JPH0366801B2 - - Google Patents

Info

Publication number
JPH0366801B2
JPH0366801B2 JP56078371A JP7837181A JPH0366801B2 JP H0366801 B2 JPH0366801 B2 JP H0366801B2 JP 56078371 A JP56078371 A JP 56078371A JP 7837181 A JP7837181 A JP 7837181A JP H0366801 B2 JPH0366801 B2 JP H0366801B2
Authority
JP
Japan
Prior art keywords
magnetic
ribbon
core
magnetic core
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56078371A
Other languages
Japanese (ja)
Other versions
JPS57193006A (en
Inventor
Masaru Takayama
Masao Shigeta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP56078371A priority Critical patent/JPS57193006A/en
Publication of JPS57193006A publication Critical patent/JPS57193006A/en
Publication of JPH0366801B2 publication Critical patent/JPH0366801B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Description

【発明の詳細な説明】[Detailed description of the invention]

この出願の発明は、非晶質磁性合金薄帯と、そ
の薄帯を用いたチヨークコイル用磁心に関する。
更に詳しくは、特に、比較的高い周波数の電流で
あつて、定常的ないし周期的に、例えば電気機器
等から漏出したり、あるいは電源側から浸入した
り、あるいは回路中で発生したりする、例えばリ
ツプル電流、オン−オフサージ電流等を除去し、
直流または比較的低い周波数の所望の電流だけを
通過させるためのチヨークコイル用の磁心に適し
た非晶質磁性合金薄帯と、それから形成した磁心
に関する。 スイツチングレギユレータ、サイリスタインバ
ータをはじめとするインバータ類、あるいは通常
の直流電流等の種々の機器には、リツプル除去、
オン−オフサージ除去等の目的で、チヨークコイ
ルが用いられている。 そして、最近、そのすぐれた軟磁気特性から、
非晶質磁性合金薄帯をチヨークコイル用の磁心材
料とする旨の提案がなされている。 しかし、通常の非晶質磁性合金薄帯を例えば巻
回して磁心を形成し、これをチヨークコイルとな
し、直流または交流に、定常的ないし周期的に重
畳する高周波成分を除去しようとすると、発熱量
が大きく、又透磁率等の磁気特性に満足できず、
更には透磁率や鉄損等が長期に亘る繰返し動作や
保存により経時的に劣化するという不都合があ
り、従来用いられてきたけい素鋼板やフエライト
に置き換わるまでには至つていない。 一方、非晶質磁性合金薄帯の薄帯中に微結晶を
析出させて、これにより磁性特性を向上させよう
という提案がある。しかし、このような薄帯をチ
ヨークコイル用磁心を用いても、通常の組成のも
のでは、発熱量、各種磁気特性、経時特性といえ
点で、チヨークコイル用磁心とすて、未だ不充分
である。 この出願の発明は、このような実状に鑑みてな
されたものであつて、直流または交流に、定常的
ないし周期的に重畳する高周波成分を除去するた
めに用いられる非晶質磁性合金薄帯から形成され
るチヨークコイル用磁心において、用いる薄帯ろ
改良することにより、その発熱量を格段と減少さ
せ、透磁率等の磁気特性を向上せしめ、更に、磁
気特性の経時特性を格段と小さくすることを、そ
の主たる目的とする。 本発明者らは、このような目的につき種々検討
を繰返した結果、この出願の発明をなすに至つた
ものである。 すなわちこの出願の第1の発明は、部分的に結
晶質を含み、下記式で示される組成を有すること
を特徴とするチヨークコイル用非晶質磁性合金薄
帯である。 又、この出願の第2の発明は、部分的に結晶質
を含み、下記式で示される組成を有する非晶質磁
性合金に薄帯を巻回してなる巻回体から構成され
ることを特徴とするチヨークコイル用磁心であ
る。 式 (FekMlxMny(SipBqPrCsXtz ここに、上式中、MはFeおよびMn以外の他の
遷移金属元素の1種以上を表わし、XはSi、B、
PおよびC以外の他のガラス化元素の1種以上を
表わす。又、x+y+z=100at%であり、この
うち、yは0.1〜10at%、zは26.5〜29.5at%であ
る。更に、k+l=100%、p+q+r+s+t
=100%であり、このうち、lは0〜10%、又、
pは60〜75%、rは0.01〜5%、s/qは0.05〜
4、tは0〜10%である。加えて、z≦0.5p−
3、かつz≦−0.6p+71.5、かつz≧−0.033p+
28.98である。 以下、この出願の発明の具体的構成について詳
細に説明する。 第1の発明におけるチヨークコイル用非晶質磁
性合金の薄帯は、部分的に結晶質を含むものであ
る。薄帯内において、非晶質中に部分的に含まれ
る結晶質は、一般に、微結晶が析出して、非晶質
中に混在しているものである。従つて、薄帯のX
線回折を行うと、回折スペクトルは、非晶質特有
のハローの上に、結晶質の存在を示すピークが重
畳されたパターンを示し、又回折像にはハロー上
にスポツトが重畳され、所定の環径と環幅をもつ
デバイーシエラー環が現われる。 そして、回折スペクトルのハローとピークとの
面積比をとれば、薄帯中の結晶質と非晶質との存
在比が求められるものであるが、このように得ら
れる結晶質/非晶質は、通常、0.1〜50%程度で
あることが好ましい。 又、析出した微結晶は、通常、ベバイ−シエラ
ー環の環径と環幅とから、概ね10〜1000〓程度の
平均粒径をもつものと考えられるものである。 そして、このように部分的に存在する微結晶に
より、薄帯からチヨークコイルを形成したとき、
直流または交流に、定常的ないし周期的に重畳す
る高周波成分による発熱量は格段と減少する。
又、透磁率等の磁気特性は向上し、更に、角形
比、B−Hループの不飽和領域等の調整も容易と
なり、直流重畳特性が向上する。加えて、これら
磁気特性の長期間に亘る繰返し動作や保存にとも
なう経時劣化も格段と減少する。 次に、非晶質磁性合金薄帯の組成について説明
するならば、上式において、Mは、FeおよびMn
以外の他の遷移金属元素(Sc〜Zn、Y−Cd、La
〜Hg、Ac〜)を表わすが、その好ましい具体例
としては、Co、Ni、Cr、Cu、Mo、Nb、Ti、
W、V、Zr、Ta、Yあるいは希土類元素等の1
種以上を挙げることができる。 又、Si、B、PおよびC以外の他のガラス化元
素の1種以上を表わすXの好ましい具体例として
は、Al、Be、Ge、Sb、In等の1種以上を挙げる
ことができる。 一方、薄帯中に必須成分として含有されるMn
の含有量yは、0.1〜10at%、好ましくは0.1〜5at
%である。0.1%未満では、チヨークコイルとし
ての磁気特性の経時劣化が大きい。又結晶化温度
が低く、後述の微結晶析出のための熱処理に必要
な温度、時間の制限ぎ厳しくなり、上記のように
結晶質を部分的に含有させることが困難となる。
これに対し、yが10at%を超えると、経時劣化が
大きくなり、又薄帯が作りにくくなる。また、飽
和磁化が減少し、直流重畳特性も悪くなる。これ
に対し、yが0.1〜10at%、好ましくは0.1〜5at%
ではこのような不都合はない。 他方、Si、B、PおよびCを必須成分とし、こ
れに必要に応じ他のガラス化元素の1種以上
(X)を含有するガラス化元素を含有量zは、
26.5〜29.5at%である。zが26.5at%未満あるい
は29.5at%より大となると、損失が大きく、チヨ
ークコイルを構成したときの高周波重畳成分によ
る発熱量が増大する。加えて、zが29.5at%より
大となると、薄帯化しにくくなり、製造歩留りが
悪くなり、薄帯の表面性が悪くなる。又、zが
29.5%を超えると、微結晶析出のための熱処理に
必要な温度、時間の制限が厳しくなり、上記のよ
うに結晶質を部分的に含有させることが困難とな
る。これに対し、zが26.5〜29.5at%の範囲内で
は、発熱量は格段と少なく、その他の上記のよう
な欠点はない。 この出願の発明における薄帯は、上記のように
0.1〜10at%のMnと、Si、B、P、およびCと、
これに必要に応じ添加ないし混入する他のガラス
化元素Xとを含有するガラス化元素26.5〜29.5at
%とを含み、残部は、Feと、これに加え必要に
応じ含有されてもよい他の遷移金属元素Mとの総
計60.5〜73.4at%、より好ましくは、65.5〜73.4at
%からなる。 この場合、FeおよびMn以外の他の遷移金属元
素Mの含有比lは、Feの含有比kと、k+l=
100%の条件下にて、0〜10%、より好ましくは
0〜5%である。lが10%より大となると、磁気
特性が劣化し、特に損失が劣り、発熱量が大きく
なり、又透磁率が減少し、好ましくない。 他方、ガラス化元素は、p+q+r+s+t=
100%の条件下で、p%のSiと、q%のBと、r
%のと、s%のCとの必須成分と、必要に応じ含
有されることにあるt%の他のガラス化元素Xと
からなる。 この場合、ガラス化元素中のケイ素Si含有比p
は、60〜75%である。pが60%未満および75%よ
り大となると、発熱量が増大してしまう。又、60
%未満では、特に透磁率等の磁気特性が悪くな
る。更には、発熱量や透磁率等の経時劣化も大き
い。他方、75%より大では、磁気特性の点で満足
できない。又、微結晶析出のための熱処理条件の
制限が厳しくなり、結晶質を部分的に含有させる
ことが困難となる。 加えて、ガラス化元素の総計の含有量zat%と、
ガラス化元素中のSi含有比p%との間には、z≦
0.5p−3、かつz≦−0.6p+71.5、かつz≧−
0.033p+28.98の関係が満足されなければならな
い。 すなわち、これらの条件を第1図に基づき説明
するならば、(z、p)の座標で表わしたとき、
点H(60,27)、I(65,29.5)、J(70,29.5)、K
(75,26.5)およびHを順次直線で結び、これら
の直線で囲まれる領域が、この出願の発明におけ
る薄板の、zとpとが満足すべき条件である。 そして、この領域内のみにおいて、発熱量が格
段と減少するものである。なお、図示I−J線
(z=29.5)上方における不都合については上述
したとおりであるが、図示H−I線(z=0.5p−
3)上方およびJ−K線(z=−0.6p+71.5)上
方では、発熱量が増大するとともに、その経時劣
化が大きい。又、J−K線上方では、結晶質を部
分的に存在せしめるための熱処理条件が厳しく、
微結晶の析出が困難となる。さらに、K−H線
(z=−0.033p+28.98)下方では、発熱量が増大
すとともに、経時劣化が大きい。 更に、ガラス化元素中のリンP含有比rは、
0.01〜5%、より好ましくは0.01〜2%である。
0.01%未満では、発熱量、透磁率等の経時劣化が
大きくなつてしまい、又5%より大では発熱量が
増大し、かつ直流重畳特性が劣化してしまう。そ
して、0.01〜5%、好ましくは0.01〜2%にて、
発熱量は十分小さく、その経時変化は十分少な
く、しかも磁気特性もすぐれている。 又、ガラス化元素中の炭素C含有比aを、ホウ
素B含有比qで除いた値は0.05〜0.4でなければ
ならない。0.05より大となつてはじめて、発熱量
や透磁率の経時変化が十分小さくなる。ただ0.4
を超えると、薄帯化が困難となる。又、発熱量が
多くなる。 なお、上記のように、ガラス化元素としては、
更に他のガラス化元素Xが含有されていてもよ
い。ただ、その含有比tが10%を超えると、磁気
特性に支障が生じるので、tは0〜10%である。 この出願の発明における薄帯は、以上詳述した
条件さえ満足すれば、他の特に制限はない。 ただ、薄帯中の結晶質が部分的に導入された結
果、特に薄帯面内の所定方向に磁気異方性が付与
されると、透磁率が向上したり、発熱量がより一
層減少したり、更には各種磁気特性の調整が容易
となる点で好ましい。 この場合、磁気異方性は、薄帯面内における所
定の一方向に、通常一軸異方性として導入される
ことが好ましい。 すなわち、ほぼ完全に非晶質の磁性合金の薄帯
を、後述の巻回の前、あるいは場合によつては巻
回の後に無磁場中で熱処理することにより、微結
晶を析出させると、通常、薄帯長手方向に一軸異
方性が付与され、そのとき透磁率が向上する。
又、薄帯長手方向と所定の角度をなす方向に、薄
帯巻回前、あるいは巻回後に磁場に印加して熱処
理することにより、微結晶を析出させると、薄帯
長手方向と所定の角度をなす方向に、一軸異方性
が付与され、そのとき、異方性方向を所定の方向
とすることにより、角形比やB−Hループの不飽
和領域を所望のごとく調整することができ、又発
熱量をより小さくすることができる。 このような磁気異方性の存在は、常法に従い、
トルク曲線を測定したりすることにより容易に検
証される。 このような薄帯は、概ね10〜100μm程度の厚
さと、概ね0.1〜50cm程度の幅をもつ長尺の薄板
である。 次に、この出願の第2の発明におけるチヨーク
コイル用磁心は、このような薄帯を巻回してなる
巻回体から構成される。 すなわち、薄帯を巻回してたる巻回体自体から
磁心が形成されてもよい。 又、巻回体を切断してU字、C字、I字、L字
状等の切断体とし、この切断体をカツトコアと
し、このカツトコア同志を突き合わせて磁心とし
てもよい。 更には、切断体を接続して所定形状、例えばE
字状等のカツトコアとなし、このカツトコア同志
を、あるいはこのカツトコアと上記のI字状等の
切断体からなるカツトコアを突きあわせて磁心と
してもよい。 このように、磁心をカツトコア形状とするとき
には、光線作業が容易となる。 このように、第2の発明の磁心は、薄帯の巻回
体から構成されるものであり、薄帯を所定の形状
となして積層してなるものではない。これは以下
のような理由による。 すなわち、上記のように、薄帯には、微結晶の
析出により、薄帯面内の所定方向に一軸性の磁気
異方性が付与されると好ましい結果を得る。そし
て、このような微結晶析出のための処理として
は、通常、巻回体形成前に施し、その後これから
巻回体を得ることになるが、得られる巻回体にお
ける容易軸の方向は、磁路方向に対し一定となる
ため、発熱量等の特性は高いものが得られる。こ
れに対し、積層構造とするときには、面内に所定
の異方性をもつ薄帯を例えばエツチングしたり、
打抜いて、これを積層するので、磁路と容易軸の
方向は、一定とはならず、発熱量等の特性として
高いものが得られない。 更には、巻回後微結晶析出のための処理を施す
ときにも、磁路に対し、所望の任意の一定の角度
をもつ容易軸を容易に導入することができる。反
面、積層型では、両者のなす角度を、磁路中一定
の角度にて、任意の値とすることはできず、又で
きたとしても非常に困難である。 そして、第2の発明の磁心は、巻回体自体から
なる場合はもとより、上記のように、種々のカツ
トコア形状とするときでも、更には、後述のよう
に空隙を設けるときでも、容易軸が磁路方向とな
す角度は、常に一定で、しまこそれを任意の角度
となすことができる。 なお、コア加工時の特性劣化も、巻回形の方が
すぐれている。そして、第2の発明の磁心は、こ
のように紙巻回体から構成される結果、製造が容
易となり、製造コストが低廉となる。 このように巻回体から磁心を構成する場合、巻
回体は、薄帯を所定の巻枠、巻心等に巻回し、そ
の端部を固定して形成される。この場合、巻枠、
巻心等の構造、形状等は種々のものとすることが
できる。又、その材質は、磁器、ガラス樹脂等の
他、金属であつてもよく、更に、端部の固定は、
接着剤、溶接、テープ等によつたり、あるいは、
巻枠等に設けられたかしめ爪によつてかしめる等
によつてもよい。 なお、巻回される薄帯間には、絶縁材料を介在
させることもできる。又、上記の異なり、巻枠、
巻心等を用いず、例えば樹脂等を含浸させる等し
て、その形状を固定することもできる。加えて、
薄帯巻回形状い、円輪状、角輪状等種々の変更可
能である。 これに対し、このように巻回体を切断して、切
断体を得て、それをI字状、U字状、C字状のカ
ツトコアになすには、巻回体の特に切断部を樹脂
等で含浸させ固定したり、かしめ爪等で固定した
りして、切断すればよい。又、この切断体相互の
薄帯ないし巻枠等の間を接着すれば、所定のE字
状等のカツトコアが形成される。そして、このよ
うな各種カツトコアから、U−U、E−I等の種
種のカツトコア形状の磁心が構成される。 さらに、このような各種磁心の磁路中には、そ
の一部分に空隙が形成されていることが好まし
い。空隙の存在により、B−Hループの不飽和領
域が拡大し、直流重畳特性が向上すからである。 このように、磁路の一部分に空隙を設けるに
は、上記切断体を形成するのと同様、切断部を固
定して、所定空隙巾にて巻回体を切断してもよ
く、あるいは、上記カツトコアの突きあわせに際
し、所定の空隙を設けてもよい。 なお、空隙長は、通常磁路長の0.001〜0.05程
度とすればよい。 この出願の発明の薄帯およびチヨークコイル用
磁心は、通常、以下のようにして作製される。 まず、対応する組成の母合金から、公知の高速
急冷法に従い、ほぼ完全に非晶質の薄帯を得る。 次いで、通常は、この薄帯に、微結晶析出のた
めの処理を施す。 このような処理は、通常、無磁場中にて、結晶
化温度付近の温度で適当な時間加熱し、これを冷
却、例えば空冷することによつて行う。加熱温
度、加熱時間、冷却速度等は、必要とする特性値
に応じ、容易に実験的に求めることができる。な
お、このような熱処理の雰囲気は、空気中、真空
中、不活性ガス中、非酸化性ガス中等いずれであ
つてもよい。 あるいは、この他、上記のような熱処理を、静
磁場中で行うことができる。この場合、印加磁場
は、例えば100Oe程度とする。そして、このと
き、薄帯面内の長手方向と所定の角度をなす異方
性が付与される。又、熱処理を張力を印加しなが
ら行つたり更には場合によつては回転磁場中で行
うこともできる。 次いで、上記したようにこの薄帯を巻回し、巻
回体を得、これをそのまま磁心としたり、これか
ら各種カツトコアを形成し、磁心としたり、更に
は所定の空隙わ設けたりして、この出願の発明の
チヨークコイル用磁心が形成される。 なお、薄帯に予め微結晶析出のための処理を施
さず、巻回体作製後、カツトコア形成後、あるい
は空隙形成後のいずれかに、処理を施すこともで
きる。また、薄帯に予め微結晶析出のための処理
を施して、その後巻回体を得るときには、巻回体
作製後等に、別途、歪除去のための熱処理を施す
こともできる。 そして、以上のような磁心に所定の捲線を施
し、その他所定の加工を施し、チヨークコイルが
形成される。 このようなチヨークコイルは、スイツチングレ
ギユレータ、サイリスタインバータをはじめとす
るインバータ類、あるいは通常の直流電源等各種
電気機器に用いられる、リツプル、オン・オフサ
ージ等の除去用のコイルとして有用である。 この出願の発明の薄帯を用いたチヨークコイル
用磁心は、直流または交流、例えば50Hz程度の交
流に定常的ないし周期的に重畳する高周波成分を
除去するに際し、その発熱量がきわめて少ない。
又、透磁率透の磁気特性が良好で、しかも、その
角形比、B−Hループの不飽和領域等を容易に所
望のごとく調整できるので、上記のような高周波
成分、例えばリツプル電流、オン・オフサージ電
流の除去が、有効に行え、その適用範囲がきわめ
て広い。更には、各種特性の経時変化がきわめて
少ない。又、微結晶析出のための熱処理条件も広
範囲でり、製造が容易である。さらには、耐食性
等も大きい。 次に、この出願の発明の実施例を示し、この出
願の発明を更に詳細に説明する。 実施例 1 上記した式に含まれる組成Fe76.7Mn0.3Si17B9.5
P0.1C1.4(z=28at%、p=60.9%、r=0.4%、
s/q=0.15%)をもつ非晶質磁性合金薄帯A
と、上記した式の範囲外の組成Fe74Si13B13をも
つ非晶質磁性合金薄帯Bとを高速急冷法により得
た。両者はほぼ完全に非晶質であり、ともに厚さ
30μm、巾8mmである。 次いで、これら薄帯A、Bにつき、それぞれを
5分割し、その1つの何ら処理を施さず、又、他
の4つには、下記表1のような温度と時間にて無
磁場中熱処理を行い、試料A−1〜A−5および
試料B−1〜B−5を得た。
The invention of this application relates to an amorphous magnetic alloy ribbon and a magnetic core for a chiyoke coil using the ribbon.
More specifically, it is a current with a relatively high frequency that regularly or periodically leaks from electrical equipment, enters from the power source, or occurs in a circuit, for example. Eliminates ripple current, on-off surge current, etc.
The present invention relates to an amorphous magnetic alloy ribbon suitable for a magnetic core for a chiyoke coil for passing only a desired current of direct current or a relatively low frequency, and a magnetic core formed from the same. Ripple removal,
Chiyoke coils are used for purposes such as removing on-off surges. Recently, due to its excellent soft magnetic properties,
It has been proposed to use an amorphous magnetic alloy ribbon as a magnetic core material for a chiyoke coil. However, if you wind a normal amorphous magnetic alloy ribbon to form a magnetic core and use it as a chiyoke coil to remove high frequency components that are constantly or periodically superimposed on direct current or alternating current, the amount of heat generated will increase. is large, and the magnetic properties such as magnetic permeability are not satisfactory.
Furthermore, it has the disadvantage that magnetic permeability, iron loss, etc. deteriorate over time due to long-term repeated operation and storage, and it has not reached the point where it can replace the conventionally used silicon steel plates and ferrite. On the other hand, there is a proposal to precipitate microcrystals in an amorphous magnetic alloy ribbon to improve its magnetic properties. However, even if such a thin ribbon is used as a magnetic core for a chiyoke coil, if it has a normal composition, it is still insufficient as a magnetic core for a chiyoke coil in terms of heat generation, various magnetic properties, and aging characteristics. The invention of this application was made in view of the above-mentioned circumstances, and is a method for removing high frequency components that are stationary or periodically superimposed on direct current or alternating current from an amorphous magnetic alloy ribbon. By improving the ribbon filter used in the magnetic core for the Chi-Yoke coil that is formed, we can significantly reduce the amount of heat generated, improve magnetic properties such as magnetic permeability, and further reduce the aging characteristics of the magnetic properties. , its main purpose. The inventors of the present invention have made the invention of this application as a result of repeated studies for such purposes. That is, the first invention of this application is an amorphous magnetic alloy ribbon for a chiyoke coil, which is characterized by partially containing crystalline material and having a composition represented by the following formula. Further, the second invention of this application is characterized in that it is constituted by a wound body formed by winding a thin ribbon around an amorphous magnetic alloy that partially contains crystals and has a composition represented by the following formula. This is a magnetic core for a chiyoke coil. Formula (Fe k M l ) x Mn y (Si p B q P r C s X t ) zwherein , in the above formula, M represents one or more transition metal elements other than Fe and Mn, and is Si, B,
Represents one or more vitrifying elements other than P and C. Further, x+y+z=100at%, of which y is 0.1 to 10at% and z is 26.5 to 29.5at%. Furthermore, k+l=100%, p+q+r+s+t
= 100%, of which l is 0 to 10%, and
p is 60~75%, r is 0.01~5%, s/q is 0.05~
4. t is 0 to 10%. In addition, z≦0.5p−
3, and z≦−0.6p+71.5, and z≧−0.033p+
It is 28.98. Hereinafter, the specific configuration of the invention of this application will be explained in detail. The ribbon of amorphous magnetic alloy for a chiyoke coil in the first invention partially contains crystalline material. In the ribbon, the crystalline material partially contained in the amorphous material is generally precipitated microcrystals and mixed in the amorphous material. Therefore, the X of the ribbon
When line diffraction is performed, the diffraction spectrum shows a pattern in which a peak indicating the presence of crystalline material is superimposed on a halo peculiar to amorphous material, and spots are superimposed on the halo in the diffraction image, and a predetermined pattern is observed. A Debye-Sierer ring with ring diameter and ring width appears. Then, by taking the area ratio between the halo and the peak of the diffraction spectrum, the abundance ratio of crystalline and amorphous in the ribbon can be determined. , usually preferably about 0.1 to 50%. Further, the precipitated microcrystals are generally considered to have an average grain size of approximately 10 to 1000 mm, based on the ring diameter and ring width of the Bebay-Sierra ring. When a chiyoke coil is formed from a thin ribbon using such partially existing microcrystals,
The amount of heat generated by high frequency components that are regularly or periodically superimposed on direct current or alternating current is significantly reduced.
In addition, magnetic properties such as magnetic permeability are improved, and furthermore, the squareness ratio, the unsaturated region of the B-H loop, etc. can be easily adjusted, and the DC superposition characteristics are improved. In addition, deterioration of these magnetic properties over time due to long-term repeated operations and storage is also significantly reduced. Next, to explain the composition of the amorphous magnetic alloy ribbon, in the above formula, M is Fe and Mn
other transition metal elements (Sc~Zn, Y-Cd, La
~Hg, Ac~), and preferred specific examples include Co, Ni, Cr, Cu, Mo, Nb, Ti,
1 of W, V, Zr, Ta, Y or rare earth elements, etc.
More than one species can be mentioned. Preferred specific examples of X representing one or more vitrification elements other than Si, B, P, and C include one or more of Al, Be, Ge, Sb, In, and the like. On the other hand, Mn, which is contained as an essential component in the ribbon,
The content y is 0.1 to 10 at%, preferably 0.1 to 5 at%
%. If it is less than 0.1%, the magnetic properties of the chiyoke coil will deteriorate significantly over time. In addition, the crystallization temperature is low, and the temperature and time required for heat treatment for precipitation of microcrystals, which will be described later, are severely restricted, making it difficult to partially contain crystalline materials as described above.
On the other hand, if y exceeds 10 at%, deterioration over time becomes large and it becomes difficult to form a ribbon. In addition, saturation magnetization decreases and DC superimposition characteristics also deteriorate. On the other hand, y is 0.1 to 10at%, preferably 0.1 to 5at%
There is no such inconvenience. On the other hand, the content z of a vitrifying element containing Si, B, P and C as essential components, and one or more other vitrifying elements (X) as necessary, is as follows:
It is 26.5-29.5at%. If z is less than 26.5 at% or greater than 29.5 at%, the loss will be large, and the amount of heat generated by the high frequency superimposed component will increase when a chi-yoke coil is configured. In addition, when z is greater than 29.5 at%, it becomes difficult to form a thin ribbon, the manufacturing yield becomes poor, and the surface properties of the ribbon deteriorate. Also, z is
If it exceeds 29.5%, the temperature and time required for heat treatment for precipitation of microcrystals will be severely restricted, making it difficult to partially contain crystalline materials as described above. On the other hand, when z is within the range of 26.5 to 29.5 at%, the amount of heat generated is much lower and there are no other drawbacks as mentioned above. The ribbon in the invention of this application is as described above.
0.1 to 10at% Mn, Si, B, P, and C,
Vitrification element 26.5 to 29.5at containing other vitrification element X added or mixed as necessary to this
%, and the remainder is Fe and other transition metal elements M that may be included as necessary, totaling 60.5 to 73.4 at%, more preferably 65.5 to 73.4 at%.
Consists of %. In this case, the content ratio l of transition metal elements M other than Fe and Mn is the content ratio k of Fe and k+l=
Under the condition of 100%, it is 0 to 10%, more preferably 0 to 5%. If l is greater than 10%, the magnetic properties will deteriorate, especially the loss will be poor, the amount of heat generated will increase, and the magnetic permeability will decrease, which is not preferable. On the other hand, the vitrification element is p+q+r+s+t=
Under 100% conditions, p% Si, q% B, r
%, s% of C, and t% of other vitrifying elements X, which may be included as necessary. In this case, the silicon content ratio p in the vitrification element is
is 60-75%. When p is less than 60% and greater than 75%, the amount of heat generated increases. Also, 60
If it is less than %, magnetic properties such as magnetic permeability will deteriorate. Furthermore, the amount of heat generated, magnetic permeability, etc. deteriorate significantly over time. On the other hand, if it is greater than 75%, the magnetic properties are unsatisfactory. Moreover, restrictions on heat treatment conditions for precipitation of microcrystals become stricter, making it difficult to partially contain crystalline materials. In addition, the total content of vitrification elements zat%,
Between the Si content ratio p% in the vitrification element, z≦
0.5p−3, and z≦−0.6p+71.5, and z≧−
The relationship 0.033p+28.98 must be satisfied. That is, to explain these conditions based on Figure 1, when expressed in coordinates (z, p),
Points H (60, 27), I (65, 29.5), J (70, 29.5), K
(75, 26.5) and H are sequentially connected by straight lines, and the area surrounded by these straight lines is the condition where z and p of the thin plate in the invention of this application are satisfied. Only within this region, the amount of heat generated is significantly reduced. The problem above the I-J line (z=29.5) in the figure is as described above, but above the line H-I (z=0.5p-) in the figure.
3) Above and above the J-K line (z=-0.6p+71.5), the amount of heat generated increases and its deterioration over time is large. In addition, above the J-K line, the heat treatment conditions to partially make crystals exist are severe;
Precipitation of microcrystals becomes difficult. Further, below the K-H line (z=-0.033p+28.98), the amount of heat generated increases and deterioration over time is large. Furthermore, the phosphorus P content ratio r in the vitrification element is
It is 0.01-5%, more preferably 0.01-2%.
If it is less than 0.01%, the deterioration of heat generation, magnetic permeability, etc. over time will increase, and if it is more than 5%, the heat generation will increase and the DC superimposition characteristics will deteriorate. and at 0.01 to 5%, preferably 0.01 to 2%,
The amount of heat generated is sufficiently small, its change over time is sufficiently small, and its magnetic properties are also excellent. Further, the value obtained by subtracting the carbon C content ratio a in the vitrification elements by the boron B content ratio q must be 0.05 to 0.4. Only when the value is greater than 0.05 does the change in heat generation and magnetic permeability over time become sufficiently small. Just 0.4
If it exceeds, it becomes difficult to form a thin ribbon. Also, the amount of heat generated increases. As mentioned above, the vitrification elements include:
Furthermore, other vitrification elements X may be contained. However, if the content ratio t exceeds 10%, the magnetic properties will be impaired, so t is 0 to 10%. The ribbon in the invention of this application is not particularly limited as long as it satisfies the conditions detailed above. However, as a result of the partial introduction of crystalline matter into the ribbon, especially when magnetic anisotropy is imparted in a predetermined direction within the ribbon surface, the magnetic permeability improves and the amount of heat generated further decreases. Furthermore, it is preferable because it facilitates adjustment of various magnetic properties. In this case, it is preferable that the magnetic anisotropy be introduced in one predetermined direction within the plane of the ribbon, usually as uniaxial anisotropy. In other words, when a thin ribbon of an almost completely amorphous magnetic alloy is heat-treated in a non-magnetic field before or in some cases after the winding described below, microcrystals are precipitated. , uniaxial anisotropy is imparted to the longitudinal direction of the ribbon, and the magnetic permeability is improved at this time.
In addition, if microcrystals are precipitated by applying a magnetic field and heat-treating in a direction that makes a predetermined angle with the longitudinal direction of the ribbon before or after winding the ribbon, Uniaxial anisotropy is imparted in the direction forming the , and at that time, by setting the anisotropy direction to a predetermined direction, the squareness ratio and the unsaturated region of the B-H loop can be adjusted as desired, Moreover, the amount of heat generated can be further reduced. The existence of such magnetic anisotropy is explained by the conventional method,
This can be easily verified by measuring the torque curve. Such a ribbon is a long thin plate having a thickness of about 10 to 100 μm and a width of about 0.1 to 50 cm. Next, the magnetic core for a chiyoke coil in the second invention of this application is constituted by a wound body formed by winding such a thin ribbon. That is, the magnetic core may be formed from the wound body itself made by winding the ribbon. Alternatively, the wound body may be cut into a U-shaped, C-shaped, I-shaped, L-shaped, etc. cut body, and this cut body may be used as a cut core, and the cut cores may be butted against each other to form a magnetic core. Furthermore, the cut bodies are connected to form a predetermined shape, for example, E.
A magnetic core may be formed by forming a cut core in a shape such as a letter, and by butting these cut cores against each other, or by butting this cut core with a cut core made of a cut body such as the above-mentioned I shape. In this way, when the magnetic core is shaped into a cut core, light beam work becomes easier. In this way, the magnetic core of the second invention is composed of a wound body of thin ribbons, and is not formed by laminating thin ribbons into a predetermined shape. This is due to the following reasons. That is, as described above, preferable results are obtained when the ribbon is given uniaxial magnetic anisotropy in a predetermined direction within the ribbon surface by precipitation of microcrystals. The treatment for precipitation of such microcrystals is usually performed before forming the wound body, and then the wound body is obtained from this process, but the direction of the easy axis in the resulting wound body depends on the magnetic field. Since it is constant in the direction of the road, high characteristics such as calorific value can be obtained. On the other hand, when creating a laminated structure, for example, a thin strip having a predetermined in-plane anisotropy is etched,
Since these are punched out and then laminated, the directions of the magnetic path and the easy axis are not constant, and high properties such as heat generation cannot be obtained. Furthermore, even when performing a treatment for precipitating microcrystals after winding, an easy axis having a desired arbitrary constant angle can be easily introduced into the magnetic path. On the other hand, with the laminated type, it is not possible to set the angle between the two to an arbitrary value at a constant angle in the magnetic path, and even if it were possible, it would be extremely difficult. The magnetic core of the second invention has an easy-to-shape axis not only when it is made of the wound body itself, but also when it is made into various cut core shapes as described above, and even when it is provided with a gap as described later. The angle made with the magnetic path direction is always constant, but it can be made at any arbitrary angle. Note that the wound type is also better in terms of characteristic deterioration during core processing. Since the magnetic core of the second invention is constructed from the paper roll in this way, it is easy to manufacture and the manufacturing cost is low. When constructing a magnetic core from a wound body in this way, the wound body is formed by winding a ribbon around a predetermined winding frame, winding core, etc., and fixing the ends thereof. In this case, the reel,
The structure, shape, etc. of the winding core etc. may be various. In addition, the material may be metal in addition to porcelain, glass resin, etc., and the fixing of the end part is
By adhesive, welding, tape, etc., or
It may also be caulked using a caulking claw provided on the winding frame or the like. Note that an insulating material may be interposed between the wound ribbons. Also, unlike the above, the winding frame,
The shape can also be fixed, for example, by impregnating it with a resin or the like, without using a winding core or the like. In addition,
Various modifications are possible, such as a ribbon-wound shape, a circular ring shape, and a square ring shape. On the other hand, in order to cut the wound body in this way to obtain a cut body and make it into an I-shaped, U-shaped, or C-shaped cut core, the cut part of the wound body is made of resin. You can fix it by impregnating it with etc., or fix it with caulking nails etc., and then cut it. Further, by gluing the thin strips or winding frames of the cut pieces together, a cut core in a predetermined E-shape or the like is formed. From these various cut cores, magnetic cores having various cut core shapes such as U-U, E-I, etc. are constructed. Furthermore, it is preferable that a gap be formed in a part of the magnetic path of each of these magnetic cores. This is because the presence of voids expands the unsaturated region of the B-H loop and improves DC superposition characteristics. In this way, in order to provide a gap in a part of the magnetic path, the cutting part may be fixed and the wound body may be cut at a predetermined gap width in the same manner as in the case of forming the above-mentioned cut body, or the wound body may be cut with a predetermined gap width. A predetermined gap may be provided when the cut cores are butted together. Note that the air gap length may normally be about 0.001 to 0.05 of the magnetic path length. The ribbon and the magnetic core for a chiyoke coil according to the invention of this application are usually produced as follows. First, a nearly completely amorphous ribbon is obtained from a master alloy having a corresponding composition according to a known high-speed quenching method. This ribbon is then usually subjected to a treatment for precipitation of microcrystals. Such treatment is usually carried out in the absence of a magnetic field by heating at a temperature near the crystallization temperature for an appropriate period of time, followed by cooling, for example air cooling. The heating temperature, heating time, cooling rate, etc. can be easily determined experimentally depending on the required characteristic values. The atmosphere for such heat treatment may be air, vacuum, inert gas, non-oxidizing gas, or the like. Alternatively, the heat treatment as described above can be performed in a static magnetic field. In this case, the applied magnetic field is, for example, about 100 O e . At this time, anisotropy forming a predetermined angle with the longitudinal direction within the ribbon surface is imparted. Further, the heat treatment can be performed while applying tension, or even in a rotating magnetic field depending on the case. Next, as described above, this thin ribbon is wound to obtain a wound body, which may be used as a magnetic core as it is, or various cut cores may be formed from this to form a magnetic core, and a predetermined gap may be provided. A magnetic core for a chiyoke coil according to the invention is formed. It should be noted that the ribbon may not be subjected to the treatment for precipitating microcrystals in advance, but the treatment may be performed either after the production of the wound body, after the formation of the cut core, or after the formation of the voids. Furthermore, when the ribbon is previously subjected to a treatment for precipitation of microcrystals and then a wound body is obtained, a heat treatment for strain removal may be separately performed after the winding body is produced. Then, the magnetic core as described above is subjected to predetermined winding and other predetermined processing to form a chiyoke coil. Such a chi-yoke coil is useful as a coil for removing ripples, on/off surges, etc. used in switching regulators, inverters such as thyristor inverters, and various electrical devices such as ordinary DC power supplies. The magnetic core for a chiyoke coil using a ribbon according to the invention of this application generates extremely little heat when removing high frequency components that are stationary or periodically superimposed on a direct current or alternating current, for example, an alternating current of about 50 Hz.
In addition, the magnetic properties of magnetic permeability are good, and the squareness ratio, unsaturated region of the B-H loop, etc. can be easily adjusted as desired, so that high frequency components such as the above, such as ripple current, on/off, etc. Off-surge current can be effectively removed and the range of application is extremely wide. Furthermore, there is extremely little change in various properties over time. Moreover, the heat treatment conditions for precipitation of microcrystals can be varied over a wide range, and manufacturing is easy. Furthermore, it also has great corrosion resistance. Next, examples of the invention of this application will be shown and the invention of this application will be explained in more detail. Example 1 Composition included in the above formula Fe 76.7 Mn 0.3 Si 17 B 9.5
P 0.1 C 1.4 (z=28at%, p=60.9%, r=0.4%,
Amorphous magnetic alloy ribbon A with s/q=0.15%)
and an amorphous magnetic alloy ribbon B having a composition Fe 74 Si 13 B 13 outside the range of the above formula were obtained by a high-speed quenching method. Both are almost completely amorphous and both have a thickness of
It is 30 μm and 8 mm wide. Next, each of these ribbons A and B was divided into five parts, one of which was not subjected to any treatment, and the other four were subjected to heat treatment in a non-magnetic field at the temperature and time shown in Table 1 below. Samples A-1 to A-5 and samples B-1 to B-5 were obtained.

【表】【table】

【表】 これら試料A−1〜B−5につき、X線回折を
行つたところ、上記表1に示される結果を得た。 次いで、上記薄帯A,Bを5分割して、内径19
mm、外径31mm、巾8mmのトロイダル状に巻回し、
計10個の巻回体を得た。このようにして得た計10
個の巻回A−1〜B−5につき、上記表1に示さ
れる計10種の熱処理を行つた後、巻回体にエポキ
シ系樹脂を含浸させ、樹脂硬化させ、しかる後、
巻回体を切断して、磁路中に、幅1mmの空隙を形
成し、チヨークコイル用磁心A−1〜A−5、B
−1〜B−5を得た。 このようにして得たチヨークコイル用磁心はA
−1〜B−5につき、L=30μHとなるように巻
線を施し、これを50kHzで駆動する、5V、30Aの
フオワードコンバータ型スイツチング電源にリツ
プル除去用チヨークコイルとして組みこみ、発熱
量テストを行つた。出力電流20Aのときの磁心の
温度上昇を測定して、下記表2に示される結果を
得た。
[Table] When X-ray diffraction was performed on these samples A-1 to B-5, the results shown in Table 1 above were obtained. Next, the above ribbons A and B were divided into 5 parts with an inner diameter of 19
mm, outer diameter 31mm, width 8mm, wound in a toroidal shape,
A total of 10 rolled bodies were obtained. A total of 10 obtained in this way
After performing a total of 10 types of heat treatment shown in Table 1 above for each of the windings A-1 to B-5, the winding body is impregnated with an epoxy resin, the resin is cured, and then,
The wound body was cut to form a gap with a width of 1 mm in the magnetic path, and the magnetic cores A-1 to A-5 and B
-1 to B-5 were obtained. The magnetic core for Chiyoke coil obtained in this way is A
For -1 to B-5, wires were wound so that L = 30μH, and this was installed as a ripple removal chiyoke coil in a 5V, 30A forward converter type switching power supply driven at 50kHz, and a heat generation test was conducted. I went. The temperature rise of the magnetic core at an output current of 20 A was measured, and the results shown in Table 2 below were obtained.

【表】 これとは別に、磁心A−1〜B−5につき、上
記L=30μHに設定して巻線したチヨークコイル
の直流重畳特性を測定した。各コイルにつき、L
=20μH以下となる直流電流値を表2に併記する。 さらに、これは各チヨークコイルを、120℃の
恒温槽中に1000時間保持し、上記発熱量および直
流重畳特性を測定し、特性の経時変化を評価し
た。結果を上記表2に併記する。表中、×は大き
な変化があつたこと、△は変化があつたこと、○
は変化がなかつたことを表わす。 表2に示される結果から、上記した式に示され
る組成をもち、部分的に結晶質を含むこの出願の
発明の薄膜を、チヨークコイル用磁心として用い
るときのすぐれた効果が明らかである。 実施例 2 上記の式において、Mn含有量yを1.0at%、ガ
ラス化元素成分中のP含有比rを0.1at%、Cと
Bとの含有比s/qを0.2にそれぞれ固定し、ガ
ラス化元素成分量zと、ガラス化元素成分中のSi
含有比pとをそれぞれ変化させて、各種薄帯を作
製した。 次いで、各薄帯を内径19mm、外径31mm、巾8mm
のトロイダル状に巻回した後、各巻回体に440℃、
40分間の無磁場中熱処理を施し、エポキシ系樹脂
を含浸させ固定し、磁路中に1mmの空隙を設け、
各種磁式を得た。このようにして行つた熱処理の
結果、各薄板のX線回折スペクトルには、いずれ
もハローとピークとが存在していた。 次に、このようにして得た各磁心につき、実施
例1と同様にして、チヨークコイルを作製し、実
施例1と同様の発熱量テストを行い、磁心の温度
上昇を測定した。結果を第2図に示す。第2図に
は、薄帯中のSi含有比pを横軸にとり、ガラス化
元素成分量zを縦軸にとり、zおよびpの異なる
各種薄板から得られたコイルにおいて、その温度
上昇ΔTがそれぞれ50℃、30℃、25℃および20℃
である組成線が示される。 第2図に示される結果から、H−I−J−K−
Hで囲まれる領域内の組成をもつこの出願の発明
の薄帯から得られるコイルは、ほぼ25℃以下の温
度上昇しか示さず、これに対し、上記領域外の薄
帯から得られるコイルでは、発熱量が増大してし
まうことがわかる。 又、各種コイルにつき、実施例1と同様に発熱
量の経時変化を測定したところ、H−I−J−K
−Hで囲まれる領域の組成をもつ薄板から得られ
たコイルは、いずれも実施例1におけるコイルA
−3、A−4と同等のすぐれた特性を示した。 更に、各組成ごとに、40分間の熱処理にて、発
熱量、経時変化の点で、良好な特性を得るための
熱処理温度Tanの許容巾ΔTanを求めた。ΔTan
が、それぞれ20℃、30℃および40℃である組成線
を第3図に示す。 第3図に示される結果から、この出願の発明
の、H−I−J−K−Hで囲まれる領域内の組成
をもつ薄帯は、20℃以上の熱処理温度を示すこと
がわかる。 なお、H−I−J−K−Hで囲まれる領域内の
組成をもつ薄帯は、いずれもすぐれた耐食性を示
した。 実施例 3 p=0.7%、s/q=0.2に固定した、Mn含有
量yの異なる下記表3に示される4種の組成の非
晶質磁性合金薄帯を得た。 この4種の薄帯を用い、実施例1と同一の寸法
の巻回体を作製し、各巻回体に熱処理を施した
後、樹脂含浸により固定して1mmの空隙を設け
た。 実施例1と同様に、チヨークコイルを形成し
て、スイツチング電源に組みこんだときの、温度
上昇を測定した。各巻回体に対する熱処理時間を
40分に固定し、温度上昇が25℃以下になる熱処理
温度巾を下記表3に示す。なお、いずれの場合
も、X線回折の結果、ハローとピークとが存在し
ていた。
[Table] Separately, the DC superimposition characteristics of the chiyoke coils wound with the above-mentioned L=30 μH were measured for magnetic cores A-1 to B-5. For each coil, L
Table 2 also lists the DC current values that are equal to or less than 20 μH. Furthermore, each Chiyoke coil was kept in a constant temperature bath at 120° C. for 1000 hours, and the above-mentioned calorific value and DC superimposition characteristics were measured to evaluate changes in characteristics over time. The results are also listed in Table 2 above. In the table, × means there was a big change, △ means there was a change, ○
indicates that there was no change. From the results shown in Table 2, it is clear that the thin film of the invention of this application, which has the composition shown by the above formula and partially contains crystalline materials, has an excellent effect when used as a magnetic core for a chiyoke coil. Example 2 In the above formula, the Mn content y is fixed at 1.0 at%, the P content ratio r in the vitrification element component is fixed at 0.1 at%, and the content ratio s/q of C and B is fixed at 0.2. The amount of vitrification element component z and Si in the vitrification element component
Various ribbons were produced by changing the content ratio p. Next, each thin strip has an inner diameter of 19 mm, an outer diameter of 31 mm, and a width of 8 mm.
After winding into a toroidal shape, each winding body is heated to 440℃,
Heat treated in a non-magnetic field for 40 minutes, impregnated with epoxy resin and fixed, creating a 1mm gap in the magnetic path.
Various magnetic types were obtained. As a result of the heat treatment performed in this manner, a halo and a peak were present in the X-ray diffraction spectrum of each thin plate. Next, for each of the magnetic cores obtained in this manner, a chiyoke coil was produced in the same manner as in Example 1, and the same calorific value test as in Example 1 was conducted to measure the temperature rise of the magnetic core. The results are shown in Figure 2. In Figure 2, the horizontal axis is the Si content ratio p in the ribbon, and the vitrification element content z is the vertical axis, and the temperature rise ΔT is plotted for coils obtained from various thin plates with different z and p. 50℃, 30℃, 25℃ and 20℃
A composition line is shown. From the results shown in Figure 2, H-I-J-K-
A coil obtained from the ribbon of the invention of this application having a composition within the region surrounded by H shows a temperature increase of approximately 25° C. or less, whereas a coil obtained from a ribbon outside the above region, It can be seen that the amount of heat generated increases. In addition, when we measured the change in calorific value over time for various coils in the same manner as in Example 1, H-I-J-K
The coils obtained from the thin plates having the composition in the region surrounded by -H are all coils A in Example 1.
-3 and showed excellent characteristics equivalent to A-4. Furthermore, for each composition, the allowable range ΔTan of the heat treatment temperature Tan to obtain good characteristics in terms of heat generation amount and change over time was determined after 40 minutes of heat treatment. ΔTan
Figure 3 shows the composition lines where the temperature is 20°C, 30°C, and 40°C, respectively. From the results shown in FIG. 3, it can be seen that the ribbon of the invention of this application having a composition within the region surrounded by H-I-J-K-H exhibits a heat treatment temperature of 20°C or higher. Note that all ribbons having compositions within the region surrounded by H-I-J-K-H exhibited excellent corrosion resistance. Example 3 Amorphous magnetic alloy ribbons having four compositions shown in Table 3 below with different Mn contents y were obtained, with p=0.7% and s/q=0.2 fixed. Using these four types of ribbons, wound bodies having the same dimensions as in Example 1 were prepared, and each wound body was heat-treated and then fixed by resin impregnation to form a gap of 1 mm. In the same manner as in Example 1, a temperature rise was measured when a chiyoke coil was formed and incorporated into a switching power supply. Heat treatment time for each roll
Table 3 below shows the heat treatment temperature range at which the temperature rise is 25°C or less when the time is fixed at 40 minutes. In addition, in both cases, a halo and a peak were present as a result of X-ray diffraction.

【表】 表3に示される結果から、Mn含有量が0.1〜
10at%、より好ましくは0.1〜5at%となつたと
き、微結晶析出のための熱処理温度葉巾が広くな
ることがわかる。 実施例 4 下記表4に示される、s/qの異なる4種の組
成の非晶質磁性合金薄膜を得た。
[Table] From the results shown in Table 3, the Mn content is 0.1~
It can be seen that when the content is 10 at%, more preferably 0.1 to 5 at%, the heat treatment temperature range for precipitation of microcrystals becomes wider. Example 4 Amorphous magnetic alloy thin films having four compositions different in s/q as shown in Table 4 below were obtained.

【表】 この4種の薄帯を用い、実施例1と同一の寸法
の巻回体を作製し、実施例1と同様に、各巻回体
の熱処理を施し、空隙を設けて磁心を作製した。
各磁心の薄帯は、X線回折により、ハローとピー
クとが存在していた。 L=30μHに設定して巻線を施してチヨークコ
イルとし、実施例1と同様直流重畳特性を測定
し、各コイルのL=20μH以下となる直流電流値
を測定した。結果を下記表5に示す。
[Table] Using these four types of thin ribbons, windings with the same dimensions as in Example 1 were made, and in the same manner as in Example 1, each winding was heat-treated to create a magnetic core with air gaps. .
X-ray diffraction revealed that a halo and a peak were present in each magnetic core ribbon. A wire was wound with L=30 μH set to form a chiyoke coil, and the DC superimposition characteristics were measured in the same manner as in Example 1, and the DC current value at which L=20 μH or less of each coil was measured. The results are shown in Table 5 below.

【表】 表5の結果から、s/qは0.05〜0.4となると
直流重畳特性が向上することがわかる。 なお、コイルD−4は、発熱が多く、チヨーク
コイル用コアとしては適さないことが確認され
た。 これに対し、各コイルを120℃の恒温槽中に
1000時間保持し、その後の直流重畳特性の変化を
調べた。結果を○(変化なし)および△(変化あ
り)の記号にて、上記表5に示す。 表5の結果から、s/q=0.05〜0.4で良好な
経時特性を示すことがわかる。 実施例 5 下記表6に示される、リン含有比rの異なる4
種の非晶質磁性合金薄帯を得た。
[Table] From the results in Table 5, it can be seen that when s/q is 0.05 to 0.4, the DC superimposition characteristics are improved. It was confirmed that the coil D-4 generated a lot of heat and was not suitable as a core for a chiyoke coil. In contrast, each coil was placed in a constant temperature bath at 120°C.
It was held for 1000 hours and the changes in DC superposition characteristics thereafter were investigated. The results are shown in Table 5 above using the symbols ◯ (no change) and △ (change). From the results in Table 5, it can be seen that good aging characteristics are exhibited when s/q=0.05 to 0.4. Example 5 4 different phosphorus content ratios shown in Table 6 below
A seed amorphous magnetic alloy ribbon was obtained.

【表】 これら4種の薄帯につき、実施例1と同一の寸
法の巻回体を作製し、実施例1と同様に、各巻回
体に熱処理を施し、空隙を設けて磁心を作製し
た。各磁心の薄帯は、X線回折により、ハローと
ピークとが存在していた。 これら各磁心から実施例1同様、チヨークコイ
ルを作製し、実施例4と同様、L=20μHとなる
直流電流値と、その経時変化を測定した。結果を
下記表7に示す。
[Table] For these four types of thin ribbons, wound bodies having the same dimensions as in Example 1 were prepared, and in the same manner as in Example 1, each wound body was heat-treated to provide a gap to form a magnetic core. X-ray diffraction revealed that a halo and a peak were present in each magnetic core ribbon. Similarly to Example 1, a chiyoke coil was produced from each of these magnetic cores, and similarly to Example 4, the direct current value at which L=20 μH and its change over time were measured. The results are shown in Table 7 below.

【表】 表7の結果から、rは0.01〜5%、より好まし
くは0.01〜2%でなければならないことがわか
る。 実施例 6 Fe70.7Mn0.3Si20B7.7C1.2P0.1の組成の30μm厚の
非晶質磁性合金薄板を得、実施例1と全く同様に
して、巻回体から空隙を有する磁心Fを得た。 これに対し、上記薄帯を内径19mm、外径31mmの
リング状に抜き、これを熱処理後、巾8mmに積層
し、樹脂含浸し、1mmの空隙を設け、積層形の磁
心Gを作製した。磁心F、Gの薄帯には、とも
に、ハローとピークとが存在していた。 このように作製した2種の磁心から、L=
30μHにてチヨークコイルを作製し、実施例1と
同様、発熱テストを行つた。 この場合、直流重畳特性を磁心F、Gでほぼ同
一に保ち、L=20μHとなる直流電流値を25Aと
したところ、磁心Fでは温度上昇が22℃であつた
のに対し、磁心Gでは32℃であつた。 他方、発熱量、すなわち温度上昇ΔTを20℃に
ほぼ同一にしたときには、L=20μHとなる直流
電流値は、磁心Fで24Aであつたのに対し、磁心
Gでは18Aであた。 これらの結果から、磁心は、巻回体から構成す
ることが好ましいことがわかる。
[Table] From the results in Table 7, it can be seen that r should be between 0.01 and 5%, more preferably between 0.01 and 2%. Example 6 A 30 μm thick amorphous magnetic alloy thin plate with a composition of Fe 70.7 Mn 0.3 Si 20 B 7.7 C 1.2 P 0.1 was obtained, and a magnetic core F with a void was obtained from the wound body in exactly the same manner as in Example 1. Ta. On the other hand, the thin strip was cut into a ring shape with an inner diameter of 19 mm and an outer diameter of 31 mm, and after heat treatment, the rings were laminated to a width of 8 mm, impregnated with resin, and a gap of 1 mm was provided to produce a laminated magnetic core G. A halo and a peak were present in both the ribbons of magnetic cores F and G. From the two types of magnetic cores produced in this way, L=
A chiyoke coil was prepared at 30 μH, and a heat generation test was conducted in the same manner as in Example 1. In this case, when the DC superposition characteristics were kept almost the same for magnetic cores F and G, and the DC current value at which L = 20 μH was set to 25 A, the temperature rise for magnetic core F was 22°C, while for magnetic core G it was 32°C. It was warm at ℃. On the other hand, when the calorific value, that is, the temperature rise ΔT, was made almost the same at 20° C., the DC current value for L=20 μH was 24 A for the magnetic core F, while it was 18 A for the magnetic core G. These results show that it is preferable for the magnetic core to be composed of a wound body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この出願の発明における非晶質磁性
合金薄帯の組成、特にガラス化元素成分中のSi含
有比p(%)と、ガラス化元素成分量z(%)との
関係を説明するための線図である。第2図および
第3図は、この出願の発明における比晶質磁性合
金薄帯における、上記p%とz%との関係によつ
てもたらされる効果を説明するための線図であ
る。
FIG. 1 explains the composition of the amorphous magnetic alloy ribbon in the invention of this application, particularly the relationship between the Si content ratio p (%) in the vitrification element component and the amount z (%) of the vitrification element component. This is a diagram for FIGS. 2 and 3 are diagrams for explaining the effects brought about by the relationship between p% and z% in the specific crystalline magnetic alloy ribbon according to the invention of this application.

Claims (1)

【特許請求の範囲】 1 部分的に結晶質を含み、下記式で示される組
成を有することを特徴とするチヨークコイル用非
晶質磁性合金薄帯。 式 (FekMlxMny(SipBqPrCsXtz 〔上式中、MはFeおよびMn以外の他の遷移金属
元素の1種以上を表をし、XはSi、B、Pおよび
C以外の他のガラス化元素の1種以上を表わす。
又、x+y+z=100at%であり、このうちyは
0.1〜10at%、zは26.5〜29.5at%である。更に、
k+l=100%、p+q+r+s+t=100%であ
り、このうち、lは0〜10%、又、pは60〜75
%、rは0.01〜5%、s/qは0.05〜4、tは0
〜10%である。加えて、z≦0.5p−3、かつz≦
−0.6p+71.5、かつz≧−0.033p+28.98である。〕 2 部分的に結晶質を含み、下記式で示される組
成を有する非晶質磁性合金に薄帯を巻回してなる
巻回体から構成されることを特徴とするチヨーク
コイル用磁心。 式 (FekMlxMny(SipBqPrCsXtz 〔上式中、MはFeおよびMn以外の他の遷移金属
元素の1種以上を表をし、XはSi、B、Pおよび
C以外の他のガラス化元素の1種以上を表わす。
又、x+y+z=100at%であり、このうち、y
は0.1〜10at%、zは26.5〜29.5at%である。更
に、k+l=100%、p+q+r+s+t=100%
であり、このうち、lは0〜10%、又、pは60〜
75%、rは0.01〜5%、s/qは0.05〜0.4、tは
0〜10%である。加えて、z≦0.5p−3、かつz
≦−0.6p+71.5、かつz≧−0.033+28.98であ
る。〕 3 薄帯を巻回してなる特許請求の範囲第2項記
載のチヨークコイル用磁心。 4 薄帯を巻回してなる巻回体を切断してカツト
コアとなし、当該カツトコアから磁心を形成して
なる特許請求の範囲第2項記載のチヨークコイル
用磁心。 5 薄帯を巻回してなる巻回体を切断してなる切
断体を接続してカツトコアとなし、当該カツトコ
アから磁心を形成してなる特許請求の範囲第2項
または第4項記載のチヨークコイル用磁心。 6 磁路の一部分に空隙を有する特許請求の範囲
第2項〜第5項のいずれかに記載のチヨークコイ
ル用磁心。
[Scope of Claims] 1. An amorphous magnetic alloy ribbon for a chiyoke coil, which partially contains crystalline material and has a composition represented by the following formula. Formula (Fe k M l ) x Mn y (Si p B q P r C s X t ) z [In the above formula, M represents one or more transition metal elements other than Fe and Mn, and represents one or more vitrifying elements other than Si, B, P and C.
Also, x+y+z=100at%, of which y is
0.1-10 at%, z is 26.5-29.5 at%. Furthermore,
k+l=100%, p+q+r+s+t=100%, of which l is 0 to 10% and p is 60 to 75
%, r is 0.01-5%, s/q is 0.05-4, t is 0
~10%. In addition, z≦0.5p−3 and z≦
−0.6p+71.5, and z≧−0.033p+28.98. 2. A magnetic core for a chiyoke coil, characterized in that it is constituted by a wound body formed by winding a ribbon around an amorphous magnetic alloy that partially contains crystals and has a composition represented by the following formula. Formula (Fe k M l ) x Mn y (Si p B q P r C s X t ) z [In the above formula, M represents one or more transition metal elements other than Fe and Mn, and represents one or more vitrifying elements other than Si, B, P and C.
Also, x+y+z=100at%, of which y
is 0.1 to 10 at%, and z is 26.5 to 29.5 at%. Furthermore, k+l=100%, p+q+r+s+t=100%
Among these, l is 0 to 10%, and p is 60 to 10%.
75%, r is 0.01-5%, s/q is 0.05-0.4, and t is 0-10%. In addition, z≦0.5p−3 and z
≦−0.6p+71.5, and z≧−0.033+28.98. ] 3. A magnetic core for a chiyoke coil according to claim 2, which is formed by winding a thin ribbon. 4. A magnetic core for a chiyoke coil according to claim 2, wherein a cut core is obtained by cutting a wound body formed by winding a thin ribbon, and a magnetic core is formed from the cut core. 5. A chiyoke coil according to claim 2 or 4, which comprises cutting a wound body formed by winding a thin ribbon and connecting cut bodies to form a cut core, and forming a magnetic core from the cut core. core. 6. The magnetic core for a chiyoke coil according to any one of claims 2 to 5, which has an air gap in a part of the magnetic path.
JP56078371A 1981-05-23 1981-05-23 Amorphous magnetic alloy thin belt for choke coil and magnetic core for the same Granted JPS57193006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56078371A JPS57193006A (en) 1981-05-23 1981-05-23 Amorphous magnetic alloy thin belt for choke coil and magnetic core for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56078371A JPS57193006A (en) 1981-05-23 1981-05-23 Amorphous magnetic alloy thin belt for choke coil and magnetic core for the same

Publications (2)

Publication Number Publication Date
JPS57193006A JPS57193006A (en) 1982-11-27
JPH0366801B2 true JPH0366801B2 (en) 1991-10-18

Family

ID=13660145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56078371A Granted JPS57193006A (en) 1981-05-23 1981-05-23 Amorphous magnetic alloy thin belt for choke coil and magnetic core for the same

Country Status (1)

Country Link
JP (1) JPS57193006A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148301A (en) * 1983-02-14 1984-08-25 Matsushita Electric Works Ltd Soft magnetic body
US5466304A (en) * 1994-11-22 1995-11-14 Kawasaki Steel Corporation Amorphous iron based alloy and method of manufacture
JP3644062B2 (en) * 1995-01-13 2005-04-27 Jfeスチール株式会社 Low boron amorphous alloy with excellent soft magnetic properties
US5958153A (en) * 1995-04-11 1999-09-28 Nippon Steel Corporation Fe-system amorphous metal alloy strip having enhanced AC magnetic properties and method for making the same
US5658397A (en) * 1995-05-18 1997-08-19 Kawasaki Steel Corporation Iron-based amorphous alloy thin strip and transformers made therefrom

Also Published As

Publication number Publication date
JPS57193006A (en) 1982-11-27

Similar Documents

Publication Publication Date Title
JPH0226768B2 (en)
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
US5935347A (en) FE-base soft magnetic alloy and laminated magnetic core by using the same
JP2573606B2 (en) Magnetic core and manufacturing method thereof
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JPH0777167B2 (en) Magnetic core parts
US5211767A (en) Soft magnetic alloy, method for making, and magnetic core
EP0401805B1 (en) Magnetic core
JP3059187B2 (en) Soft magnetic alloy, manufacturing method thereof and magnetic core
JPH07268566A (en) Production of fe-base soft-magnetic alloy and laminated magnetic core using the same
JP2001516506A (en) Electric chalk
JPH0366801B2 (en)
JPS6332244B2 (en)
JPH05255820A (en) Fe base alloy having iso-permeability and its manufacture, and fe base magnetic core using the same
CA1145162A (en) Iron-boron silicon ternary amorphous alloys
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH08153614A (en) Magnetic core
JPH02170950A (en) Amorphous magnetic alloy material
JPH0754108A (en) Magnetic alloy having iso-permeability, production thereof and magnetic core using the same
JPH0351081B2 (en)
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JPH0927412A (en) Cut core and manufacture thereof
JP2005187917A (en) Soft magnetic alloy, and magnetic component