JPH02170950A - Amorphous magnetic alloy material - Google Patents

Amorphous magnetic alloy material

Info

Publication number
JPH02170950A
JPH02170950A JP23494389A JP23494389A JPH02170950A JP H02170950 A JPH02170950 A JP H02170950A JP 23494389 A JP23494389 A JP 23494389A JP 23494389 A JP23494389 A JP 23494389A JP H02170950 A JPH02170950 A JP H02170950A
Authority
JP
Japan
Prior art keywords
magnetic
ribbon
core
cut
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23494389A
Other languages
Japanese (ja)
Inventor
Masaru Takayama
勝 高山
Masao Shigeta
重田 政雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP23494389A priority Critical patent/JPH02170950A/en
Publication of JPH02170950A publication Critical patent/JPH02170950A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject alloy material having reduced calorific value, having improved magnetic characteristics such as magnetic permeability and drastically reduced secular change in magnetic characteristics, in a magnetic core or the like constituted of an amorphous magnetic alloy thin strip, by specifying the material compsn. and incorporating a crystalline substance thereto. CONSTITUTION:An amorphous magnetic alloy material contg. a crystalline substance and having the compsn. shown by inequality is prepd. In the above inequality, M denotes one or more kinds among transition metallic elements extruding Fe and Mn and X denotes one or more kinds among vitrifying elements extruding Si, B, P and C. Moreover, (x)+(y)+(z)=100atom%; where (y)=0.1 to 10atom% and (z)=21.0 to 25.5atom%. Furthermore, (k)+(l)=100% and (p)+(q)+(r)+(s)+(t)=100%; where (l)=0 to 10%, or (p)=40 to 75%, (r)=0.01 to 5%, s/q=0.05 to 0.4 and (t)=0 to 10%. Additionally, <=0.5p+1z, <=0.1p+19z, >=0.3p+2z and >=0.13p+13.7z are regulated.

Description

【発明の詳細な説明】 この出願の発明は、非晶質磁性合金薄帯と、その薄帯を
用いたチョークコイル用磁心に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention of this application relates to an amorphous magnetic alloy ribbon and a magnetic core for a choke coil using the ribbon.

更に詳しくは、特に比較的高い周波数の電流であって、
定常的ないし周期的に、例えば電気機器等から漏出した
り、あるいは電源側から浸入したシ、あるいは回路中で
発生したシする、例えばリップル電流、オン・オフサー
ジ電流等を除去し、直流または比較的低い周波数の所望
の電流だけを通過させるためのチョークコイル用の磁心
に適した非晶質磁性合金薄帯と、それから形成した磁心
に関する。
More specifically, a current of a relatively high frequency,
Remove ripple current, on/off surge current, etc. that regularly or periodically leaks from electrical equipment, enters from the power supply side, or occurs in the circuit, and removes DC or comparative current. The present invention relates to an amorphous magnetic alloy ribbon suitable for a magnetic core for a choke coil for passing only a desired low-frequency current, and a magnetic core formed from the same.

スイッチングレギュレータ、サイリスタインバータをは
じめとするインバータ類、あるいは通常の直流電源等の
種々の様器には、リップル除去、オン・オフサージ電流
等の目的で、チョークコイルが用いられている。
Choke coils are used in various devices such as switching regulators, inverters such as thyristor inverters, and ordinary DC power supplies for the purpose of ripple removal, on/off surge current, etc.

そして、最近、そのすぐれた軟磁気特性から、非晶質磁
性合金薄帯をチョークコイル用の磁心材料とする旨の提
案がなされている。
Recently, it has been proposed that amorphous magnetic alloy ribbons be used as magnetic core materials for choke coils because of their excellent soft magnetic properties.

しかし、通常の非晶質磁性合金薄帯を例えば巻回して磁
心を形成し、これをチョークコイルとなし、直流または
交流に1定常的ないし周期的に重畳する高周波成分を除
去しようとすると、発熱量が犬きく、又透磁率等の磁気
特性に満足できず、更には透磁率や鉄損等が長期に亘る
繰返し動作や保存により経時的に劣化するという不都合
があり、従来用いられてきたけい素鋼板やフェライトに
置き換わるまでには至っていない。
However, if you wind a normal amorphous magnetic alloy ribbon to form a magnetic core and use this as a choke coil to remove high frequency components that are constantly or periodically superimposed on DC or AC, heat generation occurs. The amount of magnetic material used in the past is too high, and the magnetic properties such as magnetic permeability are unsatisfactory, and furthermore, the magnetic permeability and iron loss deteriorate over time due to long-term repeated operation and storage. It has not yet reached the point where it has replaced raw steel sheets and ferrite.

一方、非晶質磁性合金の薄帯中に微結晶を析出させて、
これによυ磁気特性を向上させようという提案がある。
On the other hand, by precipitating microcrystals in a ribbon of amorphous magnetic alloy,
There is a proposal to improve the υ magnetic properties by this.

しかし、このような薄帯をチョークコイル用磁心に用い
ても、通常の組成のものでは、発熱量、各種磁気特性、
経時特性という点で、チョークコイル用磁心として、未
だ不充分である。
However, even if such thin strips are used as magnetic cores for choke coils, the amount of heat generated, various magnetic properties,
In terms of aging characteristics, it is still insufficient as a magnetic core for choke coils.

この出題の発明は、このような実状に鑑みなされたもの
であって、直流または交流に、定常的ないし周期的に重
畳する高周波成分を除去するために用いられる非晶質磁
性合金N?Eから形成されるチョークコイル用磁心にお
いて、用いる薄情を改良することにより、その発熱量を
格段と減少させ、透磁率等の磁気特性を向上せしめ、更
に、磁気特性の経時変化を格段と小さくすることを、そ
の主たる目的とする。
The invention in this question was made in view of the above-mentioned circumstances, and is an amorphous magnetic alloy N? used to remove high frequency components that are stationary or periodically superimposed on direct current or alternating current. By improving the thinness used in the magnetic core for choke coils formed from E, the amount of heat generated is significantly reduced, magnetic properties such as magnetic permeability are improved, and changes in magnetic properties over time are also significantly reduced. That is its main purpose.

本発明者らは、このような目的につき種々検討を繰返し
た結果、この出願の発明をなすに至ったものである。
The inventors of the present invention have repeatedly conducted various studies for this purpose, and as a result, they have come up with the invention of this application.

すなわちこの出願の第1の発明は、部分的に結晶質を含
み、下記式で示される組成を有するチョークコイル用非
晶質磁性合金薄帯である。
That is, the first invention of this application is an amorphous magnetic alloy ribbon for a choke coil that partially contains crystals and has a composition represented by the following formula.

又、この出願の第2の発明は、部分的に結晶質を含み、
下記式で示される組成を有する非晶質磁性合金薄帯を巻
回してなる巻回体から構成されるチョークコイル用磁心
である。
Further, the second invention of this application partially contains crystalline material,
This is a magnetic core for a choke coil, which is composed of a wound body formed by winding an amorphous magnetic alloy ribbon having a composition represented by the following formula.

式  (FekMl)xMny(Si、B9PrCsX
、)2ここに、上式中、M ld FeおよびMn以外
の他の遷移金属元素の1種以上を表わし、XはSt、B
Formula (FekMl)xMny(Si,B9PrCsX
, )2 where, in the above formula, M ld represents one or more transition metal elements other than Fe and Mn, and X represents St, B
.

PおよびC以外の他のガラス化元素の1種以上を表わす
。又、x+y+z = 100 at %でアシ、この
うち、yは0.1〜1Oat%、2は21〜25.5a
t%である。更に、k+t=100%、p+ q + 
r + s + t=100%でアシ、このうち、tは
0〜10%、又pは40〜75%、rは0.01〜5 
%、s/qは0.05〜0.4、tFiO〜10%であ
る。加えて、2≦0.5p+1  かつ2≦0.1p+
19かつ2≧0.39+2かつ2≧0.13 p+13
.7である。
Represents one or more vitrifying elements other than P and C. Also, x + y + z = 100 at %, of which y is 0.1 to 1 O at %, 2 is 21 to 25.5 a
t%. Furthermore, k+t=100%, p+ q +
r + s + t = 100%, of which t is 0 to 10%, p is 40 to 75%, and r is 0.01 to 5
%, s/q is 0.05-0.4, tFiO-10%. In addition, 2≦0.5p+1 and 2≦0.1p+
19 and 2≧0.39+2 and 2≧0.13 p+13
.. It is 7.

以下、この出願の発明の具体的構成について詳細に説明
する。
Hereinafter, the specific configuration of the invention of this application will be explained in detail.

第1の発明におけるチ璽−クコイル用非晶質磁性合金の
薄帯は、部分的に結晶質を含むものである。薄帯内にお
いて、非晶質中に部分的に含まれる結晶質は、一般に、
微結晶が析出して、非晶質中に混在しているものである
。従って、薄帯のX線回折を行うと、回折スペクトルは
、非晶質特有のハローの上に、結晶質の存在を示すピー
クが重畳された・ぞターンを示し、又回折像にはノ・ロ
ー上にスポットが重畳され、所定の環径と環幅をもつデ
パイーシェーラー環が現われる。
The ribbon of amorphous magnetic alloy for chip coils in the first aspect of the invention partially contains crystalline material. Within the ribbon, the crystalline material partially contained in the amorphous material is generally
Microcrystals are precipitated and mixed in an amorphous substance. Therefore, when a ribbon is subjected to X-ray diffraction, the diffraction spectrum shows a zo-turn in which a peak indicating the presence of crystalline material is superimposed on a halo characteristic of amorphous material, and the diffraction image shows a Spots are superimposed on the row, and a Depay-Scherer ring with a predetermined ring diameter and ring width appears.

そして、回折ス(クトルのハローとピークとの面積比を
とれば、薄帯中の汚品質と非晶質との存在比が求められ
るものであるが、このように得られる結晶質/非晶質は
、通常、0.1〜50%程度であることが好ましい。
Then, by taking the area ratio between the halo and the peak of the diffraction spectrum, the quality of contamination and the abundance ratio of amorphous in the ribbon can be determined. The quality is usually preferably about 0.1 to 50%.

又、析出した微結晶は、通常、デバイーシェーラー環の
環径と環幅とから、概ね10〜xooo、j程度の平均
粒径をもつものと考えられるものである。
Further, the precipitated microcrystals are generally considered to have an average grain size of approximately 10 to xooo,j based on the ring diameter and ring width of the Debye-Scherer ring.

そして、このように部分的に存在する微結晶により、薄
帯からチョークコイルを形成したとき、直流または交流
に定常的ないし周期的に重畳する高周波成分による発熱
量は格段と減少する。又、透磁率等の磁気特性は向上し
、更に、角形比、B−Hループの不飽和領域等の調整も
容易となシ、直流重畳特性が向上する。加えて、これら
磁気特性の長期間に亘る繰返し動作や保存にともなう経
時劣化も格段と減少する。
Due to these partially existing microcrystals, when a choke coil is formed from a thin ribbon, the amount of heat generated by high frequency components that are regularly or periodically superimposed on direct current or alternating current is significantly reduced. In addition, magnetic properties such as magnetic permeability are improved, and furthermore, the squareness ratio, the unsaturated region of the B-H loop, etc. can be easily adjusted, and the DC superposition characteristics are improved. In addition, deterioration of these magnetic properties over time due to long-term repeated operations and storage is also significantly reduced.

次に、非晶質磁性合金薄帯の組成について説明するなら
ば、上式において、Mは、FeおよびMn以外の他の遷
移金属元素(Sc〜znp Y −Cd rLa = 
Hg 、 Ac−)を表わすが、その好ましい具体例と
しては、Co + Ni p Cr + Cu g M
o 、Nb r Tl +W + V 、 Zr s 
Ta r Yあるいは希土類元素等の1種以上を挙げる
ことができる。
Next, to explain the composition of the amorphous magnetic alloy ribbon, in the above formula, M is a transition metal element other than Fe and Mn (Sc~znp Y -Cd rLa =
Hg, Ac-), and preferred specific examples thereof include Co + NipCr + CugM
o, Nb r Tl + W + V, Zr s
One or more of Tar Y, rare earth elements, etc. can be mentioned.

又、Si、B、PおよびC以外の他のガラス化元素の1
種以上を表わすXの好ましい具体例としては、At+ 
Be x Ge * Sb + In等の1種以上を挙
げることができる。
In addition, one of other vitrifying elements other than Si, B, P and C
Preferred specific examples of X representing species or more include At+
One or more types such as Be x Ge * Sb + In can be mentioned.

一方、薄帯中に必須成分として含有されるMnの含有量
ytfi、0.1〜10at%、好ましくは0.1〜5
 at%である。0.1%未満では、チョークコイルと
しての磁気特性の経時劣化が大きい。又結晶化温度が低
く、後述の微結晶析出のための熱処理に必要な温度、時
間の制限が厳しくなυ、上記のように結晶質を部分的に
含有させることが困難となる。これに対し、yが10 
at%を超えると、経時劣化が大きくなシ、又薄帯が作
シにくくなる。
On the other hand, the content ytfi of Mn contained as an essential component in the ribbon is 0.1 to 10 at%, preferably 0.1 to 5
It is at%. If it is less than 0.1%, the magnetic properties of the choke coil will deteriorate significantly over time. Further, when the crystallization temperature is low and the temperature and time required for the heat treatment for precipitation of microcrystals described below are strictly limited, it becomes difficult to partially contain crystalline materials as described above. On the other hand, y is 10
If it exceeds at%, deterioration over time will be large and it will be difficult to produce a thin ribbon.

また、飽和磁化が減少し、直流重畳特性も悪くなる。こ
れに対し、yが0.1〜l Oat% N好ましくは0
.1〜5 at%ではこのような不都合はない。
In addition, saturation magnetization decreases and DC superimposition characteristics also deteriorate. On the other hand, when y is 0.1 to 1 Oat% N, preferably 0
.. There is no such inconvenience at 1 to 5 at%.

他方、Si、B、PおよびCを必須成分とし、これに必
要に応じ他のガラス化元素の1種以上(X)を含有する
ガラス化元素の含有量2は21.0〜25.5at%で
ある。乞二が21.Oat%未満あるいは25.5at
%より犬となると、損失が大きく)チョークコイルを構
成したときの高周波重畳成分による発熱量が増大する。
On the other hand, the content 2 of the vitrifying element, which contains Si, B, P, and C as essential components and optionally contains one or more other vitrifying elements (X), is 21.0 to 25.5 at%. It is. Kyouji is 21. Less than Oat% or 25.5at
%, the loss is large) and the amount of heat generated by the high frequency superimposed component increases when the choke coil is configured.

加えて、2が21. Oat%未満となると、薄帯化し
にくくなり、製造歩留りが悪くなり、薄帯の表面性が悪
くなる。又、結晶化温度が低下し、微結晶析出のための
熱処理に必要な温度、時間の制限が厳しくなり、上記の
ように結晶質を部分的に含有させることが困難となる。
In addition, 2 is 21. When the content is less than Oat%, it becomes difficult to form a thin ribbon, the manufacturing yield becomes poor, and the surface properties of the ribbon deteriorate. In addition, the crystallization temperature decreases, and the temperature and time required for heat treatment for precipitation of microcrystals become stricter, making it difficult to partially contain crystalline materials as described above.

更に、2が21、Q at%未満であると、耐食性が悪
くなシ、又耐久性も劣ってくる。これに対し、Zが21
.0〜25.5at%の範囲内では発熱量は格段と少な
く、その他上記のような欠点はない。
Furthermore, if 2 is less than 21, Q at %, corrosion resistance will be poor and durability will also be poor. On the other hand, Z is 21
.. Within the range of 0 to 25.5 at%, the calorific value is significantly small, and there are no other drawbacks as mentioned above.

この出願の発明における薄帯は、上記のように0.1〜
10at%のMnと、St、B、PおよびCと、これに
必要に応じ添加ないし混入する他のガラス化元素Xとを
含有するガラス化元素21.0〜25,5at%とを含
み、残部はFeと、これに加え必要に応じ含有されても
よい他の遷移金属元素Mとの総計64.5〜?8.9a
t%、より好ましくは、69.5〜78.9atチから
なる。
The thin ribbon in the invention of this application is 0.1 to 0.1 as described above.
Contains 10 at% Mn, 21.0 to 25.5 at% of a vitrifying element containing St, B, P, and C, and other vitrifying elements X added or mixed as necessary, and the remainder is a total of Fe and other transition metal elements M that may be included as necessary in addition to Fe, from 64.5 to ? 8.9a
t%, more preferably 69.5 to 78.9at.

この場合、FeおよびMn以外の他の遷移金属元素Mの
含有比tは、Feの含有比にと、k−1−4= 100
チの条件下にて、0〜10%、より好ましくは0〜5%
である。tが10%よシ犬となると、磁気特性が劣化し
、特に損失が劣り、発熱量が大きくなり、又透磁率が減
少し、好ましくない。
In this case, the content ratio t of transition metal elements M other than Fe and Mn is equal to the content ratio of Fe, k-1-4 = 100
0 to 10%, more preferably 0 to 5% under the conditions of
It is. If t is more than 10%, the magnetic properties will deteriorate, especially the loss will be poor, the amount of heat generated will increase, and the magnetic permeability will decrease, which is not preferable.

他方、ガラス化元素は、p+q+r+s+t=100%
の条件下で、p%のSiと、q%のBと、1%のPと、
!+’%のCとの必須成分と、必要に応じ含有されるこ
とのあるt%の他のガラス化元素Xとからなる。
On the other hand, the vitrification element is p+q+r+s+t=100%
Under the conditions of p% Si, q% B, 1% P,
! It consists of an essential component of +'% C and t% of other vitrifying element X, which may be included as necessary.

この場合、ガラス化元素中のケイ素St含有比pは、4
0〜70%である。pが40%未満および75%よシ大
となると、発熱量が増大してしまう。
In this case, the silicon St content ratio p in the vitrification element is 4
It is 0-70%. If p is less than 40% or greater than 75%, the amount of heat generated will increase.

又、40%未満では、特に透磁率等の磁気特性が悪くな
る。更には、発熱量や透磁率等の経時劣化も大きい。他
方、75%よシ大では、磁気特性の点で満足できない。
Moreover, if it is less than 40%, magnetic properties such as magnetic permeability will deteriorate. Furthermore, the amount of heat generated, magnetic permeability, etc. deteriorate significantly over time. On the other hand, if it is larger than 75%, the magnetic properties are unsatisfactory.

加えて、ガラス化元素の総計の含有1zat%と、ガラ
ス化元素中のSt含有比p%との間には、し 2≦0.5p+1、かつ2≦0.19+19、かつ2七
〇、3p+2、かつ2≧0.13P+13.7の関係が
満足されなければならない。
In addition, between the total content of vitrifying elements 1zat% and the St content ratio p% in the vitrifying elements, 2≦0.5p+1, and 2≦0.19+19, and 270, 3p+2 , and the relationship 2≧0.13P+13.7 must be satisfied.

すなわち、これらの条件を第1図に基づき説明するなら
ば、(z、p)の座標で表わしたとき、点A(40,2
1,0)  B(45,23,5)、C(65,25,
5)、D(75,25,5)、EC75,24,5)、
F(70,23,0)およびF(55,21,0)’!
i−順次直線で結ひ′、これらの1州で囲まれる領域が
、この出願の発明における薄等の、2とpとが満足すべ
き条件である。
That is, to explain these conditions based on Figure 1, when expressed in coordinates (z, p), point A (40, 2
1,0) B(45,23,5), C(65,25,
5), D(75,25,5), EC75,24,5),
F(70,23,0) and F(55,21,0)'!
The area connected by i-sequential straight lines and surrounded by one state is the condition in which 2 and p are satisfied in the invention of this application.

そして、この領域内のみ疋おいて、発熱量が格段と減少
するものである。なお、図示c−Dy5(z==25.
5)上方およびG−A線(Z=21.0 )下方におけ
る不都合については上述したとおシであるが、図示A−
B線(z=0.5p+1)およびB−C5(z=0.1
 p+19 )上方では、発熱量が増大するとともに、
磁気特性が悪く、経時劣化が大きい。又、E−Fi(z
=0.3 p+2 )およびF−G線(z=0.13p
+13.7)下方では、発熱量が増大するとともに1高
速急冷法により、非晶質の薄板が得られにくくなるとい
う欠点がある。又、E−F線およびF’−G線下方では
、微結晶析出のための熱処理条件が厳しく、結晶質を部
分的に存在させることが難しい。
Only within this region, the amount of heat generated is significantly reduced. Note that the illustrated c-Dy5 (z==25.
5) The inconveniences above and below the G-A line (Z=21.0) are mentioned above.
B line (z=0.5p+1) and B-C5 (z=0.1
p+19) Above, the calorific value increases and
It has poor magnetic properties and deteriorates significantly over time. Also, E-Fi(z
=0.3p+2) and F-G line (z=0.13p
+13.7) Downward, there is a disadvantage that the amount of heat generated increases and it becomes difficult to obtain an amorphous thin plate using the 1-high speed quenching method. Further, below the E-F line and the F'-G line, the heat treatment conditions for precipitation of microcrystals are severe, and it is difficult to cause crystals to partially exist.

更に1ガラス化元素中のリンP含有比rは、0.01〜
5%、よシ好ましくは0.01〜2%である。0.01
%未満では、発熱量、透磁率等の経時劣化が大きくなっ
てしまい、又5%よシ大では発熱量が増大し、かつ直流
重畳特性が劣化してしまう。そして、0.01〜5%、
好ましくは0.01−2チにて、発熱量は十分小さく、
その経時変化は十分少なく、しかも磁気特性もすぐれて
いる。
Furthermore, the phosphorus P content ratio r in one vitrification element is 0.01 to
5%, preferably 0.01-2%. 0.01
If it is less than 5%, the deterioration of heat generation, magnetic permeability, etc. over time will increase, and if it is more than 5%, the heat generation will increase and the DC superimposition characteristics will deteriorate. And 0.01-5%,
Preferably 0.01-2 inches, the calorific value is sufficiently small,
Its change over time is sufficiently small, and its magnetic properties are also excellent.

又、ガラス化元素中の炭素C含有比Sを、ホウ素B含育
比qで除した値は0.05〜0.4でなければならない
。0.05よシ大となりてはじめて、発熱量や透磁率の
経時変化が十分小さくなる。ただ0.4を超えると、薄
帯化が困難となる。又、発熱量が多くなる。
Further, the value obtained by dividing the carbon C content ratio S in the vitrification element by the boron B content ratio q must be 0.05 to 0.4. Only when the value becomes larger than 0.05, changes in heat generation and magnetic permeability over time become sufficiently small. However, if it exceeds 0.4, it becomes difficult to form a thin ribbon. Also, the amount of heat generated increases.

なお、上記のように、ガラス化元素としては、更に他の
ガラス化元素Xが含有さnていてもよい。
In addition, as mentioned above, as a vitrification element, another vitrification element X may be contained.

ただ、その含有比tが10チを超えると、磁気特性に支
障が生じるので、tは0〜10%である。
However, if the content ratio t exceeds 10%, the magnetic properties will be impaired, so t is 0 to 10%.

この出願の発明における薄帯は、以上詳述した条件さえ
満足すれば、他に特に制限はない。
The ribbon in the invention of this application is not particularly limited as long as it satisfies the conditions detailed above.

ただ、薄帯中に結晶質が部分的に導入された結果、特に
薄帯面内の所定方向に磁気異方性が付与されると、透磁
率が向上したり、発熱量がより一層減少したシ、更には
各種磁気特性の調整が容易となる点で好ましい。
However, as a result of partially introducing crystalline material into the ribbon, especially when magnetic anisotropy was imparted in a predetermined direction within the ribbon surface, the magnetic permeability improved and the amount of heat generated was further reduced. Furthermore, it is preferable in that various magnetic properties can be easily adjusted.

この場合、磁気異方性は、薄帯面内における所定の一方
向に、通常−軸異方性として導入されることが好ましい
In this case, the magnetic anisotropy is preferably introduced as normal-axis anisotropy in one predetermined direction within the plane of the ribbon.

すなわち、はぼ完全に非晶質の磁性合金の薄帯を、後述
の巻回の前、あるいは場合によっては巻回の後に無磁場
中で熱処理することにより、微結晶を析出させると、通
常、薄帯長手方向に一軸異方性が付与され、そのとき透
磁率が向上する。又、薄帯長手方向と所定の角度をなす
方向に、薄帯巻回前、あるいは巻回後に磁場を印加して
熱処理することにより、微結晶を析出させると、薄帯長
手方向と所定の角度をなす方向に、−軸異方性が付与さ
れ、そのとき、異方性方向を所定の方向とすることによ
り、角形比やB−Hルーズの不飽和領域を所望のごとく
調整することができ、又発熱量をよシ小さくすることが
できる。
That is, when a thin ribbon of a nearly completely amorphous magnetic alloy is heat-treated in a non-magnetic field before or in some cases after the winding described below, microcrystals are precipitated. Uniaxial anisotropy is imparted to the longitudinal direction of the ribbon, and the magnetic permeability is improved at this time. In addition, if microcrystals are precipitated by heat treatment by applying a magnetic field before or after winding the ribbon in a direction that makes a predetermined angle with the longitudinal direction of the ribbon, −-axis anisotropy is imparted in the direction forming the , and at this time, by setting the anisotropy direction to a predetermined direction, the squareness ratio and the B-H loose unsaturated region can be adjusted as desired. Also, the amount of heat generated can be significantly reduced.

このような磁気異方性の存在は、常法に従い、トルク曲
+1!を測定したシすることにより容易に検証される。
The existence of such magnetic anisotropy means that, according to the usual method, the torque curve is +1! This can be easily verified by measuring the

このような薄帯は、概ね10〜100μm程度の厚さと
、概ね0.1〜50crn程度の巾をもつ長尺の薄板で
ある。
Such a ribbon is a long thin plate having a thickness of about 10 to 100 μm and a width of about 0.1 to 50 crn.

次に、この出題の第2の発明におけるチョークコイル用
磁心は、この上うな薄帯を巻回してなる巻回体から構成
される。
Next, the magnetic core for a choke coil in the second invention of this question is constituted by a wound body formed by winding a thin ribbon like this.

すなわち、薄帯を巻回してなる巻回体自体から磁心が形
成されてもよい。
That is, the magnetic core may be formed from the wound body itself formed by winding the ribbon.

又、巻回体を切断してU字、C字、■字、L字状等の切
断体とし、この切断体をカットコアとし、このカットコ
ア同志を突きあわせて磁心としてもよい。
Alternatively, the wound body may be cut into a U-shaped, C-shaped, ■-shaped, L-shaped, etc.-shaped cut body, and the cut body may be used as a cut core, and the cut cores may be butted against each other to form a magnetic core.

更には、切断体を接続して所定形状例えばE字状等のカ
ットコアとなし、このカットコア同志全、あるいはこの
カットコアと上記の1字状等の切断体からなるカットコ
アとを突きあわせて磁心としてもよい。
Furthermore, the cut bodies are connected to form a cut core having a predetermined shape, such as an E-shape, and the cut cores are matched together, or this cut core is matched with a cut core consisting of the above-mentioned one-character-shaped cut body. It may also be used as a magnetic core.

このように、磁心全カットコア形状とするときには、捲
線作業が容易となる。
In this way, when the magnetic core is formed into a completely cut core shape, the winding operation becomes easy.

このように、第2の発明の磁心は、薄帯の巻回体から構
成されるものであ、す、薄帯を所定の形状となして積層
してなるものではない。これは以下のような理由による
As described above, the magnetic core of the second invention is composed of a wound body of thin ribbons, and is not made by laminating thin ribbons into a predetermined shape. This is due to the following reasons.

すなわち、上記のように、薄帯には、微結晶の析出によ
シ、薄帯面内の所定方向に一軸性の磁気異方性が付与さ
れると好ましい結果を得る。そして、このような微結晶
析出のための処理としては、通常、巻回体形成前に施し
、その後これから1巻回体を得ることになるが、得られ
る巻回体における容易軸の方向は、磁路方向に対し一定
となるため、発熱量等の特性は高いものが得られる。こ
れに対し、積層構造とするときには、面内に所定の異方
性を、もつ薄帯を例えばエツチングしたり、打抜いて、
これを積層するので、磁路と容易軸の方向は1一定とは
ならず、発熱量等の特性として高いものが得られない。
That is, as described above, preferable results are obtained when the ribbon is given uniaxial magnetic anisotropy in a predetermined direction within the ribbon surface due to the precipitation of microcrystals. The treatment for precipitation of such microcrystals is usually carried out before the formation of a wound body, and then a single wound body is obtained from this process, but the direction of the easy axis in the resulting wound body is Since it is constant with respect to the direction of the magnetic path, high characteristics such as the amount of heat generated can be obtained. On the other hand, when creating a laminated structure, for example, a thin strip having a certain in-plane anisotropy is etched or punched.
Since these are laminated, the directions of the magnetic path and the easy axis are not constant, and high properties such as heat generation cannot be obtained.

更には、巻回径微結晶析出のための処理を施すときにも
、磁路に対し、所望の任意の一定の角度をもつ容易軸を
容易に導入することができる。反面、積層型では、両者
のなす角度を、磁路中一定の角度にて、任意の値とする
ことはできず、又できたとしても非常に固難である。
Furthermore, even when performing a treatment for precipitation of winding diameter microcrystals, an easy axis having a desired arbitrary constant angle can be easily introduced into the magnetic path. On the other hand, in the case of the laminated type, it is not possible to set the angle between the two to an arbitrary value at a constant angle in the magnetic path, and even if it were possible, it would be extremely difficult.

そして、第2の発明の磁心は、巻回体自体からなる場合
はもとより、上記のように、種々のカットコア形状とす
るときでも、更には後述のように空隙を設けるときでも
、容易軸が磁路方向となす角度は、常に一定でしかもそ
れを任意の角度となすことができる。
The magnetic core of the second invention has an easy-to-axis axis not only when it is made of the wound body itself, but also when it is made into various cut core shapes as described above, and even when it is provided with a gap as described later. The angle with the magnetic path direction is always constant and can be any angle.

なお、コア加工時の特性劣化も、巻回形の方がすぐれて
いる。そして、第2の発明の磁心は、このように巻回体
から構成される結果、製造が容易となり、製造コストが
低廉となる。
Note that the wound type is also better in terms of characteristic deterioration during core processing. As a result of the magnetic core of the second invention being composed of a wound body in this manner, it is easy to manufacture and the manufacturing cost is low.

このように巻回体から磁心″fI:構成する場合・巻回
体は、薄帯を所定の巻枠1巻心等に巻回し、その端部を
固定して形成される。この場合、巻枠。
In the case where the magnetic core "fI: is constructed from a wound body in this way, the wound body is formed by winding a ribbon around a predetermined winding frame 1 core, etc., and fixing the ends. In this case, the winding frame.

巻心等の構造、形状等は種々のものとすることができる
。又、その材質は、磁器、ガラス、樹脂等の他、金属で
あってもよく、更に1端部の固定は、接着剤、溶接、チ
ーブ等によったシ、あるいは、巻枠等に設けられたかし
め爪てよってかしめる等によってもよい。
The structure, shape, etc. of the winding core etc. may be various. In addition to porcelain, glass, resin, etc., the material may be metal, and one end may be fixed by adhesive, welding, chives, etc., or by providing it on a winding frame, etc. It may also be done by caulking with a caulking nail or the like.

なお、巻回される薄帯間には、絶縁材料を介在させるこ
ともできる。又、上記と異なり、巻枠。
Note that an insulating material may be interposed between the wound ribbons. Also, unlike the above, it has a winding frame.

巻心等を用いず、例えば樹脂等を含浸させる等して、そ
の形状を固定することもできる。加えて、薄帯巻回形状
は、円輪状、角軸状等種々変更可能である。
The shape can also be fixed, for example, by impregnating it with a resin or the like, without using a winding core or the like. In addition, the shape of the ribbon can be changed in various ways, such as a circular ring shape or a square shaft shape.

これに対し、このような巻回体を切断して、切断体を得
て、それを1字状、0字状、C字状等のカットコアにな
すには、巻回体の特に切断部を樹脂等で含浸させ固定し
たシ、かしめ爪等で固定したシして、切断すればよい。
On the other hand, in order to cut such a wound body to obtain a cut body and make it into a cut core in a 1-shape, a 0-shape, a C-shape, etc., it is necessary to It may be impregnated with resin or the like and fixed, or fixed with caulking nails, etc., and then cut.

又、この切断体相互の薄帯ないし巻枠等の間を接着すれ
ば、所定のE字状等のカットコアが形成される。そして
、このような各種カットコアから、U−U、E−を等の
種々のカットコア形状の磁心が構成される〇さらに、こ
のような各種磁心の磁路中には、その一部分に空隙が形
成されていることが好ましい。
Further, by gluing the thin strips or winding frames of the cut pieces together, a predetermined E-shaped cut core can be formed. From these various cut cores, magnetic cores with various cut core shapes such as U-U and E- are constructed.Furthermore, in the magnetic path of these various magnetic cores, there is a gap in a part of the magnetic path. It is preferable that it is formed.

空隙の存在により、B−Hルーズの不飽和値域が拡大し
、直流重畳特性が向上するからである。
This is because the presence of voids expands the unsaturated value range of B-H loose and improves DC superposition characteristics.

このように、磁路の一部分に空隙を設けるには、上記切
断体を形成するのと同様、切断部分を固定して、所定空
隙中にて巻回体を切断してもよく、あるいは、上記カッ
トコアの突きあわせに際し、所定の空隙を設けてもよい
In this way, in order to provide a gap in a part of the magnetic path, the cut portion may be fixed and the wound body may be cut in a predetermined gap, as in the case of forming the cut body, or the wound body may be cut in a predetermined gap. A predetermined gap may be provided when the cut cores are butted together.

なお、空隙長は、通常、磁路長の0.001〜0,05
程度とすればよい。
Note that the air gap length is usually 0.001 to 0.05 of the magnetic path length.
It is sufficient to set the degree.

この出願の発明の薄帯およびチョークコイル用磁心は、
通常、以下のようにして作製される。
The ribbon and choke coil magnetic core of the invention of this application are:
Usually, it is produced as follows.

まず、対応するafiy、の母合金から、公知の高速急
冷法に従い、はぼ完全に非晶質の薄帯を得る。
First, a nearly completely amorphous ribbon is obtained from a corresponding afiy master alloy according to a known high-speed quenching method.

次いで、通常は、との薄帯に、微結晶析出のための処理
を施す。
The ribbon is then usually subjected to a treatment for precipitation of microcrystals.

このような処理は、通常、無磁場中にて、結晶化温度付
近の温度で適当な時間加熱し、これを冷却、例えば空冷
することによって行う。加熱温度、加熱時間、冷却速度
等は、必要とする特性値に応じ、容易に実験的に求める
ことができる。なお、このような熱処理の雰囲気は、空
気中、真空中、不活性ガス中、非酸化性ガス中等いずれ
であってもよい。
Such treatment is usually carried out in the absence of a magnetic field by heating at a temperature near the crystallization temperature for an appropriate period of time, followed by cooling, for example air cooling. The heating temperature, heating time, cooling rate, etc. can be easily determined experimentally depending on the required characteristic values. The atmosphere for such heat treatment may be air, vacuum, inert gas, non-oxidizing gas, or the like.

あるいは、この他、上記のような熱処理を、静磁場中で
行なうこともできる。この場合、印加盛場は、例えば1
000e程度とする。そして、このとき、薄帯面内の長
手方向と所定の角度をなす異方性が付与される。又、熱
処理を張力を印加しながら行ったシ、更には場合によっ
ては回転磁場中で行うこともできる。
Alternatively, the heat treatment described above can also be performed in a static magnetic field. In this case, the application peak is, for example, 1
It is assumed to be approximately 000e. At this time, anisotropy forming a predetermined angle with the longitudinal direction within the ribbon surface is imparted. Further, the heat treatment can be performed while applying tension, or even in a rotating magnetic field depending on the case.

次いで、上記したようにこの薄帯を巻回し、巻回体を得
、これをそのまま磁心としたシ、これから各種カットコ
アを形成し、磁心としたり、更には所定の空隙を設けた
シして、この出願の発明のチョークコイル用磁心が形成
される。
Next, as described above, this thin ribbon is wound to obtain a wound body, which is used as a magnetic core. Various cut cores are formed from this to form a magnetic core, and furthermore, a predetermined gap is provided. , a magnetic core for a choke coil according to the invention of this application is formed.

なお、薄帯に予め微結晶析出のための処理を施さず、巻
回体作製後、カットコア形成後、あるいは空隙形成後の
いずれかに、処理を施すこともできる。また薄帯に予め
微結晶析出のための処理を施して、その後巻回体を得る
ときには、巻回体作製後等に、別途歪除去のため熱処理
を施すこともできる。
Note that the ribbon may not be subjected to the treatment for precipitating microcrystals in advance, but the treatment may be performed either after producing the wound body, after forming the cut core, or after forming the voids. Further, when the ribbon is previously subjected to a treatment for precipitation of microcrystals and then a wound body is obtained, a heat treatment may be separately applied to remove strain after the formation of the wound body.

そして、以上のような磁心に所定の捲線を施し、その他
所定の加工を施し、チョークコイルが形成される。
Then, the magnetic core as described above is subjected to predetermined winding and other predetermined processing to form a choke coil.

このようなチョークコイルは、スイッチングレギュレー
タ、サイリスクインバータをはじめとするインバータ類
、あるいは通常の直流電源等各種電気機器に用いられる
、リップル、オン・オフサージ等の除去用のコイルとし
てM用である。
Such choke coils are used as coils for removing ripples, on/off surges, etc., used in switching regulators, inverters such as thyrisk inverters, and various electrical devices such as ordinary DC power supplies.

この出願の発明の薄帯を用いたチョークコイル用磁心は
、直流または交流、例えば50 Hz程度の交流に定常
的ないし周期的に重畳する高周波成分全除去するに際し
、至の発熱量がきわめて少ない。
The magnetic core for a choke coil using a ribbon according to the invention of this application generates extremely little heat when completely removing high frequency components that are constantly or periodically superimposed on a direct current or alternating current, for example, an alternating current of about 50 Hz.

又、透磁率等の磁気特性が良好で、しかも、その角形比
、B−Hループの不飽和領域等を容易に所望のごとく調
整できるので、上記のような高周波成分、例えばリップ
ル電流、オン・オフサージ電流の除去が有効尾行え、そ
の適用範囲がきわめて広い。更には、各種特性の経時変
化がきわめて少ない。又微結晶析出のための熱処理条件
も広範囲であり、製造が容易である。さらには耐食性等
も高いQ 次に、この出願の発明の実施例を示し、この出願の発明
を更に詳細に説明する。
In addition, the magnetic properties such as magnetic permeability are good, and the squareness ratio, unsaturated region of the B-H loop, etc. can be easily adjusted as desired. It can effectively remove off-surge currents and has an extremely wide range of applications. Furthermore, there is extremely little change in various properties over time. Furthermore, the heat treatment conditions for precipitation of microcrystals are wide-ranging, and manufacturing is easy. Furthermore, it has high corrosion resistance etc. Next, examples of the invention of this application will be shown and the invention of this application will be explained in more detail.

実施例1 上記した式に含まれる組成Fe76.7 MnO,3s
i、4By、b Pa、、C+、3 (z = 23 
at%、p=60.9%、r = 0.4%、sA =
 0.17%)f:もつ非晶質磁性合金薄帯Aと、上記
した式の範囲外の組成Fe745i43B+3をもつ非
晶質磁性合金薄帯Bとを高速急冷法によシ得た。両者は
ほぼ完全に非晶質であplともに厚さ30μm1巾8m
!である。
Example 1 Composition Fe76.7 MnO, 3s included in the above formula
i, 4By, b Pa,, C+, 3 (z = 23
at%, p = 60.9%, r = 0.4%, sA =
An amorphous magnetic alloy ribbon A having a composition Fe745i43B+3 outside the range of the above formula was obtained by a high-speed quenching method. Both are almost completely amorphous, and both PL have a thickness of 30 μm and a width of 8 m.
! It is.

次いで、これら薄帯A、Bにつき、それぞれを5分割し
、その1つは何ら処理を施さず、又、他の4つには、下
記衣1のような温度と時間にて無磁場中熱処理を行い、
試料A−1〜A−5および試料B−1〜B−5を得た。
Next, each of these ribbons A and B was divided into five parts, one of which was not subjected to any treatment, and the other four were heat-treated in a non-magnetic field at the temperature and time as described in Clothing 1 below. and
Samples A-1 to A-5 and samples B-1 to B-5 were obtained.

表  1 A−I 250℃、60分 ハローのみ ハローのみ −I 500℃、10分   ピークのみ ハローのみ 250℃、60分  ハローのみ 400℃、30分  ハロー士ピーク 440℃、20分  ハロー士ピーク 500℃、10分  ピークのみ せ、しかる後、巻回体を切断して、磁路中に、幅1■の
空隙を形成し、チョークコイル用磁心A−1〜A−5、
B−1〜B−5を得た。
Table 1 A-I 250℃, 60 minutes Halo only-I 500℃, 10 minutes Peak only Halo only 250℃, 60 minutes Halo only 400℃, 30 minutes Halo peak 440℃, 20 minutes Halo peak 500℃ , 10 minutes to show the peak, and then cut the winding body to form a gap of width 1cm in the magnetic path, magnetic cores A-1 to A-5 for choke coils,
B-1 to B-5 were obtained.

このようにして得たチョークコイル用磁心A −1〜B
−5につき、L=30μHとなるように巻at施し、こ
れf:、50 kHzで駆動する5v130Aのフォワ
ードコンバータ凰スイッチング電源にリップル除去用チ
ョークコイルとして組みこみ、発熱量テストを行なった
。出力電流20Aのときの磁心の温度上昇を測定して、
下記衣2に示される結果を得た。
Magnetic cores for choke coils A-1 to B thus obtained
-5, the coil was wound so that L = 30 μH, and it was incorporated into a 5V 130A forward converter switching power supply driven at 50 kHz as a choke coil for ripple removal, and a heat generation test was conducted. Measuring the temperature rise of the magnetic core when the output current is 20A,
The results shown in Figure 2 below were obtained.

これら試料A−1〜B−5につき、X線回折を行ったと
ころ、上記衣1に示される結果を得た。
When X-ray diffraction was performed on these samples A-1 to B-5, the results shown in Cloth 1 above were obtained.

次いで、上記薄帯A、Bt−5分割して、内径19II
Il!1外径31tIIl11巾8mのトロイダル状に
巻回し、計lO個の巻回体を得た。このようにして得た
計10個の巻回体A−1〜B−5につき、上記衣1に示
される計10種の熱処理を行った後、巻回体にエポキシ
系樹脂を含浸させ、樹脂硬化さ表  2 80℃ 50℃ A 5A × △ A−580℃以上    5A     ○B−180
℃        5A         XB−25
0℃       15A        ΔB−33
0℃       20A        ΔB−43
0℃       20A        Δこれとは
別に、磁心A−1〜B−5につき、上記し=30μHに
設定して巻線したチョークコイルの直流重畳特性を測定
した。各コイルにつき、L=20μH以下となる直流電
流値を表2に併記する。
Next, the above ribbons A and Bt were divided into 5 parts, each having an inner diameter of 19II.
Il! The material was wound into a toroidal shape having an outer diameter of 31 tIIl and a width of 8 m to obtain a total of 10 wound bodies. A total of 10 rolled bodies A-1 to B-5 thus obtained were subjected to a total of 10 types of heat treatment shown in the above-mentioned Cloth 1, and then the rolled bodies were impregnated with an epoxy resin. Curing Table 2 80℃ 50℃ A 5A × △ A-580℃ or higher 5A ○B-180
℃ 5A XB-25
0℃ 15A ΔB-33
0℃ 20A ΔB-43
0° C. 20 A Δ Separately, the DC superimposition characteristics of choke coils wound at the above-described setting of =30 μH were measured for magnetic cores A-1 to B-5. For each coil, the DC current value at which L=20 μH or less is also listed in Table 2.

さらに、これら各チョークコイルAビ’i、120℃の
恒温槽中に1000時間保持し、上記発熱量および直流
重畳特性を測定し、特性の経時変化を評価した。結果を
上記衣2に併記する。表中、×は大きな変化があったこ
と、Δは変化があったこと、Oは変化がなかったことを
表わす。
Furthermore, each of these choke coils Abi'i was kept in a constant temperature bath at 120° C. for 1000 hours, and the above-mentioned calorific value and DC superimposition characteristics were measured, and changes in characteristics over time were evaluated. The results are also listed in Cloth 2 above. In the table, × indicates that there was a large change, Δ indicates that there was a change, and O indicates that there was no change.

表2に示される結果から、上記した式に示される組成を
もち、部分的に結晶質を含むこの出題の発明の薄帯を、
チョークコイル用磁心として用いるときのすぐれた効果
が明らかである。
From the results shown in Table 2, it can be seen that the ribbon of the invention in this question has the composition shown by the above formula and partially contains crystalline material.
The excellent effect when used as a magnetic core for a choke coil is obvious.

実施例2 上記の式において、Mn含有量y k 1− Oat%
 、ガラス化元素取分中のP含有比r f Oll a
t%、CとBとの含有比s/qを042にそれぞれ固定
し、ガラス化元素成分量2と、ガラス化元素分反中のS
i含含有比色をそれぞれ変化させて、各種薄帯を作製し
た。
Example 2 In the above formula, Mn content y k 1- Oat%
, P content ratio in the vitrified element fraction r f Oll a
t% and the content ratio s/q of C and B are each fixed at 042, and the amount of vitrification element component 2 and S in the vitrification element fraction are
Various ribbons were produced by changing the i-containing colorimetry.

次いで、各薄帯を内径19閣、外径31圏、巾8mのト
ロイダル状に巻回した後、各巻回体に440℃、40分
間の無磁場中熱処理を施し、エポキシ系樹脂を含浸させ
、固定し磁路中に1mmの空隙を設け、各種磁心を得た
。このように行った熱処理の結果、各薄板のX線回折ス
ペクトルには、いずれもハローとピークとが存在してい
た。
Next, each ribbon was wound into a toroidal shape with an inner diameter of 19 mm, an outer diameter of 31 mm, and a width of 8 m, and each wound body was heat-treated at 440°C for 40 minutes in a non-magnetic field to impregnate it with an epoxy resin. Various types of magnetic cores were obtained by fixing and providing a 1 mm gap in the magnetic path. As a result of the heat treatment performed in this manner, a halo and a peak were present in the X-ray diffraction spectrum of each thin plate.

次に、このようにして得た各磁心につき、実施例1と同
様にして、チョークコイルを作製し、実施例1と同様の
発熱量テストを行い、磁心の温度上昇を測定した。結果
を第2図に示す。第2図には、薄帯中のSi含肩比pを
横軸にとシ、ガラス化元素成分量2左縦軸にとシ、2お
よびpの異なる各種薄板から得られたコイルにおいて、
その温度上昇ΔTがそれぞれ50℃、30℃、25℃お
よび20℃である組成線が示される。
Next, for each of the magnetic cores thus obtained, a choke coil was produced in the same manner as in Example 1, and the same calorific value test as in Example 1 was conducted to measure the temperature rise of the magnetic core. The results are shown in Figure 2. In Fig. 2, the horizontal axis shows the Si shoulder ratio p in the ribbon, and the left vertical axis shows the amount of vitrification element 2, and in coils obtained from various thin plates with different values of 2 and p,
Composition lines whose temperature increases ΔT are 50° C., 30° C., 25° C. and 20° C. are shown, respectively.

第2図に示される結果から、A−B−C−D−E−F−
G−Aで囲まれる領域内の組成ヲもつこの出願の発明の
薄帯から得られるコイルは、はぼ25℃以下の温度上昇
しか示さず、これに対し、上記領域外の薄帯から得られ
るコイルでは、発熱量が増大してしまうことがわかる。
From the results shown in Figure 2, A-B-C-D-E-F-
The coil obtained from the ribbon of the invention of this application having a composition within the region surrounded by G-A shows a temperature increase of only about 25° C. or less, whereas the coil obtained from the ribbon outside the above region. It can be seen that the amount of heat generated by the coil increases.

又、各種コイルにつき、実施例1と同様に直流重畳特性
および発熱量と直流重畳特性との経時変化とを測定した
ところ、A −B−C−D−E−F−G−Aで囲まれる
領域の組成をもつ薄帯から得られたコイルは、いずれも
実施例1におけるコイルA−3゜A−4と同等のすぐれ
た特性を示した。
In addition, when we measured the DC superposition characteristics, heat generation amount, and changes over time in the DC superposition characteristics for various coils in the same manner as in Example 1, we found that the values are surrounded by A-B-C-D-E-F-G-A. The coils obtained from the ribbons having the compositions in the above range all exhibited excellent characteristics equivalent to those of the coils A-3 and A-4 in Example 1.

更に、各組成ごとに、40分間の熱処理にて、発熱量、
直流重畳特性、経時変化の点で、良好な特性を得るため
の熱処理温度Tanの許容巾ΔTanを求めた。ΔTa
nがそれぞれ20℃、30℃および40℃である組成線
を第3図に示す。
Furthermore, each composition was heat-treated for 40 minutes to determine the calorific value,
An allowable range ΔTan of the heat treatment temperature Tan for obtaining good characteristics in terms of direct current superimposition characteristics and changes over time was determined. ΔTa
Composition lines where n is 20°C, 30°C and 40°C, respectively, are shown in FIG.

第3図に示される結果から、この出願の発明の、A−B
−C−D−E−F−G−Aで囲まれる領域内の組成をも
つ薄帯は、20℃以上の熱処理温度を示すことがわかる
From the results shown in FIG. 3, it is clear that A-B of the invention of this application.
It can be seen that the ribbon having a composition within the region surrounded by -C-D-E-F-G-A exhibits a heat treatment temperature of 20°C or higher.

なお、A−B−C−D−E−F−G−Aで囲まれる領域
内の組成をもつ薄帯は、いずれもすぐれた耐食性を示し
た。
Note that all ribbons having compositions within the region surrounded by A-B-C-D-E-F-G-A exhibited excellent corrosion resistance.

実施例3 p=Q、7%、s/q = 0.32 K固定した、M
口金有量yの異なる下記表3に示される4種の組成の非
晶質磁性合金薄帯を得た。
Example 3 p=Q, 7%, s/q = 0.32 K fixed, M
Four types of amorphous magnetic alloy ribbons with different compositions shown in Table 3 below, each having a different spindle content y, were obtained.

この4種の薄帯を用い、実施例1と同一の寸法の巻回体
を作製し、各巻回体に熱処理を施した後、樹脂含浸によ
り固定してIIIIIllの空隙を設けた。
Using these four kinds of ribbons, wound bodies having the same dimensions as in Example 1 were prepared, and each wound body was heat-treated and then fixed by resin impregnation to form a gap of IIIll.

実施例1と同様に、チョークコイルを形成して、スイッ
チング電源に組みこんだときの、温度上昇を測定した。
Similarly to Example 1, a choke coil was formed and the temperature rise was measured when it was incorporated into a switching power supply.

各巻回体に対する熱処理時間全40分に固定し、温度上
昇が25℃以下となる熱処理温度巾を下記表3に示す。
Table 3 below shows the heat treatment temperature range at which the temperature rise is 25° C. or less when the total heat treatment time for each wound body is fixed at 40 minutes.

なお、いずれの場合も、X線回折の結果、・・ローとピ
ークとが存在していた。
In both cases, as a result of X-ray diffraction, ... low and peak were present.

表  3 実施例4 下記表4に示される、s/qの異なる4種の組成の非晶
質磁性合・全薄帯を得た。
Table 3 Example 4 Amorphous magnetic composite ribbons having four different compositions of s/q as shown in Table 4 below were obtained.

表  4 D −I   Fe75.5 P′1r1as Sl 
1 !、5 Ba4P(Ll     0D −2Fe
75.5”Cl35i15.5B、、6P01C,80
,1D −3Fe 75.5 Mnαs St 15.
s B6.s Po、t Ctq   0.3D−4F
e    Mn   St    B   P   C
O,575,5Q、5   15.5  4.2  0
.1  4.2−I Fe75 S ’17.5 B5.6 C1,8Po、
+Fe74B MeQ、2Si17.5  B5L6 
C1,8PalFe73Mn2Si17.5B5.6C
1,8P[L1F870庵55i17.5 B5.6 
C1,8Pα1表3に示される結果から、Mn含肩量が
0.1〜10 at%、より好ましくは0.1〜5 a
t%となったとき、微結晶析出のための熱処理温度巾が
広くなることがわかる。
Table 4 D -I Fe75.5 P'1r1as Sl
1! , 5 Ba4P(Ll 0D -2Fe
75.5"Cl35i15.5B,,6P01C,80
, 1D -3Fe 75.5 Mnαs St 15.
sB6. s Po, t Ctq 0.3D-4F
e Mn St B P C
O,575,5Q,5 15.5 4.2 0
.. 1 4.2-I Fe75 S '17.5 B5.6 C1,8Po,
+Fe74B MeQ, 2Si17.5 B5L6
C1,8PalFe73Mn2Si17.5B5.6C
1,8P [L1F870an 55i17.5 B5.6
C1,8Pα1 From the results shown in Table 3, the shoulder content of Mn is 0.1 to 10 at%, more preferably 0.1 to 5 at%.
It can be seen that when the temperature reaches t%, the heat treatment temperature range for precipitation of microcrystals becomes wider.

この4種の薄帯を用い、実施例1と同一の寸法の巻回体
を作製し、実施例1と同様に各巻回体に熱処理を施し、
空隙を設けて磁心を作製した。各磁心の薄帯は、X線回
折だよシ、ハローとピークとが存在していた。
Using these four types of ribbons, a wound body having the same dimensions as in Example 1 was prepared, and each wound body was heat-treated in the same manner as in Example 1.
A magnetic core was prepared by providing an air gap. Each thin strip of magnetic core had a halo and a peak in X-ray diffraction.

L=30μHに設定して巻線を施してチョークコイルと
し、実施例1と同様直流重畳特性を測定し、各コイルの
し=20μH以下となる直流電流値を測定した。結果を
下記表5に示す。
A choke coil was obtained by winding with L=30 μH, and the DC superimposition characteristics were measured in the same manner as in Example 1, and the DC current value at which each coil's radius was 20 μH or less was measured. The results are shown in Table 5 below.

表  5 表  6 D−122A            △D−225A
           0D−325A       
    0表5の結果から、s/qは0805〜0.4
となると直流重畳特性が向上することがわかる。
Table 5 Table 6 D-122A △D-225A
0D-325A
0 From the results in Table 5, s/q is 0805 to 0.4
It can be seen that the DC superimposition characteristics are improved.

なお、コイルD−4は、発熱が多く、チョークコイル用
コアとしては適さないことが確認された。
It was confirmed that coil D-4 generated a lot of heat and was not suitable as a choke coil core.

これに対し、各コイルを120℃の恒温槽中に1000
時間保持し、その後の直流重畳特性の変化を調べた。結
果を○(変化なし)および△(変化あり)の記号にて、
上記衣5に示す。
On the other hand, each coil was placed in a thermostat at 120°C for 1000
The test was held for a period of time, and changes in the DC superimposition characteristics thereafter were investigated. The results are marked with ○ (no change) and △ (change).
It is shown in Clothing 5 above.

表5の結果から、S/q = 0.05〜0.4で良好
な経時特性を示すことがわかる。
From the results in Table 5, it can be seen that good aging characteristics are exhibited when S/q = 0.05 to 0.4.

実施例5 下記表6に示される、リン含有比rの異なる4種の非晶
質磁性合金薄帯全得た。
Example 5 All four types of amorphous magnetic alloy ribbons having different phosphorus content ratios shown in Table 6 below were obtained.

薄帯    組  成 E ”’ 1 1”e 75.b MrlIla St
 14,587.q C1,6E ″2  Fe756
励a4Sl + a、5 B7.q Cts Po、1
g−3Fe75.6 胤(Ia S’14.5 B7.
5 C10Pt0E −4Fe ys、b P′1rl
c4Sl 1a、s Bio Co、s P3これら4
種の薄帯につき、実施例1と同一の寸法の巻回体を作製
し、実施例1と同様に、各巻回体に熱処理を施し、空隙
を設けて磁心を作製した。
Thin ribbon composition E ”' 1 1”e 75. b MrlIla St
14,587. q C1,6E ″2 Fe756
Excitation a4Sl + a, 5 B7. q Cts Po, 1
g-3Fe75.6 Seed (Ia S'14.5 B7.
5 C10Pt0E -4Fe ys, b P'1rl
c4Sl 1a, s Bio Co, s P3 These 4
For the seed ribbon, a wound body having the same dimensions as in Example 1 was prepared, and in the same manner as in Example 1, each wound body was heat-treated to provide a gap to form a magnetic core.

各磁心の薄帯は、X線回折によシ、ハローとピークとが
存在していた。
X-ray diffraction revealed that each magnetic core ribbon had a halo and a peak.

これら各磁心から実施例1同様、チョークコイルを作製
し、実施例4と同様、L=20μHとなる直流電流値と
、その経時変化を測定した。結果を下記表7に示す。
A choke coil was produced from each of these magnetic cores in the same manner as in Example 1, and as in Example 4, the direct current value at which L=20 μH and its change over time were measured. The results are shown in Table 7 below.

表  4 L=20μHとなる コイJ′    直流電流値       経時変化E
−126A             ΔE−226A
            0E−324A      
      ○E−420A            
0表7の結果から、rは0.01〜5%、よシ好ましく
は0.01〜20%でなければならないことがわかる。
Table 4 Carp J' when L = 20 μH DC current value Change over time E
-126A ΔE-226A
0E-324A
○E-420A
From the results in Table 7 it can be seen that r must be between 0.01 and 5%, more preferably between 0.01 and 20%.

実施例6 Fe77.7 ”Q、3 S’11 B9.OC1,9
Po、1の組成の30μm厚の非晶質磁性合金薄板を得
、実施例1と全く同様にして、巻回体から空隙を肩する
磁心Fを得た。
Example 6 Fe77.7"Q, 3 S'11 B9.OC1,9
A 30 μm thick amorphous magnetic alloy thin plate having a composition of Po, 1 was obtained, and in exactly the same manner as in Example 1, a magnetic core F covering the gap was obtained from the wound body.

これに対し、上記薄帯を内径19顛、外径31鰭のリン
グ状に抜き、これを熱処理後、巾8順にこのように作製
した2種の磁心から、L=30μHにてチョークコイル
を作製し、実施例1と同様、発熱テストを行った。
On the other hand, the thin strip was cut out into a ring shape with an inner diameter of 19 fins and an outer diameter of 31 fins, and after heat treatment, choke coils were fabricated from the two types of magnetic cores fabricated in this way in order of 8 widths, with L = 30 μH. Then, a heat generation test was conducted in the same manner as in Example 1.

この場合、直流重畳特性を磁心F、Gでほぼ同一に保ち
、L=30μHとなる直流電流値を25Aとしたところ
、磁心Fでは温度上昇が20℃であったのに対し、磁心
Gでは30℃であった。
In this case, when the DC superposition characteristics were kept almost the same for magnetic cores F and G, and the DC current value at which L = 30 μH was set to 25 A, the temperature rise for magnetic core F was 20°C, while for magnetic core G it was 30°C. It was ℃.

他方、発熱量、すなわち温度上昇ΔTi20℃にほぼ同
−如したときは、L=20μHとなる直流電流値は、磁
心Fで25Aでありたのに対し、磁心Gでは20Aであ
った。
On the other hand, when the amount of heat generated, that is, the temperature rise ΔTi is approximately equal to 20° C., the DC current value for L=20 μH was 25 A for the magnetic core F, while it was 20 A for the magnetic core G.

これらの結果から、磁心は、巻回体から構成することが
好ましいことがわかる。
These results show that it is preferable for the magnetic core to be composed of a wound body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この出願の発明における非晶質磁性合金薄帯
の組成、特にガラス化元素反分中のSi含石比p(イ)
と、ガラス化元素成分量Z(支))との関係を説明する
ための線図である。第2図および第3図は、この出願の
発明における非晶質磁性合金薄帯における、上記p%と
z%との関係によってもたらされる効果を説明するため
の線図である。 第1 図 和 5゜ 第5図 4゜ 5゜ ω P(?/、) 第2図 り 5゜ ■ 帥
FIG. 1 shows the composition of the amorphous magnetic alloy ribbon in the invention of this application, especially the Si stone content ratio p(a) in the vitrification element fraction.
FIG. 3 is a diagram for explaining the relationship between the amount of vitrification element component and the amount of vitrification element component Z (support). FIGS. 2 and 3 are diagrams for explaining the effects brought about by the relationship between p% and z% in the amorphous magnetic alloy ribbon according to the invention of this application. 1st figure sum 5゜ 5th figure 4゜5゜ω P(?/,) 2nd figure 5゜■ 帥

Claims (1)

【特許請求の範囲】 1、部分的に結晶質を含み、下記式で示される組成を有
することを特徴とするチョークコイル用非磁質磁性合金
薄帯。 式(Fe_kM_l)_xMn_y(Si_pB_qP
_rC_sX_t)_z〔上式中、MはFeおよびMn
以外の他の遷移金属元素の1種以上を表わし、XはSi
、B、PおよびC以外の他のガラス化元素の1種以上を
表わす。 又、x+y+z=100at%であり、このうち、yは
0.1〜10at%、zは21〜25.5at%である
。 更に、k+l=100%、p+q+r+s+t=100
%であり、このうち、lは0〜10%、又、pは40〜
75%、rは0.01〜5%、s/qは0.05〜0.
4、tは0〜10%である。加えて、z≦0.5p+1
かつz≦0.1p+19かつz≧0.3p+2かつz≧
0.13p+13.7である。〕 2、部分的に結晶質を含み、下記式で示される組成を有
する非晶質磁性合金の薄帯を巻回してなる巻回体から構
成されることを特徴とするチョークコイル用磁心。 式(Fe_kM_l)_xMn_y(Si_pB_qP
_rC_sX_t)_z〔上式中、MはFeおよびMn
以外の他の遷移金属元素の1種以上を表わし、XはSi
、B、PおよびC以外の他のガラス化元素の1種以上を
表わす。 又、x+y+z=100at%であり、このうち、yは
0.1〜10at%、zは21〜25.5at%である
。 更に、k+l=100%、p+q+r+s+t=100
%であり、このうち、lは0〜10%、又pは40〜7
5%、rは0.01〜5%、s/qは0.05〜0.4
、tは0〜10%である。加えて、z≦0.5p+1か
つz≦0.1p+19かつz≧0.3p+2かつz≦0
.13p+13.7である。〕 3、薄帯を巻回してなる特許請求の範囲第2項記載のチ
ョークコイル用磁心。 4、薄帯を巻回してなる巻回体を切断してカットコアと
なし、当該カットコアから磁心を形成してなる特許請求
の範囲第2項記載のチョークコイル用磁心。 5、薄帯を巻回してなる巻回体を切断してなる切断体を
接続してカットコアとなし、当該カットコアから磁心を
形成してなる特許請求の範囲第2項または第4項記載の
チョークコイル用磁心。 6、磁路の一部分に空隙を有する特許請求の範囲第2項
〜第5項のいずれかに記載のチョークコイル用磁心。
[Claims] 1. A non-magnetic magnetic alloy ribbon for a choke coil, which partially contains crystals and has a composition represented by the following formula. Formula (Fe_kM_l)_xMn_y(Si_pB_qP
_rC_sX_t)_z [In the above formula, M is Fe and Mn
represents one or more transition metal elements other than Si
, B, P and one or more of other vitrifying elements other than C. Further, x+y+z=100 at%, of which y is 0.1 to 10 at% and z is 21 to 25.5 at%. Furthermore, k+l=100%, p+q+r+s+t=100
%, of which l is 0 to 10%, and p is 40 to 10%.
75%, r is 0.01-5%, s/q is 0.05-0.
4. t is 0 to 10%. In addition, z≦0.5p+1
and z≦0.1p+19 and z≧0.3p+2 and z≧
It is 0.13p+13.7. 2. A magnetic core for a choke coil, comprising a wound body formed by winding a thin ribbon of an amorphous magnetic alloy that partially contains crystals and has a composition represented by the following formula. Formula (Fe_kM_l)_xMn_y(Si_pB_qP
_rC_sX_t)_z [In the above formula, M is Fe and Mn
represents one or more transition metal elements other than Si
, B, P and one or more of other vitrifying elements other than C. Further, x+y+z=100 at%, of which y is 0.1 to 10 at% and z is 21 to 25.5 at%. Furthermore, k+l=100%, p+q+r+s+t=100
%, of which l is 0 to 10%, and p is 40 to 7
5%, r is 0.01-5%, s/q is 0.05-0.4
, t is 0 to 10%. In addition, z≦0.5p+1 and z≦0.1p+19 and z≧0.3p+2 and z≦0
.. 13p+13.7. 3. A magnetic core for a choke coil according to claim 2, which is formed by winding a thin ribbon. 4. A magnetic core for a choke coil according to claim 2, wherein a wound body formed by winding a thin ribbon is cut to form a cut core, and a magnetic core is formed from the cut core. 5. Claims 2 or 4 in which a cut core is formed by cutting a wound body formed by winding a thin ribbon and connected to form a cut core, and a magnetic core is formed from the cut core. magnetic core for choke coils. 6. The magnetic core for a choke coil according to any one of claims 2 to 5, which has an air gap in a part of the magnetic path.
JP23494389A 1989-09-11 1989-09-11 Amorphous magnetic alloy material Pending JPH02170950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23494389A JPH02170950A (en) 1989-09-11 1989-09-11 Amorphous magnetic alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23494389A JPH02170950A (en) 1989-09-11 1989-09-11 Amorphous magnetic alloy material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56078370A Division JPS57193005A (en) 1981-05-23 1981-05-23 Amorphous magnetic alloy thin belt for choke coil and magnetic core for the same

Publications (1)

Publication Number Publication Date
JPH02170950A true JPH02170950A (en) 1990-07-02

Family

ID=16978700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23494389A Pending JPH02170950A (en) 1989-09-11 1989-09-11 Amorphous magnetic alloy material

Country Status (1)

Country Link
JP (1) JPH02170950A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009714A1 (en) * 1990-11-30 1992-06-11 Mitsui Petrochemical Industries, Ltd. Iron-base soft magnetic alloy
US7067022B2 (en) 2000-11-09 2006-06-27 Battelle Energy Alliance, Llc Method for protecting a surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193005A (en) * 1981-05-23 1982-11-27 Tdk Corp Amorphous magnetic alloy thin belt for choke coil and magnetic core for the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193005A (en) * 1981-05-23 1982-11-27 Tdk Corp Amorphous magnetic alloy thin belt for choke coil and magnetic core for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009714A1 (en) * 1990-11-30 1992-06-11 Mitsui Petrochemical Industries, Ltd. Iron-base soft magnetic alloy
US7067022B2 (en) 2000-11-09 2006-06-27 Battelle Energy Alliance, Llc Method for protecting a surface
US8097095B2 (en) * 2000-11-09 2012-01-17 Battelle Energy Alliance, Llc Hardfacing material

Similar Documents

Publication Publication Date Title
JPH0226768B2 (en)
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
US5069731A (en) Low-frequency transformer
EP2261385B1 (en) Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
US4437907A (en) Amorphous alloy for use as a core
JP4879375B2 (en) Amorphous Fe-B-Si-C alloy with soft magnetic properties useful for low frequency applications
US5211767A (en) Soft magnetic alloy, method for making, and magnetic core
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
WO2006104148A1 (en) Magnetic core and applied product making use of the same
US9177706B2 (en) Method of producing an amorphous transformer for electric power supply
EP0401805B1 (en) Magnetic core
JP3059187B2 (en) Soft magnetic alloy, manufacturing method thereof and magnetic core
JP4318756B2 (en) Electric chalk
JP2006045660A (en) Fe-BASED AMORPHOUS ALLOY THIN STRIP AND MAGNETIC CORE
JPH02170950A (en) Amorphous magnetic alloy material
JPH05255820A (en) Fe base alloy having iso-permeability and its manufacture, and fe base magnetic core using the same
JPH0366801B2 (en)
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH08153614A (en) Magnetic core
JPH0754108A (en) Magnetic alloy having iso-permeability, production thereof and magnetic core using the same
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPH0927412A (en) Cut core and manufacture thereof
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JP2004176167A (en) Thin amorphous alloy strip and magnetic core using it