JPH0362489A - Far infrared heating device - Google Patents

Far infrared heating device

Info

Publication number
JPH0362489A
JPH0362489A JP19748289A JP19748289A JPH0362489A JP H0362489 A JPH0362489 A JP H0362489A JP 19748289 A JP19748289 A JP 19748289A JP 19748289 A JP19748289 A JP 19748289A JP H0362489 A JPH0362489 A JP H0362489A
Authority
JP
Japan
Prior art keywords
far
far infrared
casing
generating source
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19748289A
Other languages
Japanese (ja)
Inventor
Hisashi Kinugasa
衣笠 比佐志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP19748289A priority Critical patent/JPH0362489A/en
Publication of JPH0362489A publication Critical patent/JPH0362489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PURPOSE:To shorten temperature increasing time by constituting a far infrared generating source and a hot air generating source by a porous ceramic sintered body. CONSTITUTION:A far infrared generating source 1 is formed of porous silicon carbide sintered body as a porous ceramic sintered body formed into a plate, and terminal parts 1A, 1A formed on its both ends are held by a casing through holders 2, 2, having electric insulating function and heat insulating function. Each of the terminal parts 1A, 1A is electrically connected to a power source input terminal (not shown), whereby the far infrared generating source 1 is installed to an electrifying circuit (not shown). The casing 3 has its flat surface largely opened, and a reflector 4 for reflecting far infrared rays frontward is disposed between the back surface of the far infrared generating source 1 and the casing 3. An air hole 3A is formed in the rear center of the casing 3. By operating a blower 5, air is sent from the air hole 3A into the casing 3 as shown by an arrow X1 to blow hot air toward the front of the far infrared generating source 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば暖房や乾燥などに使用される遠赤外線
加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a far-infrared heating device used for heating, drying, etc., for example.

【従来の技術] 従来より、暖房や乾燥などに遠赤外線加熱装置を使用す
ることはよく知られており、遠赤外線加ところで、この
種セラミックスによってなる遠赤外線発生源としては、
例えば第3図に示すように、管状のセラミックスAに金
属線にクロム線)Bを内蔵し、この金属線Bへの通電加
熱によって管状のセラミックスAを加熱して、その表面
から遠赤外線を放射するようにしたものや、第4図に示
すように、中実または中空棒状(板状でもよい)のセラ
ミックスAへの直接通電によって発熱させ、遠赤外線を
放射するようにしたものが知られている・ [発明が解決しようとする課題] しかし、前記第3図に示す遠赤外線発生源では、金属線
Bへの通電加熱によって管状のセラミックスAを加熱す
る間接加熱方式であるため、金属線Bへの通電開始から
、管状のセラミックスAを遠赤外線の最も多く放射する
温度領域(400〜600℃)まで昇温させるのに比較
的長時間を要し、初期の立上り温度特性が悪い、しかも
、金属線Bが遠赤外線発生源としての機能を有しておら
ず、単に管状のセラミックスAを加熱させるだけのもの
であり、管状のセラミックスAの加熱のために要する熱
エネルギーは、金属線Bの発熱エネルギーの極く一部で
あって、エネルギーロスが多く、大部分は付近の部材や
空気の加熱に費やされるため、熱エネルギーの有効利用
率が低い。
[Prior Art] It has been well known that far-infrared heating devices are used for heating, drying, etc.
For example, as shown in Figure 3, a metal wire (chromium wire) B is built into a tubular ceramic A, and the tubular ceramic A is heated by heating the metal wire B, and far infrared rays are emitted from its surface. As shown in Figure 4, there are known devices in which a solid or hollow rod-shaped (or plate-shaped) ceramic A is directly energized to generate heat and emit far-infrared rays. [Problems to be Solved by the Invention] However, the far-infrared ray generation source shown in FIG. It takes a relatively long time to heat up the tubular ceramic A to the temperature range (400 to 600°C) where the most far infrared rays are emitted from the start of energization, and the initial rise temperature characteristics are poor. The metal wire B does not have a function as a far-infrared ray generation source, but merely heats the tubular ceramic A, and the thermal energy required to heat the tubular ceramic A is equal to that of the metal wire B. It is only a small part of the heat generated energy, and there is a lot of energy loss, and most of it is used to heat nearby members and air, so the effective utilization rate of thermal energy is low.

さらに、遠赤外線発生源として使用されている管状のセ
ラミックスAは、気孔率が低く(約1%以下)、比表面
積も非常に小さいため、遠赤外線の放射率が低い、即ち
、加熱または乾燥効果が小さい等の問題点を有している
Furthermore, the tubular ceramic A used as a far-infrared radiation source has a low porosity (approximately 1% or less) and a very small specific surface area, so it has a low emissivity of far-infrared rays, that is, it has no heating or drying effect. It has problems such as small size.

一方、第4図の遠赤外線発生源では、セラミックスAへ
の直接通電によって、セラミックスAを加熱させる直接
加熱方式であるから、遠赤外線が最も多く放射される温
度領域まで昇温する時間を短縮でき、初期の立上り温度
特性が改善され、しかもエネルギーロスが少ない利点を
有してはいるものの、セラミックスAは、前記第3図で
述べた管状のセラミックスAと同様に、気孔率が低く、
比表面積が小さいので、遠赤外線の放射効率が低く、加
熱または乾燥効果が小さい等の問題点を有している。
On the other hand, the far-infrared ray generation source shown in Fig. 4 uses a direct heating method that heats the ceramic A by directly applying electricity to the ceramic A, so the time required to raise the temperature to the temperature range where the most far-infrared rays are emitted can be shortened. Although Ceramic A has the advantages of improved initial rise temperature characteristics and low energy loss, it has a low porosity, similar to the tubular Ceramic A described in FIG.
Since the specific surface area is small, it has problems such as low radiation efficiency of far infrared rays and low heating or drying effect.

他方、前述の管状のセラミックスAまたはセラミックス
Aに送風し、遠赤外線発生源付近の加熱された空気を熱
風として強制的に吹出させて、加熱、乾燥効果を向上さ
せようとする手段が提案されている。
On the other hand, a method has been proposed in which the above-mentioned tubular ceramic A or ceramic A is blown to force the heated air near the far-infrared generation source to be blown out as hot air to improve the heating and drying effects. There is.

しかし、管状のセラミックスAおよび第4図のセラミッ
クスAの両者は、気孔率が低く通気性を有していないた
め、前述の送風が両セラミックスAの表面に対してのみ
吹付けられることになる。
However, since both the tubular ceramic A and the ceramic A shown in FIG. 4 have low porosity and no air permeability, the above-mentioned air is blown only onto the surfaces of both ceramics A.

したがって、いたずらに両セラミックスAの表面温度を
低下させて、供給電力に対する遠赤外線放射率を低減さ
せる問題点が生じることになる。
Therefore, a problem arises in that the surface temperature of both ceramics A is unnecessarily lowered and the far-infrared emissivity with respect to the supplied power is reduced.

本発明はこのような事情に鑑みなされたもので、初期の
立上り温度特性が改善され、エネルギーロスが抑えられ
るとともに、遠赤外線の放射効率が高められて、加熱ま
たは乾燥効果の向上を実現できる遠赤外線加熱装置の提
供を目的とする。
The present invention was developed in view of the above circumstances, and is a far-field technology that improves the initial rise temperature characteristics, suppresses energy loss, and increases the radiation efficiency of far-infrared rays, thereby improving the heating or drying effect. The purpose is to provide an infrared heating device.

【課題を解決するための手段] 前記目的を達成するために、本発明は、多孔質セラミッ
クス焼結体を遠赤外線発生源および熱風(副射熱)発生
源として通電回路に装備したものであり、特に、多孔質
セラミックス焼結体は、多孔質炭化ケイ素焼結体を好適
とするものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention equips an energizing circuit with a porous ceramic sintered body as a source of far infrared rays and a source of hot air (secondary radiation heat). In particular, the porous ceramic sintered body is preferably a porous silicon carbide sintered body.

[作用] 本発明によれば、多孔質セラミックス焼結体への直接通
電によって遠赤外線を放射させることができる。
[Function] According to the present invention, far infrared rays can be emitted by directly applying electricity to the porous ceramic sintered body.

また、気孔率が高く、比表面積が大きい多孔質セラミッ
クスを遠赤外線発生源としているので、遠赤外線の放射
効率が高くなる。
Furthermore, since porous ceramics with high porosity and a large specific surface area are used as the far-infrared radiation source, the radiation efficiency of far-infrared rays is high.

さらに、遠赤外線発生源付近の加熱された空気を、熱風
発生源として強制的に吹出させるために、送風を開始す
ると、ポーラスな遠赤外線発生源の内部にも通気される
。そのために、遠赤外線発生源の表面温度を低下させる
ことがない、しかも内部通気の過程でなされる熱交換作
用によって、通気が高温化されるから、高温の熱風を放
出できる。さらに、通気の過程で気流に含まれている塵
芥などの有機物が燃焼されるのでクリーンな熱風を放出
できる。
Furthermore, in order to forcibly blow out the heated air near the far-infrared ray generation source as a hot air generation source, when air is started, the interior of the porous far-infrared ray generation source is also ventilated. Therefore, the surface temperature of the far-infrared ray generation source does not decrease, and since the temperature of the ventilation is raised by the heat exchange effect performed during the internal ventilation process, high-temperature hot air can be emitted. Furthermore, organic matter such as dust contained in the airflow is burned during the ventilation process, making it possible to emit clean hot air.

【実施例] 以下、本考案の実施例を図面に基づいて説明する。【Example] Hereinafter, embodiments of the present invention will be described based on the drawings.

第1図は本発明の一実施例を示す概略縦断側面図であり
、図において、lは遠赤外線発生源で、板状に成形され
た多孔質セラミックス焼結体として、多孔質炭化ケイ素
焼結体によって構成され、その両端に形成された端子部
IA、IAが電気的な絶縁機能と断熱機能を有するホル
ダー2.2を介してケーシング3に保持されている。そ
して前記端子部IA、IAのそれぞれは、図示されてい
ない電源入力端子に対して電気的に接続されることで、
遠赤外線発生源lが通電回路(図示省略)に装備された
構成になっている。
FIG. 1 is a schematic longitudinal sectional side view showing an embodiment of the present invention. Terminal portions IA, IA formed at both ends are held in the casing 3 via a holder 2.2 having electrical insulation and heat insulation functions. Each of the terminal parts IA and IA is electrically connected to a power input terminal (not shown), so that
The configuration is such that a far-infrared ray generating source 1 is installed in a current-carrying circuit (not shown).

ケーシング3は、その前面を大きく開放して、遠赤外線
発生源lの発熱部を露出させており、遠赤外線発生源1
の背面とケーシング3の間に遠赤外線を前方に反射させ
る反射板4が配置されている。また、ケーシング3の後
部中央に通気口3Aが形成され、送風機5を運転するこ
とによって、通気口3Aからケーシング3内に矢印Xi
で示す遠赤外線発生源lを構成している多孔質炭化ケイ
素焼結体の物理的特性を下記表1の工の欄で示す。
The casing 3 has its front side wide open to expose the heat generating part of the far infrared ray generation source 1.
A reflector plate 4 that reflects far infrared rays forward is arranged between the back surface of the casing 3 and the casing 3. In addition, a vent hole 3A is formed at the rear center of the casing 3, and by operating the blower 5, an arrow Xi is drawn from the vent hole 3A into the casing 3.
The physical properties of the porous silicon carbide sintered body constituting the far-infrared ray generating source 1 are shown in the column of Table 1 below.

表  1 前記構成において、遠赤外線発生源lを構成している多
孔質炭化ケイ素焼結体への直接通電方式によって、矢印
x2で示すように、遠赤外線を放射させることができる
ので、通電開始から遠赤外線発生源1を遠赤外線の最も
多く放射する温度領域まで昇温させる時間の!縮を図る
ことができる。そのために、初期の立上り温度特性が改
善されるとともに、従来の間接加熱方式と比較してエネ
ルギーロスが抑へられるので、熱効率の向上を実現でき
る。
Table 1 In the above configuration, far infrared rays can be emitted as shown by arrow x2 by direct energization to the porous silicon carbide sintered body constituting far infrared ray generation source l, so that far infrared rays can be emitted from the start of energization. Time to heat far infrared rays source 1 to the temperature range where it emits the most far infrared rays! It is possible to reduce the size. Therefore, initial rise temperature characteristics are improved, and energy loss is suppressed compared to conventional indirect heating methods, so it is possible to improve thermal efficiency.

多孔質炭化ケイ素焼結体は、前記表1の1欄で明らかな
ように、気孔率が高く、比表面積が大きいため、矢印x
2で示す遠赤外線の放射効率がきわめて高い、したがっ
て加熱または乾燥効果が大幅に向上する。
As is clear from column 1 of Table 1 above, the porous silicon carbide sintered body has a high porosity and a large specific surface area.
The radiation efficiency of far infrared rays indicated by 2 is extremely high, so the heating or drying effect is greatly improved.

また、遠赤外線発生源l付近の加熱された空気は、送風
機5の運転によって、矢印xlで示すように、遠赤外線
発生源lの前方に熱風として吹き出されるが、この場合
、通気口3Aから吹き出された空気は、遠赤外線発生源
lの表面に沿って流動するとともに、ポーラスな遠赤外
線発生源1の内部を通ることになる。したがって、遠赤
外線発生源1の表面温度のみを低下させることがない。
Further, the heated air near the far-infrared ray source 1 is blown out as hot air in front of the far-infrared ray source 1 by the operation of the blower 5, as shown by the arrow xl, but in this case, from the vent 3A. The blown air flows along the surface of the far-infrared radiation source 1 and passes through the inside of the porous far-infrared radiation source 1. Therefore, only the surface temperature of the far-infrared radiation source 1 is not reduced.

しかも、遠赤外線発生源1の内部を通る過程で熱交換が
なされるから、高温の熱風を放出して、加熱または乾燥
効果を上げることができる。さらに、空気が遠赤外線発
生源1の内部を通る過程で、空気に含まれている塵芥な
どの有機物が燃焼されるので、目詰まりが起らない上、
クリーンな熱風を放出する浄化作用が発揮され、室内を
清浄化できる。
Moreover, since heat exchange occurs during the process of passing through the far-infrared ray generation source 1, high-temperature hot air can be emitted to increase the heating or drying effect. Furthermore, as the air passes through the inside of the far-infrared ray source 1, organic matter such as dust contained in the air is burned, so no clogging occurs, and
It has a purifying effect by emitting clean hot air and can purify the room.

なお、前記実施例では板状に成形した多孔質炭化ケイ素
焼結体で遠赤外線発生源lを構成して説明しているが、
第2図に示すように、管状の多孔質炭化ケイ素焼結体に
よって遠赤外線発生源lを構成してもよい、なお、この
第2図において、前記第1図と同一もしくは相当部分に
同一符号を付しているので、詳しい説明は省略する。
In addition, in the above embodiment, the far-infrared ray generation source l is constructed from a porous silicon carbide sintered body formed into a plate shape, but
As shown in FIG. 2, the far-infrared ray generating source l may be constructed of a tubular porous silicon carbide sintered body. In this FIG. 2, the same or corresponding parts as in FIG. , so a detailed explanation will be omitted.

また、本発明者が鋭意研究した比較例として遠赤外線発
生源1を、前記表1のII欄で示す物理的特性を有する
ポーラスな再結晶質セラミックスによって構成しても、
加熱は可能であるが、気孔率は23%程度と小さく不十
分であり、比表面積も小さいため遠赤外線の放射効率も
本発明と比較して小さいものである。
Further, as a comparative example that the present inventor has diligently studied, even if the far-infrared ray source 1 is constructed of porous recrystallized ceramics having the physical characteristics shown in column II of Table 1,
Although heating is possible, the porosity is small and insufficient at about 23%, and the specific surface area is also small, so the radiation efficiency of far infrared rays is also small compared to the present invention.

[発明の効果] 以上説明したように、本発明によれば、多孔質セラミッ
クス焼結体で遠赤外線発生源および熱風発生源を構成し
ているので、直接通電によって遠赤外線を放射させるこ
とができる。そのために、通電開始から遠赤外線発生源
を遠赤外線の最も多く放射する温度領域まで昇温させる
時間の短縮を図ることができ、初期の立上り温度特性が
改善されるとともに、従来の間接加熱方式と比較してエ
ネルギーロスが抑へられるので、熱効率の向上を実現で
きる。
[Effects of the Invention] As explained above, according to the present invention, since the far-infrared ray generation source and the hot air generation source are configured with the porous ceramic sintered body, far-infrared rays can be radiated by direct energization. . Therefore, it is possible to shorten the time required to heat up the far-infrared source to the temperature range where the most far-infrared rays are emitted from the start of energization, and the initial rise temperature characteristics are improved. In comparison, energy loss is suppressed, so thermal efficiency can be improved.

また、気孔率が高く、比表面積が大きい多孔質炭化ケイ
素焼結体を遠赤外線発生源としているので、遠赤外線の
放射効率がきわめて高くなる。したがって、加熱または
乾燥効果が大幅に向上する。
Furthermore, since the porous silicon carbide sintered body with high porosity and large specific surface area is used as the far-infrared radiation source, the radiation efficiency of far-infrared rays is extremely high. Therefore, the heating or drying effect is greatly improved.

さらに、遠赤外線発生源付近の加熱された空気を熱風と
して強制的に吹き出させるために送風すると、ポーラス
な遠赤外線発生源の内部にも通気されるので、熱風発生
源としての機能を発揮し、遠赤外線発生源の表面温度の
みを低下させることなく、通気の過程でなされる熱交換
作用によって、高温の熱風を放出して加熱および乾燥効
果の向上を図ることができ、さらに空気に含まれている
塵芥などの有機物を燃焼させて、クリーンな空気を放出
させるために浄化することもできる。
Furthermore, when air is blown to forcibly blow out the heated air near the far-infrared generation source as hot air, the inside of the porous far-infrared generation source is also ventilated, so it functions as a hot air generation source. Without lowering only the surface temperature of the far-infrared ray source, the heat exchange effect performed during the ventilation process can emit high-temperature hot air to improve heating and drying effects. It can also be used to purify organic matter, such as dust, by burning it to release clean air.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の実施例を示し、第1図は
第1実施例の概略縦断側面図、第2図は他の実施例の部
分断面図、第3図は従来例の概略説明図、第4図は他の
従来例の概略説明図である。 l・・・遠赤外線発生源
1 and 2 show an embodiment of the present invention, FIG. 1 is a schematic longitudinal sectional side view of the first embodiment, FIG. 2 is a partial sectional view of another embodiment, and FIG. 3 is a conventional example. A schematic explanatory diagram, FIG. 4 is a schematic explanatory diagram of another conventional example. l... far infrared radiation source

Claims (2)

【特許請求の範囲】[Claims] (1)多孔質セラミックス焼結体を遠赤外線および熱風
発生源として通電回路に装備したことを特徴とする遠赤
外線加熱装置。
(1) A far-infrared heating device characterized in that a energizing circuit is equipped with a porous ceramic sintered body as a far-infrared ray and hot air generation source.
(2)多孔質セラミックス焼結体は、多孔質炭化ケイ素
焼結体であることを特徴とする請求項(1)記載の遠赤
外線加熱装置。
(2) The far-infrared heating device according to claim (1), wherein the porous ceramic sintered body is a porous silicon carbide sintered body.
JP19748289A 1989-07-28 1989-07-28 Far infrared heating device Pending JPH0362489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19748289A JPH0362489A (en) 1989-07-28 1989-07-28 Far infrared heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19748289A JPH0362489A (en) 1989-07-28 1989-07-28 Far infrared heating device

Publications (1)

Publication Number Publication Date
JPH0362489A true JPH0362489A (en) 1991-03-18

Family

ID=16375212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19748289A Pending JPH0362489A (en) 1989-07-28 1989-07-28 Far infrared heating device

Country Status (1)

Country Link
JP (1) JPH0362489A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016730A1 (en) * 2004-08-07 2006-02-16 Wish Win Co., Ltd. Porous ceramic heating element and method of manufacturing thereof
CN1311294C (en) * 2002-05-29 2007-04-18 爱斯佩克株式会社 Heating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198079A (en) * 1983-12-12 1985-10-07 アシノフ Electric infrared ray generator
JPS62113377A (en) * 1985-11-13 1987-05-25 バブコツク日立株式会社 Far-infrared heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198079A (en) * 1983-12-12 1985-10-07 アシノフ Electric infrared ray generator
JPS62113377A (en) * 1985-11-13 1987-05-25 バブコツク日立株式会社 Far-infrared heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311294C (en) * 2002-05-29 2007-04-18 爱斯佩克株式会社 Heating device
WO2006016730A1 (en) * 2004-08-07 2006-02-16 Wish Win Co., Ltd. Porous ceramic heating element and method of manufacturing thereof
US7619187B2 (en) 2004-08-07 2009-11-17 Changhee Kim Porous ceramic heating element and method of manufacturing thereof

Similar Documents

Publication Publication Date Title
MX2021013936A (en) Ceramic heating element and non-contact type electronic cigarette heater having same.
JPH0369150B2 (en)
KR102039504B1 (en) Cordless hair dryer
JPH0787251B2 (en) Thermophotovoltaic generator
CN112385906A (en) Heating assembly and heating non-combustion device
JPH0362489A (en) Far infrared heating device
JP2002537537A (en) Radiant burner screen
KR100346884B1 (en) hair dryer with far infrared rays radiator
CN213188083U (en) Heating assembly and heating non-combustion device
JP3954985B2 (en) Electric furnace
KR200497503Y1 (en) Electric heater with fan
JP2005180889A (en) Electric heater using i.h (electromagnetic heating)
CN212537940U (en) Heat insulation device of electric heating furnace
CN2706186Y (en) Semiconductive ceramic thick film far infrared dynamic pyretotherapy head for therapeutic instrument
KR200369381Y1 (en) Hairdrier with Carbon heating element
KR20100010404U (en) Lamp pipe heater and thermal exchanger using the same
JPH11270977A (en) Heat-storing body
CN214432484U (en) Heating structure of electric hair dryer
JPS59137785A (en) Heating furnace
CN208402178U (en) A kind of UV ultraviolet light ballast
KR200186703Y1 (en) Heater using discharge lamp
KR200178827Y1 (en) Heating device
KR200248806Y1 (en) Heater with a Fan
KR101119584B1 (en) Heat exchange heater
JPS6325484A (en) Heat treating furnace