分離
領域4を形成し、次にp型ソース領域5とドレイ
ン領域6とを同時に形成し、さらに、高濃度n型
ゲート領域7を設ける。このp型ソース領域5、
p型ドレイン領域6および高濃度ゲート領域7を
熱拡散および酸化工程を経て形成するときにでき
る酸化膜の一部X,Yを、p型チヤンネル領域8
とn型トツプゲート領域9を設けるために、PR
(フオトレジスト)工程を経て除去する。次に不
純物としてボロンを数百Kev、1017cm-3程度の濃
度でイオン注入してp型チヤンネル領域8を形成
し、その直後に不純物としてリンを数十Kev、
1018cm-3程度の濃度でイオン注入してn型トツプ
ゲート領域9を形成する。もちろんn型トツプゲ
ート領域9は、高濃度ゲート領域7と短絡された
状態になつている。次に熱酸化膜11の上に気相
成長工程により酸化膜10を数千Å成長して、次
に電極取り出し用にコンタクト窓を開け、アルミ
ニウム等の金属電極12を形成する。
FIG. 1 is a plan view of a conventional JFET, and FIG. 2 is a cross-sectional view taken along line A-A. In FIG. 2, 1 is a p-type semiconductor substrate, a part of which is provided with an n-type buried region 2, an n-type epitaxial layer 3 with a resistivity of several Ωcm is laminated on one plane, and then a p-type isolation region 4 is formed. , then a p-type source region 5 and a drain region 6 are formed simultaneously, and a heavily doped n-type gate region 7 is provided. This p-type source region 5,
Parts X and Y of the oxide film formed when the p-type drain region 6 and high concentration gate region 7 are formed through thermal diffusion and oxidation steps are removed as a p-type channel region 8.
In order to provide an n-type top gate region 9, PR
(photoresist) process to remove it. Next, a p-type channel region 8 is formed by ion implanting boron as an impurity at a concentration of several hundred keV and about 10 17 cm -3 , and immediately after that, phosphorus is ion-implanted as an impurity at a concentration of several tens of keV and about 10 17 cm -3.
An n-type top gate region 9 is formed by implanting ions at a concentration of about 10 18 cm -3 . Of course, the n-type top gate region 9 is in a short-circuited state with the heavily doped gate region 7. Next, an oxide film 10 of several thousand angstroms is grown on the thermal oxide film 11 by a vapor phase growth process, a contact window is opened for taking out the electrode, and a metal electrode 12 made of aluminum or the like is formed.

以上の従来構造では、以下に示す欠点があつ
た。それは、第1にJFETの電気的特性の重要な
要素の1つである飽和電流の均一度が得にくいこ
と。第2に前述、飽和電流の相対比が高精度に得
にくいこと。の2つが上げられる。欠点第1は、
第1図においてp型チヤンネル領域8およびn型
トツプゲート領域9は、高濃度ゲート領域7によ
つて包囲された全域にイオン注入により形成され
ているため、p型ソース領域5とp型ドレイン領
域6との間のエツヂ効果(まわり込みの効果)に
より、JFETのパターン設計上のチヤンネル巾W
に対し、実際のチヤンネル巾は広いものとなると
ともにチヤンネル巾のバラツキが発生する。この
事はJFETの飽和電流のバラツキの要因になる。
欠点第2は、例えば飽和電流の相対比2対1が必
要とされる2つの従来構造によるJFETに対し、
一方のJFETは第1図に示すチヤンネル巾Wを設
定した場合、他方のJFETのチヤンネル巾を単に
W/2となるようにp型ソース領域5およびp型
ドレイン領域6をそれぞれ設定していた。しか
し、このような従来構造によるJFETのチヤンネ
ル巾と飽和電流の相関は、第3図の実線で示すよ
うな曲線で表わされる。これはチヤンネル巾Wの
場合のp型ソース領域5とp型ドレイン領域6と
の間に生ずるエツヂ効果に対して、チヤンネル巾
W/2の場合のエツヂ効果が無視できなくなるた
めに2対1の高精度の飽和電流比が得られなくな
る。この事はJFETの飽和電流の相対比を高精度
に設定することを困難にする。
The conventional structure described above has the following drawbacks. Firstly, it is difficult to obtain uniform saturation current, which is one of the important elements of JFET's electrical characteristics. Second, as mentioned above, it is difficult to obtain the relative ratio of saturation currents with high accuracy. Two things can be mentioned. The first drawback is
In FIG. 1, the p-type channel region 8 and the n-type top gate region 9 are formed by ion implantation in the entire area surrounded by the heavily doped gate region 7, so that the p-type source region 5 and the p-type drain region 6 Due to the edge effect (wrapping effect) between
On the other hand, the actual channel width becomes wider and variations in channel width occur. This causes variations in the saturation current of the JFET.
The second drawback is that, for example, compared to the two conventional JFET structures that require a relative ratio of saturation currents of 2:1,
When one JFET has a channel width W shown in FIG. 1, the p-type source region 5 and p-type drain region 6 are each set so that the channel width of the other JFET is simply W/2. However, the correlation between the channel width and saturation current of a JFET with such a conventional structure is expressed by a curve as shown by the solid line in FIG. This is because the edge effect that occurs between the p-type source region 5 and the p-type drain region 6 when the channel width is W is not negligible when the channel width is W/2. A highly accurate saturation current ratio cannot be obtained. This makes it difficult to set the relative ratio of JFET saturation currents with high precision.

本発明の目的は上記のような飽和電流のバラツ
キおよび相対比精度の改善を施した半導体装置の
製造方法を提供するものである。
An object of the present invention is to provide a method of manufacturing a semiconductor device in which the above-described variations in saturation current and relative accuracy are improved.

本発明の半導体装置の製造方法は、半導体基板
の一主面側に形成された一導電型半導体層に、前
記一主面上の第1の方向に沿つて第1の接合深さ
を有する逆導電型のソース、ドレイン領域を相対
向させて形成する工程と、前記ソース、ドレイン
領域と離隔してこれを取り囲むように前記第1の
方向に沿つて相対向して設けられた第1、第2の
領域及び、前記第1の方向と直交する第2の方向
に沿つて相対向して設けられた第3、第4の領域
を有する環状の一導電型の高濃度ゲート領域を形
成する工程と、所定形状のフオトレジストマスク
を形成しイオン注入法を用いて、前記ソース、ド
レイン領域にはさまれ、かつ、ソース、ドレイン
領域の前記第1の方向のエツジ部を越えない一導
電型半導体層に前記第1の接合深さよりも浅い、
第2の接合深さを有する逆導電型のチヤネル領域
を形成すると共に、該逆導電型のチヤネル領域の
一部に一対の突出領域を設け、前記高濃度ゲート
領域の第3、第4の領域の側面にそれぞれ終端さ
せる工程と、前記フオトレジストマスクを用いて
イオン注入法のより、前記第2の接合深さよりも
浅い第3の接合深さを有し、前記チヤネル領域と
同一形状の一導電型トツプゲート領域を形成する
と共に、該トツプゲート領域の一部に設けられた
一対の突出領域を、前記高濃度ゲート領域の第
3、第4の領域に接続する工程とを含むことを特
徴とする。
In the method for manufacturing a semiconductor device of the present invention, a semiconductor layer of one conductivity type formed on one main surface side of a semiconductor substrate has a first junction depth along a first direction on the one main surface. a step of forming conductive type source and drain regions facing each other; and a step of forming conductive type source and drain regions opposite to each other along the first direction so as to be spaced apart from and surrounding the source and drain regions. forming an annular high-concentration gate region of one conductivity type having a second region and third and fourth regions facing each other along a second direction orthogonal to the first direction; A photoresist mask having a predetermined shape is formed and an ion implantation method is used to form a semiconductor of one conductivity type that is sandwiched between the source and drain regions and that does not extend beyond the edge portion of the source and drain regions in the first direction. a layer shallower than the first junction depth;
A channel region of opposite conductivity type having a second junction depth is formed, and a pair of protruding regions is provided in a part of the channel region of opposite conductivity type, and third and fourth regions of the high concentration gate region are formed. A conductive layer having a third junction depth shallower than the second junction depth and having the same shape as the channel region is formed by ion implantation using the photoresist mask. The method is characterized in that it includes a step of forming a type top gate region and connecting a pair of protruding regions provided in a part of the top gate region to the third and fourth regions of the high concentration gate region.

次に本発明を実施例により説明する。尚、第1
図、第2図と同じ機能の個所は同じ符号で示して
いる。第4図は本発明の第1の実施例を示す平面
図であり、第5図は第4図A−A線における断面
図である。第5図において、第2図で説明したよ
うに、p型半導体基板1にn型埋込み領域2をそ
なえたn型エピタキシヤル層の表面にp型分離領
域を形成した後、p型ソース領域およびp型ドレ
イン領域を形成する。この後に高濃度n型ゲート
領域を形成する。次に、p型チヤンネル領域8お
よびn型トツプゲート領域9を形成するための酸
化膜の除去を、第4図の点線で示すようなPR形
状にて行なう。つまり、p型ソース領域およびp
型ドレイン領域のエツヂ部を越えないようにPR
のパターニングをするとともに、n型トツプゲー
ト領域9を高濃度ゲート領域7の電位を保持する
ために、JFETのp型チヤンネル領域8およびn
型トツプゲート領域9の一部からチヤンネル巾方
向へ突起を出し、高濃度ゲート領域7と短絡す
る。その様子を第4図B−Bの断面図である第6
図に示す。次に不純物としてボロン数百Kev、
1017cm-3程度の濃度でイオン注入しp型チヤンネ
ル領域8を形成し、さらに不純物としてリンを数
十Kev、1018cm-3程度の濃度でn型トツプゲート
領域を形成する。第5図および第6図は第4図に
対する平面図であり、第4図A−A断面が第5図
に、第4図B−B断面が第6図にそれぞれ相当す
る。
Next, the present invention will be explained by examples. Furthermore, the first
2. Portions having the same functions as those in FIGS. FIG. 4 is a plan view showing the first embodiment of the present invention, and FIG. 5 is a sectional view taken along line A--A in FIG. In FIG. 5, as explained in FIG. 2, after forming a p-type isolation region on the surface of an n-type epitaxial layer having an n-type buried region 2 in a p-type semiconductor substrate 1, a p-type source region and Form a p-type drain region. After this, a heavily doped n-type gate region is formed. Next, the oxide film for forming the p-type channel region 8 and the n-type top gate region 9 is removed in a PR shape as shown by the dotted line in FIG. That is, the p-type source region and p
PR should not go beyond the edge of the mold drain region.
In addition to patterning the p-type channel region 8 and n-type top gate region 9 of the JFET, in order to maintain the potential of the heavily doped gate region 7,
A projection extends from a part of the mold top gate region 9 in the channel width direction and short-circuits with the high concentration gate region 7. This situation can be seen in Figure 6, which is a cross-sectional view taken along line B-B in Figure 4.
As shown in the figure. Next, a few hundred Kev of boron as an impurity,
A p-type channel region 8 is formed by implanting ions at a concentration of about 10 17 cm -3 , and an n-type top gate region is formed using several tens of KeV of phosphorus as an impurity at a concentration of about 10 18 cm -3 . 5 and 6 are plan views of FIG. 4, and the AA cross section in FIG. 4 corresponds to FIG. 5, and the BB cross section in FIG. 4 corresponds to FIG. 6, respectively.

このようにして、本発明の製造方法を用いて得
られるJFETの従来構造と異なる点は、p型チヤ
ンネル領域8およびn型トツプゲート領域9はp
型ソース領域5およびp型ドレイン領域6のエツ
ヂ部を含まないため、従来あつた飽和電流のバラ
ツキ低減および相対比の精度が改善される。ま
た、本発明によるJFETのチヤンネル巾と飽和電
流との相関は第3図の点線で示すような直線にな
る。このことは、JFETの飽和電流の相対比を設
定するためのチヤンネル巾の決定が簡易になる。
Thus, the difference from the conventional structure of the JFET obtained using the manufacturing method of the present invention is that the p-type channel region 8 and the n-type top gate region 9 are
Since the edge portions of the p-type source region 5 and p-type drain region 6 are not included, the conventional variation in saturation current is reduced and the accuracy of the relative ratio is improved. Further, the correlation between the channel width and the saturation current of the JFET according to the present invention is a straight line as shown by the dotted line in FIG. This facilitates the determination of the channel width for setting the relative ratio of the JFET saturation current.

第7図に第2の実施例を示す。第7図におい
て、p型チヤンネル領域8の突起を取り除くと同
時に、n型トツプゲート領域9を高濃度n型ゲー
ト領域7と短絡するために、高濃度n接ゲート領
域7も同様、JFETのチヤンネル巾方向へ突起を
形成する。こうすることにより、JFETのチヤン
ネルはエツヂ効果のない完全なチヤンネル巾Wが
実現できる。その様子を第7図B−Bの断面図で
ある第8図に示す。また、本発明の製造方法を用
いて得られるJFETは、バイポーラ型トランジス
タの製造と同時に製造することができるのでバイ
ポーラ型集積回路に組み込むことが容易である。
FIG. 7 shows a second embodiment. In FIG. 7, in order to remove the protrusion of the p-type channel region 8 and at the same time short-circuit the n-type top gate region 9 with the heavily doped n-type gate region 7, the channel width of the highly doped n-contact gate region 7 is similarly reduced. Form a protrusion in the direction. By doing this, the JFET channel can realize a perfect channel width W without edge effects. The situation is shown in FIG. 8, which is a sectional view taken along the line B-B in FIG. Further, since the JFET obtained using the manufacturing method of the present invention can be manufactured at the same time as bipolar transistors, it can be easily incorporated into a bipolar integrated circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の接合型電界効果ト
ランジスタの製造工程を説明するための平面図お
よび断面図。第3図は従来および本発明による接
合型電界効果トランジスタのチヤンネル巾と飽和
電流の相関図。第5図、第6図および第8図は本
発明の実施例の製造工程を説明するための断面
図。第4図および第7図は本発明の実施例の製造
工程を説明するための平面図である。ただし、全
ての平面図において金属電極は省略している。 尚、図において、1……p型半導体基板、2…
…n型埋込み領域、3……n型エピタキシヤル
層、4……p型絶縁分離領域、5……p型ソース
領域、6……p型ドレイン領域、7……高濃度n
型ゲート領域、8……p型チヤンネル領域、9…
…n型トツプゲート領域、10,11……酸化
膜、12……金属電極である。
1 and 2 are a plan view and a cross-sectional view for explaining the manufacturing process of a conventional junction field effect transistor. FIG. 3 is a correlation diagram of the channel width and saturation current of the conventional junction field effect transistor and the present invention. FIG. 5, FIG. 6, and FIG. 8 are cross-sectional views for explaining the manufacturing process of an embodiment of the present invention. FIG. 4 and FIG. 7 are plan views for explaining the manufacturing process of the embodiment of the present invention. However, metal electrodes are omitted in all plan views. In the figure, 1... p-type semiconductor substrate, 2...
... n-type buried region, 3 ... n-type epitaxial layer, 4 ... p-type insulation isolation region, 5 ... p-type source region, 6 ... p-type drain region, 7 ... high concentration n
type gate region, 8...p type channel region, 9...
. . . n-type top gate region, 10, 11 . . . oxide film, 12 . . . metal electrode.

Claims (1)

【特許請求の範囲】 1 半導体基板の一主面側に形成された一導電型
半導体層に、前記一主面上の第1の方向に沿つて
第1の接合深さを有する逆導電型のソース、ドレ
イン領域を相対向させて形成する工程と、 前記ソース、ドレイン領域と離隔してこれを取
り囲むように前記第1の方向に沿つて相対向して
設けられた第1、第2の領域及び、前記第1の方
向と直交する第2の方向に沿つて相対向して設け
られた第3、第4の領域を有する環状の一導電型
の高濃度ゲート領域を形成する工程と、 所定形状のフオトレジストマスクを形成しイオ
ン注入法を用いて、前記ソース、ドレイン領域に
はさまれ、かつ、ソース、ドレイン領域の前記第
1の方向のエツジ部を越えない一導電型半導体層
に前記第1の接合深さよりも浅い、第2の接合深
さを有する逆導電型のチヤネル領域を形成すると
共に、該逆導電型のチヤネル領域の一部に一対の
突出領域を設け、前記高濃度ゲード領域の第3、
第4の領域の側面にそれぞれ終端させる工程と、 前記フオトレジストマスクを用いてイオン注入
法により、前記第2の接合深さよりも浅い第3の
接合深さを有し、前記チヤネル領域と同一形状の
一導電型トツプゲート領域を形成すると共に、 該トツプゲート領域の一部に設けられた一対の
突出領域を、前記高濃度ゲート領域の第3、第4
の領域に接続する工程とを含むことを特徴とする
半導体装置の製造方法。
[Scope of Claims] 1. A semiconductor layer of one conductivity type formed on one main surface side of a semiconductor substrate, and a semiconductor layer of an opposite conductivity type having a first junction depth along a first direction on the one main surface. a step of forming source and drain regions facing each other; first and second regions facing each other along the first direction so as to be spaced apart from and surrounding the source and drain regions; and forming a ring-shaped high concentration gate region of one conductivity type having third and fourth regions facing each other along a second direction orthogonal to the first direction; A photoresist mask having a shape is formed and, using an ion implantation method, the semiconductor layer of one conductivity type is sandwiched between the source and drain regions and does not extend beyond the edge portions of the source and drain regions in the first direction. forming a channel region of opposite conductivity type having a second junction depth that is shallower than the first junction depth; and providing a pair of protruding regions in a part of the channel region of opposite conductivity type; The third area,
terminating each side surface of the fourth region, and forming a third junction depth shallower than the second junction depth by ion implantation using the photoresist mask and having the same shape as the channel region. A top gate region of one conductivity type is formed, and a pair of protruding regions provided in a part of the top gate region are formed in third and fourth regions of the high concentration gate region.
1. A method of manufacturing a semiconductor device, the method comprising the step of: connecting to a region of the semiconductor device.
JP8092782A 1982-05-14 1982-05-14 Semiconductor device Granted JPS58197885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8092782A JPS58197885A (en) 1982-05-14 1982-05-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8092782A JPS58197885A (en) 1982-05-14 1982-05-14 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS58197885A JPS58197885A (en) 1983-11-17
JPH0366811B2 true JPH0366811B2 (en) 1991-10-18

Family

ID=13732061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8092782A Granted JPS58197885A (en) 1982-05-14 1982-05-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58197885A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634660B2 (en) 1999-03-09 2005-03-30 三洋電機株式会社 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114983A (en) * 1978-02-27 1979-09-07 Nec Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114983A (en) * 1978-02-27 1979-09-07 Nec Corp Semiconductor device

Also Published As

Publication number Publication date
JPS58197885A (en) 1983-11-17

Similar Documents

Publication Publication Date Title
JPH0629532A (en) Mosfet and its manufacture
JP3186043B2 (en) Method for manufacturing semiconductor device
JPH09232458A (en) Bicmos device and its manufacture
JPH07176701A (en) Semiconductor device and its manufacture
JPH0366811B2 (en)
JP3109274B2 (en) Semiconductor device and manufacturing method thereof
JPH02186675A (en) High breakdown strength planar type semiconductor element and manufacture thereof
JP3327658B2 (en) Manufacturing method of vertical bipolar transistor
JP2573303B2 (en) Method for manufacturing semiconductor device
JPH0458562A (en) Mas transistor and manufacture thereof
JP2682426B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP3218599B2 (en) Method for manufacturing junction field effect transistor
JP2968640B2 (en) Semiconductor device
JPS6295871A (en) Manufacture of semiconductor device
JPH0766398A (en) High withstand voltage semiconductor device
JPH03129874A (en) Bi-cmos integrated circuit
JPH04218972A (en) Fabrication of semiconductor device including dmos
JPH08107114A (en) Semiconductor device and manufacture thereof
JPH07335665A (en) Junction-type field effect transistor and its manufacture
JPS6149469A (en) Manufacture of semiconductor device
JPH05291569A (en) Insulation gate type fet and its manufacture
JPS62150889A (en) Manufacture of semiconductor element
JPS63155665A (en) Manufacture of semiconductor device
JPH0571191B2 (en)
JPH04323832A (en) Semiconductor device and manufacture thereof