JPH0362921A - Vapor growth apparatus for organic metal - Google Patents

Vapor growth apparatus for organic metal

Info

Publication number
JPH0362921A
JPH0362921A JP19896589A JP19896589A JPH0362921A JP H0362921 A JPH0362921 A JP H0362921A JP 19896589 A JP19896589 A JP 19896589A JP 19896589 A JP19896589 A JP 19896589A JP H0362921 A JPH0362921 A JP H0362921A
Authority
JP
Japan
Prior art keywords
carrier gas
organometallic compound
pulp
introducing
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19896589A
Other languages
Japanese (ja)
Inventor
Yasuhito Takahashi
康仁 高橋
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19896589A priority Critical patent/JPH0362921A/en
Publication of JPH0362921A publication Critical patent/JPH0362921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent mixing of air into a pipe at the time of attachment and removal completely by inserting a T-shaped pipe between an organic-metal compound cylinder and a first carrier gas pipe, and connecting a second carrier gas pipe to another connecting port through valves. CONSTITUTION:When an organic metal cylinder 2 is attached to an MOVPE device, valves 5, 6, 9, 15, 11 and 10 are all closed, and only a valve 14 is opened. N2 is made to flow, and the cylinder is attached. After the organic metal cylin der 2 is attached, only the valves 14, 6, 15 and 11 are opened, and a large am ount of high-purity hydrogen gas is made to flow at, e.g. 101/min. Thereafter, hydrogen purging is stopped, and evacuation is performed through a vent. When this procedure is repeated several times, air component which is mixed into a carrier gas pipe 12 is completely removed. Actual crystal growth is performed by using the organic metal compound attached in this way. Then, the epitaxial growing at n<=1X10<15>cm<-3> can be performed for a long time in the case of non doped GaAs.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体等の気相エピタキシャル成長させ
る装置に関したものであり、特に結晶成長を行なう前の
有機金属化合物ボンベを装置に取り付けた際に またl
よ 結晶成長を行なったあとに またζよ 有機金属化
合物ボンベを装置から取り外す際に 充分なパージを容
易に行なわしめるためのものであも 従来の技術 看板 化合物半導体の単結晶薄膜を形成する技術として
、大面積にわたる均一性および再現性等から有機金属気
相成長法(以下MOVPE法と記す)が注目されていも
 このMOVPE法は 制御性にも優れ 量産化にも適
していも 第5図に従来用いられているM○VPE装置の有機金属
化合物の供給部分を示す。所定の温度に保たれた恒温槽
1中に有機金属化合物ボンベ2を入れ マスフローコン
トローラー3によりキャリアガスである高純度水素ガス
を正確に制御し 有機金属化合物ボンベ2内に導入する
ことにより所定量の有機金属化合物をリアクター内に導
入することができも 7、8は有機金属化合物ボンベの
パルプであり一般にダイアフラムパルプやベローパルプ
が使用されも 5.6、9、10、11.15はMOV
PE装置のパルプであり、 4、5.6は2方パルプ、
11は3方パルス 10は4方パルプ、 12はキャリ
アガス配管である。パルプ8とパルプ9の間は非常に短
く構成できも 例えばパルプ8とパルプ9をパルプ直結
にすると、有機金属化合物ボンベ2の取り付1す、取り
外し等を容易にするためや有機金属化合物ボンベの1n
−out間の距離がボンベ間で必ずしも一定ではなくパ
ルプ5とパルプ7の間は一般にフレキシブルな配管が用
いられなければならず、できる限り短くされているとは
い丸 たとえばキャリアガス配管12は数10センチメ
ートルにおよ4Z発明が解決しようとする課題 最近は量子井戸構造等を利用した新構造素子の開発が進
水 数原子層のオーダーでの膜束 組成の制御性や化学
的に非常に活性なAIを多量に含んだ結晶薄膜の高品質
化が要求されていもこれらの前提となるのは有機金属化
合物をM○VPE装置に取り付けて用いる阪 有機金属
化合物の品質を落とさないことであん しかしなが転上
述のような装置の構成では有機金属化合物ボンベをMO
VPE装置に取り付けた後、パルプ5とパルプ7の間の
キャリアガス配管12がデッドスペースとなりかなり長
時間真空引きを行なって転有機金属化合物ボンベを取り
付ける際にキャリアガス配管12内に混入した空気成分
は充分にはパージできないという課題があっtも 課題を解決するための手段 本発明はかかる課題を解決するために 有機金属化合物
ボンベ内にキャリアガスを導入される配管を直接有機金
属化合物ボンベのin側に接続するのではなく、T字管
あるいは3方パルプを介して有機金属化合物ボンベに接
続されており、T字管の他方の接続口にはパルプを介し
て第2のキャリアガスを導入する配管が具備されてい太
 あるいは3方パルプの他方の接続口にはパルプを介し
て第2のキャリアガスを導入する配管が具備されている
ことを特徴とする有機金属気相成長装置を提供するもの
であも 作用 上述のごとく有機金属化合物を送り出す第1のキャリア
ガス配管だけでなく、有機金属化合物ボンベと第1のキ
ャリアガス配管の間にT字管あるいは3方パルプを挿入
し これらの他の接続口にT字管の場合はパルプを介し
て、3方パルプの場合はそのまま第2のキャリアガス配
管を接続することにより、有機金属化合物ボンベを取り
付けたのム 有機金属化合物ボンベのパルプは締めてお
き、T字管に接続されているパルプあるいは3方パルプ
を開けて、第1のキャリアガス配管から第2のキャリア
ガス配管へたとえば高純度の水素ガス等を流すことによ
り、有機金属化合物ボンベと第1のキャリアガス配管間
にはデッドスペースは存在せず、有機金属化合物ボンベ
を取り付は時に配管に混入する空気成分は充分パージす
ることができも 真空引きと組み合わせるときわめて有
効な手段となん また有機金属化合物ボンベをM○VP
E装置から取り外す場合にL 本来有機金属化合物はi
n側には付着しないはずである力支 長時間同有機金属
化合物ボンベを使用しているとin側にも若干の有機金
属化合物が付着している場合があり、有機金属化合物ボ
ンベを装置から取り外す隊 危険であるとともに装置を
汚染していた力t 有機金属化合物ボンベのin側を充
分パージできるので、有機金属化合物ボンベの取り外し
に伴う、安全性が向上するとともに装置の汚染は全くな
くなっtも 実施例 本発明の実施例を図を用いて詳細に説明する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an apparatus for vapor phase epitaxial growth of compound semiconductors, etc., and particularly when an organometallic compound cylinder is attached to the apparatus before crystal growth.
This is to facilitate sufficient purging when the organometallic compound cylinder is removed from the apparatus after crystal growth, but it is a conventional technique used to form single-crystal thin films of compound semiconductors. Although metal-organic vapor phase epitaxy (hereinafter referred to as MOVPE) has attracted attention due to its uniformity over a large area and reproducibility, this MOVPE method has excellent controllability and is suitable for mass production. The organometallic compound supply section of the M○VPE apparatus used is shown. An organometallic compound cylinder 2 is placed in a constant temperature bath 1 kept at a predetermined temperature, and a mass flow controller 3 accurately controls high-purity hydrogen gas as a carrier gas.By introducing it into the organometallic compound cylinder 2, a predetermined amount of An organometallic compound can be introduced into the reactor. 7 and 8 are organometallic compound cylinder pulps, and diaphragm pulp and bellows pulp are generally used. 5.6, 9, 10, and 11.15 are MOV.
Pulp from PE equipment, 4, 5.6 is two-way pulp,
11 is a three-way pulse, 10 is a four-way pulp, and 12 is a carrier gas pipe. The distance between pulp 8 and pulp 9 can be very short. 1n
The distance between - out is not necessarily constant between cylinders, and generally flexible piping must be used between pulp 5 and pulp 7, and it is made as short as possible.For example, the carrier gas piping 12 is several 10 Problems to be solved by centimeter and 4Z inventions Recently, the development of new structural elements using quantum well structures, etc. has been launched Film bundles on the order of several atomic layers Composition controllability and chemically very active Although there is a demand for higher quality crystalline thin films containing a large amount of AI, the prerequisite for these is that the quality of the organometallic compound used when attached to the M○VPE device is not compromised. In the configuration of the device as described above, the organometallic compound cylinder is
After installation in the VPE device, the carrier gas piping 12 between the pulps 5 and 7 becomes a dead space, and the vacuum is drawn for quite a long time to prevent air components from entering the carrier gas piping 12 when installing the organic metal compound cylinder. In order to solve the problem, the present invention has the problem that the carrier gas cannot be purged sufficiently. It is connected to the organometallic compound cylinder through a T-tube or a three-way pulp, and the second carrier gas is introduced through the pulp into the other connection port of the T-tube. To provide a metal organic vapor phase growth apparatus, characterized in that the other connecting port of the thick or three-way pulp is equipped with a pipe for introducing a second carrier gas through the pulp. However, as mentioned above, in addition to the first carrier gas piping that sends out the organometallic compound, a T-shaped pipe or three-way pulp is inserted between the organometallic compound cylinder and the first carrier gas pipe. If the organometallic compound cylinder is attached to the connection port, connect the pulp via the pulp in the case of a T-shaped pipe, or directly connect the second carrier gas pipe in the case of three-way pulp. The organometallic compound cylinder is then opened by opening the pulp or three-way pulp connected to the T-tube and flowing, for example, high-purity hydrogen gas from the first carrier gas pipe to the second carrier gas pipe. There is no dead space between the first carrier gas pipe and the air component that sometimes gets mixed into the pipe when an organometallic compound cylinder is installed, but it is an extremely effective method when combined with vacuuming. Also, M○VP for organometallic compound cylinders.
E When removing from the device, L is originally an organometallic compound.
Force support that should not adhere to the n side If the same organometallic compound cylinder is used for a long time, some organometallic compound may also adhere to the in side, so remove the organometallic compound cylinder from the equipment. Forces that were dangerous and contaminated the equipment Since the inside side of the organometallic compound cylinder can be sufficiently purged, safety is improved and there is no contamination of the equipment when the organometallic compound cylinder is removed. EXAMPLE An example of the present invention will be described in detail with reference to the drawings.

第1の実施例を第1図に示す。 lは恒温棟 2は有機
金属ボンベたとえばTMG ()リメチルガリウム)、
3.4はマスフローコントローラ、 5.6.9.15
は2方パルス 9、11は3方パルプ、 10は4方バ
ルズ 7、8は有機金属ボンベ2に付いているパルス 
12、13はキャリアガス配管、14はパルス 20は
T字管、21は石英製リアクタコ 22はカーボン製サ
セプター、23は基板たとえばGaAs、24は高周波
コイルであも 有機金属ボンベ2をMOVPE装置に取
り付ける場合、パルプ5、6.9、15、11゜10は
すべて閉じておき、パルプ14のみ開きNtを流しなが
ら取り付けも 有機金属ボンベ2を取り付けた後、パル
プ14、6、15、11のみを開き、破線で示すように
高純度水素ガスを多量、たとえば101/min流す。
A first embodiment is shown in FIG. l is a thermostatic building; 2 is an organometallic cylinder such as TMG (limethyl gallium);
3.4 is mass flow controller, 5.6.9.15
is a 2-way pulse 9, 11 is a 3-way pulp, 10 is a 4-way pulse 7, 8 is a pulse attached to organometallic cylinder 2
12 and 13 are carrier gas pipes, 14 is a pulse, 20 is a T-tube, 21 is a quartz reactor, 22 is a carbon susceptor, 23 is a substrate such as GaAs, and 24 is a high frequency coil.The organic metal cylinder 2 is attached to the MOVPE device. In this case, all pulps 5, 6.9, 15, 11゜10 are closed, and only pulp 14 is opened and installed while flowing Nt.After installing organometallic cylinder 2, open only pulps 14, 6, 15, and 11. , a large amount of high-purity hydrogen gas is flowed, for example, at a rate of 101/min, as shown by the broken line.

この後、水素パージを停止しベントから真空引きを行な
う。これを何度か繰り返すことにより、キャリアガス配
管12に混入した空気成分は完全に取り除かれる。
After this, the hydrogen purge is stopped and the vent is evacuated. By repeating this several times, the air component mixed into the carrier gas pipe 12 is completely removed.

このようにして取り付けた有機金属化合物を用いて実際
に結晶成長を行なうと非ドープのGaASの場合、長期
間にわたりn≦lXl0’″cm−”のエビが可能とな
った まf:、、TMA(トリメチルアルミニウム)を
追加取り付けをおこなってAlGaAsを成長を行なう
と非ドープの場合、GaAsと同様長期にわたりn≦1
 x 10 I′c+c’のエビが可能となっ九 次に
第2の実施例について第2図を用いて説明する。第1の
実施例と異なる点はT字管20とパルプ14の働きを3
方パルプ16で行うことであん 部品点数が少なくなる
とともに 第1の実施例ではキャリアガス配管12から
みてパルプ14の方向のT字管20がデッドスペースと
なるが第2の実施例ではこのデッドスペースさえなくな
も 有機金属ボンベ2の取り付(す、取り外しおよびパ
ージの手順は第1の実施例と同じであも 第1の実施例
および第2の実施例ともにキャリアガス配管にヒーター
線を巻き、パージや真空引きの瓢 温度を上げることに
より、パージの効果をより一層上げることができる。実
際にエビを行なうと第1の実施例と同様非ドープのGa
Asの場合、長期間にわたりn≦l x 10 ”cm
−’のエビが可能となった ま?、:、TMA()リメ
チルアルミニウム)を追加取り付けをおこなってAlG
aAsを成長を行なうと非ドープの場合、GaAsと同
様長期にわたりn≦I X 10 ”cl’のエビが可
能となっ九 第3図に示す第3の実施例および第4図に示す第4の実
施例ではキャリアガス配管12の一部を有機金属ボンベ
2の恒温槽l内もしくは別の恒温槽内に入れであるもの
であも 有機金属ボンベ2の取り付(す、取り外し お
よびパージの手順は第1の実施例と同じである力曳 真
空引きやパージのとき恒温槽1の温度を上げておくと、
ヒーター線はど温度は上がらないがパージの効果は犬き
鶏また 有機金属ボンベ2を取り付けて、実際に結晶成
長を行う阪 第1のキャリアガスと有機金属を同じ温度
にできるので第1のキャリアガスの流量を変化させても
有機金属の供給量の直線性は保たれも 非ドープの場合
、第1および第2の実施例と同様のレベルである。組成
変動に関しては特にAlGaAs等の混晶をエビしたと
きの再現性に効果を発挿すも エビ毎の組成のばらつき
は±1%以内である。
When crystal growth was actually carried out using the organometallic compound attached in this way, in the case of undoped GaAS, it was possible to achieve n≦lXl0'''cm-'' over a long period of time. If AlGaAs is grown by additionally attaching (trimethylaluminum), in the case of undoped, n≦1 for a long period of time as with GaAs.
x 10 I'c+c' shrimp is now possible 9 Next, a second embodiment will be explained using FIG. 2. The difference from the first embodiment is that the T-shaped tube 20 and the pulp 14 function in three ways.
By using the pulp 16, the number of parts is reduced, and in the first embodiment, the T-tube 20 in the direction of the pulp 14 when viewed from the carrier gas pipe 12 becomes a dead space, but in the second embodiment, this dead space The procedure for installing, removing, and purging the organometallic cylinder 2 is the same as in the first embodiment. The effect of purging can be further increased by increasing the temperature of purging and vacuuming.When actually performing purging, undoped Ga is used as in the first example.
In the case of As, n≦l x 10”cm over a long period of time
−' shrimp is now possible. , :, TMA (remethylaluminum) was additionally installed and AlG
When aAs is grown without doping, it becomes possible to grow n≦I x 10 "cl" over a long period of time as with GaAs. In the embodiment, a part of the carrier gas piping 12 is placed in the thermostatic chamber l of the organometallic cylinder 2 or in a separate thermostatic chamber. Power pulling is the same as in the first embodiment.If the temperature of the thermostatic chamber 1 is raised during vacuuming and purging,
Although the temperature of the heater wire does not rise, the purge effect is still very strong.Attach organometallic cylinder 2 and perform the actual crystal growth. Even if the gas flow rate is changed, the linearity of the amount of organic metal supplied is maintained. In the case of non-doping, the level is similar to that of the first and second embodiments. With regard to compositional fluctuations, it is particularly effective in reproducibility when mixing mixed crystals such as AlGaAs, but the variation in composition from shrimp to shrimp is within ±1%.

発明の効果 本発明の効果は次の通りである。有機金属気相成長では
有機金属化合物が非常に活性であるためMOVPE装置
はリアクター以外はすべてステンレス製でありリークタ
イトであるが有機金属化合物の取り付1す、取り外しの
胤 わずかとはいえ空気の混入は避けられなっかた力交
 本発明により配管内への空気の混入は完全に防ぐこと
ができ、有機金属化合物の品質低下は全く起こらなくな
っ池特にAIを含む有機金属化合物を用いる暇 結晶薄
膜の品質低下がほとんど無く、大きな効果を発揮すも 
非ドープのGaAsの場合、長期間にわたりn≦I X
 10 ”cr”のエビが可能となったま;#=TMA
(hリメチルアルミニウム)を追加取り付けをおこなっ
てA I GaAsを成長を行なうと非ドープの場合、
GaAsと同様長期にわたりn≦I X l O”cm
−”のエビが可能となったまた組成変動に関してはエビ
毎の組成のばらつきが±1%以内であん 本発明により
、結晶成長の歩留まりが向上し 結果的にはデバイスの
低価格化に対する効果は非常に大である。
Effects of the invention The effects of the invention are as follows. In organometallic vapor phase epitaxy, organometallic compounds are very active, so the entire MOVPE equipment except the reactor is made of stainless steel and is leak-tight; The present invention completely prevents air from entering the pipes, and there is no deterioration in the quality of organometallic compounds, especially when using organometallic compounds containing AI. There is almost no deterioration in quality, and it is highly effective.
For undoped GaAs, n≦I
10 "cr" shrimp became possible; #=TMA
When A I GaAs is grown by additionally attaching (h-limethylaluminum), in the undoped case,
As with GaAs, n≦I X l O”cm over a long period of time
In addition, the present invention improves the yield of crystal growth and has the effect of reducing the cost of devices. It's very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1は 第2は 第3図および第4図はそれぞれ本発明
の第1の実施風 第2の実施風 第3の実施例および第
4の実施例の成長装置の要部を示す配管諷 第5図は従
来の装置の要部配管図であも 1・・・・・・恒温権 2・・・・・・有機金属ボンベ
 3.4・・・・・・マスフローコントローラ、5.6
.9.15・・・・・・2方パルプ、 7.8・・・・
・・パルプ、 11・・・・・・3方パルプ、 10・
・・・・・4方パルス 12・・・・・・第1のキャリ
アガス配管、 13・・・・・・第2のキャリアガス配
管、 14・・・・・・パルプ、20・・・・・・T字
管、 16・・・・・・3方パルス 21・・・・・・
リアクター、22・・・・・・サセプター、 23・・
・・・・基板 24・・・・・・高周波コイ/lz。
3 and 4 are piping diagrams showing the main parts of the growth apparatus of the first embodiment, the second embodiment, the third embodiment, and the fourth embodiment of the present invention, respectively. Figure 5 is a piping diagram of the main parts of a conventional device. 1. Constant temperature control 2. Organometallic cylinder 3.4. Mass flow controller
.. 9.15...Two-way pulp, 7.8...
...Pulp, 11...Three-way pulp, 10.
...Four-way pulse 12...First carrier gas piping, 13...Second carrier gas piping, 14...Pulp, 20... ...T-tube, 16...3-way pulse 21...
Reactor, 22... Susceptor, 23...
... Board 24 ... High frequency carp/lz.

Claims (5)

【特許請求の範囲】[Claims] (1)有機金属化合物ボンベ内の有機金属化合物を第1
のキャリアガスにより所定量リアクター内に導入するこ
とにより結晶成長を行う装置において、前記第1のキャ
リアガスを導入する配管はT字管を介して前記有機金属
化合物ボンベに接続されており、前記T字管の他方の接
続口にはパルプを介して第2のキャリアガスを導入する
配管が具備されていることを特徴とする有機金属気相成
長装置
(1) The organometallic compound in the organometallic compound cylinder is
In the apparatus for performing crystal growth by introducing a predetermined amount of carrier gas into a reactor, the pipe for introducing the first carrier gas is connected to the organometallic compound cylinder via a T-shaped tube, An organometallic vapor phase growth apparatus characterized in that the other connection port of the double tube is equipped with a pipe for introducing a second carrier gas through the pulp.
(2)有機金属化合物ボンベ内の有機金属化合物を第1
のキャリアガスにより所定量リアクター内に導入するこ
とにより結晶成長を行う装置において、前記第1のキャ
リアガスを導入する配管は3方パルプを介して有機金属
化合物ボンベに接続されており、前記3方パルプの他方
の接続口には第2のキャリアガスを導入する配管が具備
されていることを特徴とする有機金属気相成長装置
(2) The organometallic compound in the organometallic compound cylinder is
In this apparatus, a pipe for introducing the first carrier gas is connected to an organometallic compound cylinder via a three-way pulp, and the first carrier gas is connected to an organometallic compound cylinder via a three-way pulp. An organometallic vapor phase growth apparatus characterized in that the other connection port of the pulp is equipped with a pipe for introducing a second carrier gas.
(3)有機金属化合物ボンベ内の有機金属化合物を第1
のキャリアガスにより所定量リアクター内に導入するこ
とにより結晶成長を行う装置において、前記第1のキャ
リアガスを導入する配管は有機金属化合物ボンベと同温
度の恒温槽の中を通したのちT字管を介して前記有機金
属化合物ボンベに接続されており、前記T字管の他方の
接続口にはパルプを介して第2のキャリアガスを導入す
る配管が具備されていることを特徴とする有機金属気相
成長装置
(3) The organometallic compound in the organometallic compound cylinder is
In an apparatus for crystal growth by introducing a predetermined amount of a carrier gas into a reactor, the pipe for introducing the first carrier gas passes through a constant temperature bath at the same temperature as the organometallic compound cylinder, and then is connected to a T-tube. The organometallic compound is connected to the organometallic compound cylinder through the T-tube, and the other connection port of the T-shaped tube is equipped with a pipe for introducing a second carrier gas through the pulp. Vapor phase growth equipment
(4)有機金属化合物ボンベ内の有機金属化合物を第1
のキャリアガスにより所定量リアクター内に導入するこ
とにより結晶成長を行う装置において、前記第1のキャ
リアガスを導入する配管は前記有機金属化合物ボンベと
同温度の恒温槽の中を通したのち3方パルプを介して有
機金属化合物ボンベに接続されており、前記3方パルプ
の他方の接続口には第2のキャリアガスを導入する配管
が具備されていることを特徴とする有機金属気相成長装
置。
(4) The organometallic compound in the organometallic compound cylinder is
In an apparatus for crystal growth by introducing a predetermined amount of a carrier gas into a reactor, the piping for introducing the first carrier gas passes through a constant temperature bath at the same temperature as the organometallic compound cylinder, and An organometallic vapor phase growth apparatus, characterized in that it is connected to an organometallic compound cylinder via a pulp, and the other connection port of the three-way pulp is equipped with a pipe for introducing a second carrier gas. .
(5)第1または第2のキャリアガスを導入する配管は
ステンレス製であることを特徴とする特許請求の範囲第
1項、第2項、第3項又は第4項のいずれかに記載の有
機金属気相成長装置。
(5) The piping for introducing the first or second carrier gas is made of stainless steel. Metal-organic vapor phase epitaxy equipment.
JP19896589A 1989-07-31 1989-07-31 Vapor growth apparatus for organic metal Pending JPH0362921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19896589A JPH0362921A (en) 1989-07-31 1989-07-31 Vapor growth apparatus for organic metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19896589A JPH0362921A (en) 1989-07-31 1989-07-31 Vapor growth apparatus for organic metal

Publications (1)

Publication Number Publication Date
JPH0362921A true JPH0362921A (en) 1991-03-19

Family

ID=16399875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19896589A Pending JPH0362921A (en) 1989-07-31 1989-07-31 Vapor growth apparatus for organic metal

Country Status (1)

Country Link
JP (1) JPH0362921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203208A (en) * 2005-01-19 2006-08-03 Samsung Electronics Co Ltd Manufacturing apparatus of semiconductor element having four-way valve, controlling method of valve of the manufacturing apparatus of semiconductor element, and manufacturing method of semiconductor element using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387723A (en) * 1986-09-30 1988-04-19 Fujitsu Ltd Bubbler container

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387723A (en) * 1986-09-30 1988-04-19 Fujitsu Ltd Bubbler container

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203208A (en) * 2005-01-19 2006-08-03 Samsung Electronics Co Ltd Manufacturing apparatus of semiconductor element having four-way valve, controlling method of valve of the manufacturing apparatus of semiconductor element, and manufacturing method of semiconductor element using the same
US9029244B2 (en) 2005-01-19 2015-05-12 Samsung Electronics Co., Ltd. Apparatus including 4-way valve for fabricating semiconductor device, method of controlling valve, and method of fabricating semiconductor device using the apparatus
US9406502B2 (en) 2005-01-19 2016-08-02 Samsung Electronics Co., Ltd. Apparatus including 4-way valve for fabricating semiconductor device, method of controlling valve, and method of fabricating semiconductor device using the apparatus
US9702041B2 (en) 2005-01-19 2017-07-11 Samsung Electronics Co., Ltd. Apparatus including 4-way valve for fabricating semiconductor device, method of controlling valve, and method of fabricating semiconductor device using the apparatus

Similar Documents

Publication Publication Date Title
US4840921A (en) Process for the growth of III-V group compound semiconductor crystal on a Si substrate
JPH0429313A (en) Device for producing semiconductor crystal
JPH0362921A (en) Vapor growth apparatus for organic metal
JPS59170000A (en) Device for crystal growth
JP2656029B2 (en) Crystal growth equipment
JPH0323624A (en) Method and apparatus for vapor growth
JPS60254610A (en) Manufacturing equipment of semiconductor
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
KR950032727A (en) Method for manufacturing gallium nitride single crystal thin film and apparatus therefor
JPS61242011A (en) Vapor-phase growth device
JPS6163599A (en) System for vapor growth
JPH0594949A (en) Semiconductor vapor growth device
JPH03195016A (en) Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus
Tompa et al. Elemental vapor transport epitaxy of GaAs, without oval defects
JPH01319929A (en) Crystal growth apparatus
JPS60182722A (en) Decompression cvd device
JPS62247521A (en) Organic metal compound accommodating unit
JPH0788276B2 (en) Vapor phase epitaxial growth method
JPS6153197A (en) Crystal growth device
JP2924072B2 (en) Organometallic molecular beam epitaxial growth method and apparatus
JP2736417B2 (en) Semiconductor element manufacturing method
JPS61111518A (en) Vapor phase epitaxial growth equipment
JPS6364994A (en) Apparatus for growing compound semiconductor crystal
JPS6217098A (en) Vapor growth device for semiconductor thin film
JPH0613331A (en) Vapor phase epitaxy apparatus