JPH04218972A - Fabrication of semiconductor device including dmos - Google Patents

Fabrication of semiconductor device including dmos

Info

Publication number
JPH04218972A
JPH04218972A JP22948190A JP22948190A JPH04218972A JP H04218972 A JPH04218972 A JP H04218972A JP 22948190 A JP22948190 A JP 22948190A JP 22948190 A JP22948190 A JP 22948190A JP H04218972 A JPH04218972 A JP H04218972A
Authority
JP
Japan
Prior art keywords
type
oxide film
well
resist
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22948190A
Other languages
Japanese (ja)
Inventor
Noboru Kudo
昇 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP22948190A priority Critical patent/JPH04218972A/en
Publication of JPH04218972A publication Critical patent/JPH04218972A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To lower the fabrication cost and improve the reproducibility of an isolation characteristic by forming an n-type isolation well on a p-type bulk wafer, and forming a drain well on the isolation well. CONSTITUTION:An n-type isolation well 2 is formed on a p-type substrate 1 by doping an n-type impurity using an oxide film and a resist as a mask, and performing thermal diffusion after removing the resist. Then, a p-type drain well 3 is formed by doping a p-type impurity using an oxide film and a resist as a mask, and performing thermal diffusion after removing the resist. Then, after a field oxide film 8 is formed, a gate oxide film 13 is formed on a drain well 3. Then, a gate electrode 4 is formed by forming poly Si on the gate oxide film 13 and patterning the same. Then, phosphorus is doped onto the drain well 3 using the gate electrode 4 and a resist as a mask. Then, an n-type high concentration diffusion region 9 is formed by ion-implantation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ボルテージレギュレーター、モーター制御、
オーディオアンプなどに用いられる大電力駆動が可能な
DMOS(二重拡散電界効果トランジスター)を含む半
導体装置の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to voltage regulators, motor controls,
The present invention relates to a method of manufacturing a semiconductor device including a DMOS (double diffused field effect transistor) that can be driven with high power and is used in audio amplifiers and the like.

[発明の概要] DMOSは、ベース領域及びソース領域がゲート電極を
マスクとする自己整合により形成され、ゲート電極の下
のベースや領域をチャネルとして機能させるトランジス
ターである。DMOSは、チャネル長が前記ベース領域
及び前記ソース領域の横方向拡散の差で決定されるため
、チャネル長がゲート電極の幅できまる通常のMOSに
くらべ、同じデザインルールで製造した場合に、チャネ
ル長が短くK値が大きい、オン抵抗が小さいという特徴
をもち大電力駆動に適している。DMOSのドレイン領
域は、前記ベース領域及び前記ソース領域を囲む低濃度
のウェル領域と、前記ウェル領域上に配した配線用の電
極とオーミックなコンタクトをとるための高濃度の拡散
領域から構成される。一方、半導体基板は通常、電源配
線または接地配線と同電位となるため、DMOSのドレ
インと電源配線または接地配線が同電位とならない回路
構成では半導体基板としてエピタキシャル基板を用いる
ことにより前記ドレイン用ウェルと前記半導体基板を電
気的に分離していた。本発明は、半導体基板上にドレイ
ン用ウェルを囲む分離用ウェルを形成することにより、
製造コストの高いエピタキシャル基板の使用を不要にす
るものである。
[Summary of the Invention] A DMOS is a transistor in which a base region and a source region are formed by self-alignment using a gate electrode as a mask, and the base and region under the gate electrode function as a channel. In DMOS, the channel length is determined by the difference in lateral diffusion between the base region and the source region, so when manufactured using the same design rules, the channel length is It has the characteristics of short length, high K value, and low on-resistance, making it suitable for high-power driving. The drain region of the DMOS is composed of a low concentration well region surrounding the base region and the source region, and a high concentration diffusion region for making ohmic contact with a wiring electrode arranged on the well region. . On the other hand, since a semiconductor substrate usually has the same potential as a power supply wiring or a ground wiring, in a circuit configuration in which the drain of a DMOS and a power supply wiring or a ground wiring do not have the same potential, an epitaxial substrate is used as the semiconductor substrate, so that the drain well The semiconductor substrate was electrically isolated. In the present invention, by forming an isolation well surrounding a drain well on a semiconductor substrate,
This eliminates the need for an epitaxial substrate that is expensive to manufacture.

[従来の技術] 従来のDMOSを含む半導体装置の製造方法について、
第2図(a)〜(c)に示す製造工程順断面図を用いて
説明する。第2図(a)は、P型基板11上にN型エピ
タキシャル層12を形成し、エピタキシャル層12上に
酸化膜7をマスクにしてP型ドレイン用ウェル3を拡散
形成した工程後の半導体装置の断面図である。次に、酸
化膜7を除去し、エピタキシャル層12上にフィールド
酸化膜8、ドレイン用ウェル3上にゲート酸化膜13を
形成し、ゲート酸化膜13上にゲート電極4を形成する
(第2図(b))。次に、ドレイン用ウェル3上にゲー
ト電極4をマスクにN型ベース6を形成し、次に、ベー
ス電極取出し用のN型高濃度拡散領域9を形成し、さら
にP型ソース5及びドレイン電極取出し用のP型高濃度
拡散領域10を形成する(第2図(c))。
[Prior Art] Regarding a conventional method for manufacturing a semiconductor device including a DMOS,
This will be explained using sequential cross-sectional views of manufacturing steps shown in FIGS. 2(a) to 2(c). FIG. 2(a) shows a semiconductor device after a process in which an N-type epitaxial layer 12 is formed on a P-type substrate 11, and a P-type drain well 3 is formed by diffusion on the epitaxial layer 12 using an oxide film 7 as a mask. FIG. Next, the oxide film 7 is removed, a field oxide film 8 is formed on the epitaxial layer 12, a gate oxide film 13 is formed on the drain well 3, and a gate electrode 4 is formed on the gate oxide film 13 (see FIG. (b)). Next, an N-type base 6 is formed on the drain well 3 using the gate electrode 4 as a mask, then an N-type high concentration diffusion region 9 for taking out the base electrode is formed, and then a P-type source 5 and a drain electrode are formed. A P-type high concentration diffusion region 10 for extraction is formed (FIG. 2(c)).

[発明が解決しようとする課題] たとえば、基板を接地配線と電気的に接続し、P型のD
MOSを形成する場合には、P型の基板とP型のドレイ
ン用ウェルを電気的に分離するためにP型基板上にN型
のエピタキシャル層を形成したエピタキシャルウェハ上
に半導体装置を形成する必要がある。しかるに、エピタ
キシャルウェハは、P型またはN型不純物が均一に拡散
したバルクウェハと比較して材料費が約2倍と高価であ
る。また、エピタキシャルウェハを用いた場合には、基
板とウェルが電気的に接続しないように、エピタキシャ
ル層の厚さ、ウェルの深さ、基板からエピタキシャル層
へのオートドープ量を再現性よく制御しなければならな
いという問題点があった。
[Problem to be solved by the invention] For example, when a board is electrically connected to a ground wiring, a P-type D
When forming a MOS, it is necessary to form a semiconductor device on an epitaxial wafer in which an N-type epitaxial layer is formed on a P-type substrate in order to electrically isolate a P-type substrate and a P-type drain well. There is. However, epitaxial wafers are about twice as expensive in material cost as bulk wafers in which P-type or N-type impurities are uniformly diffused. Furthermore, when using an epitaxial wafer, the thickness of the epitaxial layer, the depth of the well, and the amount of autodoping from the substrate to the epitaxial layer must be controlled with good reproducibility to prevent electrical connection between the substrate and the well. There was a problem that it had to be done.

[課題を解決するための手段] P型バルクウェハ上にN型の分離用ウェルを形成し、該
分離用ウェル上に前記ドレイン用ウェルを形成すること
にした。
[Means for Solving the Problems] An N-type isolation well is formed on a P-type bulk wafer, and the drain well is formed on the isolation well.

[作用] エピタキシャルウェハを用いないので製造コストが低減
できる。ドレイン用ウェルと基板の分離特性は分離用の
拡散工程できまるので分離特性の再現性が向上する。
[Operation] Since no epitaxial wafer is used, manufacturing costs can be reduced. Since the separation characteristics between the drain well and the substrate are determined by the separation diffusion process, the reproducibility of the separation characteristics is improved.

[実施例] 本発明のDMOSを含む半導体装置の製造方法の一実施
例について、第1図(a)〜(d)に示す製造工程順断
面図を用いて説明する。第1図(a)P型基板1上に酸
化膜及びレジストをマスクにリンなどのN型不純物をイ
オン注入法によりドープして、レジストを除去した後、
1000〜1100℃の熱拡散を行い、N型分離用ウェ
ル2を形成した後の半導体装置の断面図である。次に酸
化膜及びレジストをマスクにボロンなどのP型不鈍物を
イオン注入法によりドープして、レジストを除去した後
、1000〜1200℃の熱拡散を行い、P型ドレイン
用ウェルを形成する(第1図(b))。イオン注入条件
は、前記リンイオンの打込は、エネルギー100〜20
0Kev、ドーズ量1012〜1014cm−2、前記
ボロンイオンの打込はエネルギー60〜200Kev、
ドーズ量1012〜1014cm−2を用いる。前記リ
ンイオン打込直後に熱拡散を行わず、前記リンイオンと
前記ボロンイオンのドライブイン工程を前記ボロンイオ
ン打込直後の熱拡散によって同時に行うという方法も本
発明の別の実施例として可能である。次に、酸化膜7を
除去して、LOCOS法などによりフィールド酸化膜8
を形成した後、ドレイン用ウェル3上に200〜100
0Åのゲート酸化膜13を形成する。次にゲート酸化膜
13上に2000〜5000ÅのpolySiをCVD
法により形成し、フオトリソグラフィー法及びドライエ
ツチング法によりパターニングしてゲート電極4を形成
する(第1図(c))。次に、ゲート電極及びレジスト
をマスクにしてイオン注入法によりリンをドレイン用ウ
ェル上にドープし、必要に応じ900〜1000℃の熱
拡散を行なってベース6を形成する。次にリンまたはヒ
素のイオン圧入を行いN型高濃度拡散領域9を形成し、
ボロンのイオン注入を行いソース5及びP型高濃度拡散
領域10を形成する(第1図(d))。DMOSののチ
ャネル長は、ベース6及びソース5のイオン注入条件と
熱処理条件で制御でき、主にフォトリゾグラフィーでき
まる最少線巾が3〜5μmのコストの低いプロセスでも
、実効チャネル長として0.5〜1.0μmも短チャネ
ルトランジスターが形成できる。
[Example] An example of a method for manufacturing a semiconductor device including a DMOS according to the present invention will be described using sequential cross-sectional views of manufacturing steps shown in FIGS. 1(a) to 1(d). FIG. 1(a) After doping N-type impurities such as phosphorus on a P-type substrate 1 by ion implantation using an oxide film and a resist as a mask, and removing the resist,
FIG. 3 is a cross-sectional view of the semiconductor device after performing thermal diffusion at 1000 to 1100° C. to form an N-type isolation well 2. FIG. Next, using the oxide film and resist as a mask, a P-type inert substance such as boron is doped by ion implantation, and after removing the resist, thermal diffusion is performed at 1000 to 1200°C to form a P-type drain well. (Figure 1(b)). The ion implantation conditions are such that the phosphorus ions are implanted at an energy of 100 to 20
0 Kev, the dose amount is 1012 to 1014 cm-2, the implantation energy of the boron ions is 60 to 200 Kev,
A dose of 1012 to 1014 cm-2 is used. Another embodiment of the present invention is also possible in which the drive-in process for the phosphorus ions and the boron ions is performed simultaneously by thermal diffusion immediately after the boron ion implantation, without performing thermal diffusion immediately after the phosphorus ion implantation. Next, the oxide film 7 is removed and the field oxide film 8 is removed by LOCOS method or the like.
After forming 200 to 100
A gate oxide film 13 with a thickness of 0 Å is formed. Next, polySi with a thickness of 2000 to 5000 Å is deposited on the gate oxide film 13 by CVD.
The gate electrode 4 is formed by patterning using a photolithography method and a dry etching method (FIG. 1(c)). Next, using the gate electrode and the resist as a mask, phosphorus is doped onto the drain well by ion implantation, and thermal diffusion at 900 to 1000° C. is performed as necessary to form the base 6. Next, ion injection of phosphorus or arsenic is performed to form an N-type high concentration diffusion region 9,
Boron ions are implanted to form a source 5 and a P-type high concentration diffusion region 10 (FIG. 1(d)). The channel length of a DMOS can be controlled by the ion implantation conditions and heat treatment conditions of the base 6 and source 5, and even with a low-cost process where the minimum line width is 3 to 5 μm, which is mainly produced by photolithography, the effective channel length can be 0.5 μm. Short channel transistors as short as 5 to 1.0 μm can be formed.

[発明の効果] 本発明のDMOSを含む半導体装置の製造方法によれば
、エピタキシャルウェハにくらべ材料費の安いバルクウ
ェハを用いてDMOSのドレインと基板を電気的に分離
できるので製造コストを低減できる。また、分離用ウェ
ルとドレイン用ウェルの拡散条件だけでドレインと基板
の分離特性が制御でき、大きなマージンをもったプロセ
ス条件の設定が容易にできる。本発明の実施例ではP型
基板上にP型DMOSを形成する場合について説明した
が、N型基板上にN型DMOSを形成する場合でも、P
型の分離用ウェルを用いれば、本発明の実施例と同様の
効果が得られることは明らかである。
[Effects of the Invention] According to the method of manufacturing a semiconductor device including a DMOS of the present invention, the drain and substrate of the DMOS can be electrically separated using a bulk wafer, which is cheaper in material cost than an epitaxial wafer, and thus manufacturing costs can be reduced. Furthermore, the isolation characteristics between the drain and the substrate can be controlled simply by the diffusion conditions of the isolation well and the drain well, making it easy to set process conditions with a large margin. In the embodiments of the present invention, a case has been described in which a P-type DMOS is formed on a P-type substrate, but even when an N-type DMOS is formed on an N-type substrate, a P-type DMOS is formed on a P-type substrate.
It is clear that the same effects as in the embodiments of the present invention can be obtained by using a type separation well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明のDMOSを含む半導体
装置の製造方法の工程順断面図、第2図(a)〜(c)
は従来のDMOSを含む半導体装置の製造方法の工程順
断面図である。 1…P型基板 2…N型分離用ウェル 3…P型ドレイン用ウェル 4…ゲート電極 5…ソース 6…ベース 7…酸化膜 8…フィールド酸化膜 9…N型高濃度拡散領域 10…P型高濃度拡散領域 11…P型基板 12…N型エピタキシャル層 13…ゲート酸化膜 出願人 セイコー電子工業株式会社 代理人 弁理士 林 敬之助
FIGS. 1(a) to (d) are step-by-step cross-sectional views of a method for manufacturing a semiconductor device including a DMOS according to the present invention, and FIGS. 2(a) to (c) are
1A and 1B are step-by-step cross-sectional views of a conventional method for manufacturing a semiconductor device including a DMOS. 1... P type substrate 2... N type isolation well 3... P type drain well 4... Gate electrode 5... Source 6... Base 7... Oxide film 8... Field oxide film 9... N type high concentration diffusion region 10... P type High concentration diffusion region 11...P-type substrate 12...N-type epitaxial layer 13...Gate oxide film Applicant: Seiko Electronics Co., Ltd. Agent Patent attorney: Keinosuke Hayashi

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板上に逆導電型の分離用ウェル領域
を形成する工程と、前記分離用ウェル領域上に前記半導
体基板と分離して一導電型のドレイン領域を形成する工
程と、前記ドレイン領域上に逆導電型のベース領域を形
成する工程と、前記ベース領域上に一導電型のソース領
域を形成する工程と、前記ドレイン領域と前記ソース領
域にはさまれた前記ベース領域の表面にチャネル領域を
形成する工程とからなるDMOSを含む半導体装置の製
造方法。
a step of forming an isolation well region of an opposite conductivity type on a semiconductor substrate of one conductivity type; a step of forming a drain region of one conductivity type on the isolation well region separated from the semiconductor substrate; forming a base region of opposite conductivity type on the base region; forming a source region of one conductivity type on the base region; and forming a base region on the surface of the base region sandwiched between the drain region and the source region. A method of manufacturing a semiconductor device including a DMOS, comprising the step of forming a channel region.
JP22948190A 1990-08-29 1990-08-29 Fabrication of semiconductor device including dmos Pending JPH04218972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22948190A JPH04218972A (en) 1990-08-29 1990-08-29 Fabrication of semiconductor device including dmos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22948190A JPH04218972A (en) 1990-08-29 1990-08-29 Fabrication of semiconductor device including dmos

Publications (1)

Publication Number Publication Date
JPH04218972A true JPH04218972A (en) 1992-08-10

Family

ID=16892847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22948190A Pending JPH04218972A (en) 1990-08-29 1990-08-29 Fabrication of semiconductor device including dmos

Country Status (1)

Country Link
JP (1) JPH04218972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093585A (en) * 1998-05-08 2000-07-25 Lsi Logic Corporation High voltage tolerant thin film transistor
US6133077A (en) * 1998-01-13 2000-10-17 Lsi Logic Corporation Formation of high-voltage and low-voltage devices on a semiconductor substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133077A (en) * 1998-01-13 2000-10-17 Lsi Logic Corporation Formation of high-voltage and low-voltage devices on a semiconductor substrate
US6194766B1 (en) 1998-01-13 2001-02-27 Lsi Logic Corporation Integrated circuit having low voltage and high voltage devices on a common semiconductor substrate
US6093585A (en) * 1998-05-08 2000-07-25 Lsi Logic Corporation High voltage tolerant thin film transistor

Similar Documents

Publication Publication Date Title
KR920009745B1 (en) Manufacturing method of semiconductor
US4346512A (en) Integrated circuit manufacturing method
US4918510A (en) Compact CMOS device structure
US6649982B2 (en) Integration of bipolar and CMOS devices for sub-0.1 micrometer transistors
KR910002037B1 (en) Semiconductor device and manufacture thereof
KR100413015B1 (en) Manufacturing method of BiCMOS device with surface channel PMOS transistor
JP2002124671A (en) Semiconductor device and its manufacturing method
JPS60210861A (en) Semiconductor device
JP2633873B2 (en) Method for manufacturing semiconductor BiCMOS device
JP3106757B2 (en) Method for manufacturing MOS field effect semiconductor device
JPH04218972A (en) Fabrication of semiconductor device including dmos
JP3332114B2 (en) High breakdown voltage field effect transistor
KR20040066024A (en) Semiconductor device and manufacturing method therefor
US6337252B1 (en) Semiconductor device manufacturing method
JPH03198349A (en) Manufacture of mos type semiconductor device
JP3300238B2 (en) Semiconductor device and manufacturing method thereof
JPH07106337A (en) Semiconductor device and manufacture thereof
JPS6110987B2 (en)
KR20050000001A (en) Semiconductor device and manufacturing method thereof
KR910008945B1 (en) Method of manufacturing bi-cmos semiconductor device
JP3126082B2 (en) Complementary transistor and method of manufacturing the same
JP2573303B2 (en) Method for manufacturing semiconductor device
JP2889246B2 (en) Semiconductor device
JPH0312471B2 (en)
JPH09213708A (en) Lateral bipolar transistor and manufacture of the same