JPS62113377A - Far-infrared heater - Google Patents

Far-infrared heater

Info

Publication number
JPS62113377A
JPS62113377A JP25280285A JP25280285A JPS62113377A JP S62113377 A JPS62113377 A JP S62113377A JP 25280285 A JP25280285 A JP 25280285A JP 25280285 A JP25280285 A JP 25280285A JP S62113377 A JPS62113377 A JP S62113377A
Authority
JP
Japan
Prior art keywords
far
infrared
heater
particle size
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25280285A
Other languages
Japanese (ja)
Inventor
貞方 知彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP25280285A priority Critical patent/JPS62113377A/en
Publication of JPS62113377A publication Critical patent/JPS62113377A/en
Withdrawn legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、発熱により3〜150μの長波長赤外線を放
射するヒータに係り、特に、遠赤外線放射効率の優れた
セラミックスヒータに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a heater that emits long-wavelength infrared rays of 3 to 150 microns by generating heat, and particularly relates to a ceramic heater that has excellent far-infrared radiation efficiency.

(発明の背景) 塗料、食品、繊維などの有機材料を加熱、乾燥する際、
熱源として熱風、水蒸気、赤外線等が用いられている。
(Background of the invention) When heating and drying organic materials such as paints, foods, and fibers,
Hot air, water vapor, infrared rays, etc. are used as heat sources.

なかでも、赤外線を利用したものは、例えば、チリ、未
燃分等の環境中の不純物が直接被加熱物に混入、接触せ
ず、赤外線は電磁波と同様に空中を伝播し、被加熱物の
分子を共鳴振動させて発熱させる性質のため、途中の空
気の温度、流速等の条件によって直接影響を受けず、従
って野外でも使用可能であるという利点を有している。
Among these, those that use infrared rays do not allow impurities in the environment such as dust and unburned substances to directly mix or come into contact with the heated object, and infrared rays propagate through the air like electromagnetic waves, Because it generates heat by causing molecules to resonate and vibrate, it is not directly affected by conditions such as the temperature and flow rate of the air passing through it, and therefore has the advantage that it can be used outdoors.

また、第8a図、第8b図及び第8C図に示すように、
赤外線は金属板等で反射することが出来るため、反射板
で赤外線を集束し被加熱物を効率良(加熱することが可
能である。第8a図は熱源1からの赤外線が円形反射板
2で集束される標準品の平行型反射板、第8b図は熱源
1からの赤外線が楕円形反射板2で集束される集光型反
射板、第8c図は熱源1からの赤外線が平面形の反射板
2で集束される平面型反射板を示す。さらにまた、赤外
線の発生源に電気を用し為たちのは他の方式のものより
装置の構造や制御が節便であるという利点も有している
Additionally, as shown in Figures 8a, 8b, and 8C,
Since infrared rays can be reflected by metal plates, etc., it is possible to focus the infrared rays with a reflector and efficiently heat the object. In Figure 8a, infrared rays from heat source 1 are reflected by circular reflector 2. Fig. 8b shows a standard parallel reflector that focuses the infrared rays from the heat source 1 on an elliptical reflector 2, and Fig. 8c shows a flat reflector in which the infrared rays from the heat source 1 are reflected. It shows a flat reflector that is focused by plate 2.Furthermore, the use of electricity as the source of infrared rays has the advantage that the structure and control of the device are simpler than those of other systems. ing.

特に近年、第9図に示すような有機材料に吸収され易い
5.6〜20μmの波長域の赤外線を放射する特性のヒ
ータ(遠赤外線ヒータD)が開発され、従来の0.75
〜4μmの近赤外線を放射する一般のヒータ(近赤外線
ヒータC)と比較すると、ヒータの放射する赤外線波長
域と有機材料の吸収波長域(図においてEはメラミン樹
脂の赤外線吸収特性を示す)が一致しているため、熱効
率が優れ、例えば電力消費量で30〜50%の節約とな
り、それにより熱処理時間も115〜176に短縮出来
、また、有機材料の内部まで浸透して加熱する性質のた
め、加熱むらが少なく熱処理品の性状が優れ、さらにま
た、塗料の加熱の場合、近赤外線では顔料の吸収特性に
波長が近いため、その影響を受けるが、遠赤外線では顔
料の吸収波長域より波長が長いため影響を受けず、この
ため塗料の色による乾燥むらを生じない等の点から注目
される。
Particularly in recent years, a heater (far-infrared heater D) has been developed that emits infrared rays in the wavelength range of 5.6 to 20 μm, which is easily absorbed by organic materials, as shown in Figure 9.
Compared to a general heater (near infrared heater C) that emits near infrared rays of ~4 μm, the infrared wavelength range emitted by the heater and the absorption wavelength range of the organic material (E in the figure indicates the infrared absorption characteristics of melamine resin) are Because they match, it has excellent thermal efficiency, for example, it saves 30 to 50% in power consumption, and the heat treatment time can be shortened to 115 to 176 cm. Also, because it has the property of penetrating into the inside of organic materials and heating them, , the properties of the heat-treated product are excellent with less heating unevenness.Furthermore, in the case of heating paint, near infrared rays are affected by the absorption characteristics of pigments because their wavelengths are close to that, but far infrared rays have wavelengths that are lower than the absorption wavelength range of pigments. It is attracting attention because it is unaffected due to its long length, and therefore does not cause uneven drying due to paint color.

しかし、この遠赤外線ヒータの構造は第10図に示す如
く、遠赤外線放射物質であるAl2O2、ZrO!、N
iO等のセラミックス3を耐熱金属管4に溶射し、これ
を金属発熱線5で間接加熱する方式となっている。図中
、符号6は絶縁性無機粉末である。したがって、遠赤外
線放射物質を間接加熱する構造のため、熱効率が悪く、
金属発熱線5を1000℃まで発熱させても表面温度は
700℃以下のため単位面積当たりの遠赤外線の放射率
が低く、そして昇温に10〜20分程度要するので即熱
性がない。また、遠赤外線放射物質3の熱膨張率く4〜
10 x 10−’/’c)と耐熱金属管4の熱膨張率
(15〜20 X 10−’/l)の差が大きいため、
熱疲労による割れが遠赤外線放射物t3の溶射層に生じ
易く、それにより寿命が短い。さらに、塗装等の乾燥の
場合、乾燥により蒸発する有a溶媒等の分解によって生
じるミストカーボンの付着によりヒータ表面が汚染され
て遠赤外線の放射能力が低下する。
However, as shown in FIG. 10, the structure of this far-infrared heater is based on far-infrared emitting materials such as Al2O2, ZrO! , N
The method is such that a ceramic 3 such as iO is thermally sprayed onto a heat-resistant metal tube 4, and this is indirectly heated with a metal heating wire 5. In the figure, reference numeral 6 indicates an insulating inorganic powder. Therefore, the structure indirectly heats the far-infrared emitting material, resulting in poor thermal efficiency.
Even if the metal heating wire 5 is made to generate heat up to 1000°C, the surface temperature is 700°C or less, so the emissivity of far infrared rays per unit area is low, and it takes about 10 to 20 minutes to heat up, so there is no immediate heating property. In addition, the thermal expansion coefficient of the far-infrared emitting material 3 is 4~
10 x 10-'/'c) and the heat-resistant metal tube 4 (15 to 20 x 10-'/l),
Cracks due to thermal fatigue are likely to occur in the sprayed layer of the far-infrared radiator t3, resulting in a short service life. Furthermore, when drying a coating, etc., the surface of the heater is contaminated by the adhesion of mist carbon generated by the decomposition of the aqueous solvent that evaporates during drying, reducing the ability to emit far infrared rays.

上述した問題点を有する間接加熱方式に対して遠赤外線
放射物質に直接通電して自己発熱させる方式も考えられ
ている。しかしながら、この方式に使用するヒータ材と
して適当な電気的特性及び強度を有する遠赤外線放射物
質がこれまで見いだされていなかった。従来の遠赤外線
放射物質を、例えば抵抗率について分類して説明する。
In contrast to the indirect heating method which has the above-mentioned problems, a method has also been considered in which the far-infrared emitting material is directly energized to generate self-heating. However, no far-infrared emitting material having suitable electrical properties and strength as a heater material for use in this method has been found so far. Conventional far-infrared emitting materials will be classified and explained, for example, in terms of resistivity.

抵抗率が102Ω−(至)以上であるSi、N4.Al
2O、は焼結体の強度においては優れているi!!縁性
のためii!l電による自己発熱性を有しない。抵抗率
10伺〜10弓Ω−備程度であるS i C,Ba C
等は半導体であるため、抵抗温度係数が負(室温時には
高抵抗、発熱時には低抵抗)となり、したがって安定し
た発熱動作をおこなわせる為には発熱温度に対応してt
源条件を制御する必要があり、そのため電源が大型化か
つtM雑化し易い、抵抗率が10−’ 〜10−’=Ω
−cntのZrBz、TaC等は金属ヒータ並みの低抵
抗であり、また抵抗温度係数も正のため特殊な電源を必
要としない。しかしこれらの単体の焼結体は強度が小さ
く、例えば理論密度比98%のZrBzホットプレス焼
結体では曲げ強度が2kg / am ”以上必要であ
り、このためこれらの材料で実用的なヒータを製作する
のは困難である。
Si, N4. having a resistivity of 102Ω-(up to) or more. Al
2O is superior in the strength of sintered bodies i! ! Because of affinity ii! It does not have self-heating property due to electricity. S i C, Ba C whose resistivity is about 10 to 10 ohms
etc. are semiconductors, so the temperature coefficient of resistance is negative (high resistance at room temperature, low resistance when heating).
It is necessary to control the source conditions, which tends to make the power supply large and complicated, and the resistivity is 10-' to 10-' = Ω.
-cnt ZrBz, TaC, etc. have a low resistance comparable to that of a metal heater, and also have a positive temperature coefficient of resistance, so they do not require a special power source. However, these individual sintered bodies have low strength; for example, a ZrBz hot-pressed sintered body with a theoretical density ratio of 98% requires a bending strength of 2 kg/am'' or more, and for this reason, it is difficult to create a practical heater using these materials. It is difficult to produce.

これらの問題を解決する方法として遠赤外線放射性セラ
ミックスのみから構成されそして焼結体強度の優れたS
 ic、S i:+ Na等と正の抵抗温度係数を有す
る導電性セラミックスであるZrBz、’rac等とを
複合焼結したヒータ材がある。
As a way to solve these problems, S
There is a heater material made by composite sintering of ic, Si: + Na, etc., and ZrBz, 'rac, etc., which are conductive ceramics having a positive temperature coefficient of resistance.

このヒータ材は正の抵抗温度係数を有し且つ曲げ強度3
0〜49kg/m”の比較的高強度を存する。このため
、このヒータ材を用いた遠赤外線ヒータは従来の遠赤外
線ヒータに見られない優れた特性を有する。即ち、通電
により遠赤外線放射物質が直接発熱するので熱効率に優
れ、数秒の昇温時間で使用可能となる。また、発熱温度
を1000℃以上にすることが出来るため、ヒータはセ
ルフクリーニングの能力を有し、それによりミストカー
ボン等の付着による遠赤外線放射能力の低下を防止出来
る。さらに、遠赤外線放射物質のみからピークが構成さ
れるため措成材料間の熱膨張差が小さく、熱疲労による
寿命低下がない。したがって、金属管を用いた従来型の
ヒータより長寿命である。
This heater material has a positive temperature coefficient of resistance and a bending strength of 3
It has a relatively high strength of 0 to 49 kg/m''. Therefore, a far-infrared heater using this heater material has excellent characteristics not found in conventional far-infrared heaters. Since it directly generates heat, it has excellent thermal efficiency and can be used in just a few seconds.In addition, since the heat generation temperature can be raised to over 1000℃, the heater has a self-cleaning ability, which allows it to clean mist carbon, etc. It is possible to prevent the decline in far-infrared radiation ability due to the adhesion of metal tubes.Furthermore, since the peak is composed only of far-infrared radiation materials, the difference in thermal expansion between the constituent materials is small, and there is no reduction in the lifespan due to thermal fatigue. It has a longer lifespan than conventional heaters.

上述した種々の優れた特性を有する複合焼結体を用いた
発熱ヒータも幾つかの欠点を併せ持っている。即ち、ヒ
ータの遠赤外線放射率は放射面の表面積に比例するが、
ヒータが脆性硬質材料によって構成されているため表面
積が増加させる方法としては目の粗いダイヤモンド研磨
板で表面加工するしか無く、またこのような加工ではヒ
ータの放射率はあまり増加しない。さらに形状によって
はかかる加工も困難となる。このような理由から上記の
遠赤外線ヒータは、従来の比較的粗い粒径の遠赤外線放
射物質の粉末を金属管にコーティングしたものに較べて
放射率が低いという問題がある。
Heat generating heaters using composite sintered bodies having the various excellent properties described above also have several drawbacks. In other words, the far-infrared emissivity of the heater is proportional to the surface area of the radiation surface,
Since the heater is made of a brittle hard material, the only way to increase the surface area is to process the surface with a coarse diamond polishing plate, and such processing does not significantly increase the emissivity of the heater. Furthermore, depending on the shape, such processing becomes difficult. For this reason, the above-mentioned far-infrared heater has a problem in that its emissivity is lower than that of conventional far-infrared radiation heaters in which a metal tube is coated with powder of a far-infrared radiation material having a relatively coarse particle size.

(発明の目的) 本発明の目的は、上記従来技術の欠点を除き、遠赤外線
の放射率の高い遠赤外線ヒータを提供するにある。
(Object of the Invention) An object of the present invention is to provide a far-infrared heater with a high emissivity of far-infrared rays, while eliminating the drawbacks of the above-mentioned prior art.

(発明の概要) この目的を達成するために、本発明は、外表面の遠赤外
線放射面が粒径30乃至2000μmの範囲の遠赤外線
放射物質を50乃至8Ovol%含有する層によって構
成することを特徴とする。
(Summary of the Invention) In order to achieve this object, the present invention provides that the far infrared ray emitting surface on the outer surface is constituted by a layer containing 50 to 8 Ovol% of a far infrared ray emitting material with a particle size in the range of 30 to 2000 μm. Features.

(発明の実施例) 以下、本発明の実施例を図面について説明する。(Example of the invention) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による遠赤外線ヒータの一実施例を示す
斜視図であって、3は遠赤外線放射層であり、第10図
に対応する部分には同一符号を付けている。
FIG. 1 is a perspective view showing an embodiment of a far-infrared heater according to the present invention, where 3 is a far-infrared radiation layer, and parts corresponding to those in FIG. 10 are given the same reference numerals.

第1図において示される遠赤外線ヒータは平板形ヒータ
であり、該平板形ヒータは原料セラミックスとして5i
C64vo1%及びZrBt36vo1%を混合し、2
100℃、  300 kg/c+Jにおいて真空中で
ホットプレスした後、蛇行した回路を形成すべくダイヤ
モンドブレードによって切り込み9が設けられる。この
ヒータを構成するSiC及びZ r B zはいずれも
遠赤外線放射物質で、特にzrszは導電性を有するた
め回路両端で金属化したリード線にッケルリード&*)
8に通電すると自己発熱し遠赤外線を放射する。図中、
笹舟7は緻密層である。
The far-infrared heater shown in FIG. 1 is a flat plate heater, and the flat plate heater is made of 5i
Mix 1% C64vo and 1% ZrBt36vo,
After hot pressing in vacuum at 100° C. and 300 kg/c+J, cuts 9 are made with a diamond blade to form a serpentine circuit. Both SiC and Z r B z that make up this heater are far-infrared emitting materials, and Zrsz in particular has conductivity, so the metalized lead wires at both ends of the circuit are connected with Kkel leads.
When 8 is energized, it self-heats and emits far-infrared rays. In the figure,
Sasafune 7 is a dense layer.

第2図は本発明による赤外線ヒータの遠赤外線放射層3
近傍の組織を模式的に示したものである。
FIG. 2 shows a far-infrared radiation layer 3 of an infrared heater according to the present invention.
This is a schematic representation of nearby tissues.

被加熱物に対し遠赤外線を放射する層3は平均粒径10
0μmのSiC粗粒10を5Qvo1%、平均粒径2μ
mのZrB、細粒11を40vo1%混合した原料粉末
を用いているため、その下層の平均粒径2μmの細粒1
1の原料粉末のみからなる緻密層に比べ多孔質となって
おり、表面積が大きくなっている。
The layer 3 that emits far infrared rays to the heated object has an average particle size of 10
0μm SiC coarse particles 10 5Qvo1%, average particle size 2μ
Since the raw material powder is a mixture of 40vol% ZrB and fine particles 11 of
It is more porous and has a larger surface area than the dense layer made of only the raw material powder of No. 1.

第1図に示した実施例の構造の遠赤外線ヒータを製作す
るには乾式プレス成形法、ホットプレス成形法等幾つか
の方法がある。第3図は本実施例において採用したホッ
トプレス成形法における成形順序を示し、この成形法に
よれば、粗粒の原料粉末を含む遠赤外線放射層3と細粒
のみから成る緻密層7をそれぞれ可撓性を有するグリー
ンシート12.13として成形した後、これらを積層成
形してホットプレス装置で矢印の方向に焼成温度210
0℃、1時間の保持時間でプレス圧300kg / c
tJを掛けて焼成した。
There are several methods for manufacturing the far-infrared heater having the structure of the embodiment shown in FIG. 1, such as dry press molding and hot press molding. FIG. 3 shows the molding order in the hot press molding method adopted in this example. According to this molding method, a far-infrared emitting layer 3 containing coarse raw material powder and a dense layer 7 consisting only of fine grains are formed. After forming flexible green sheets 12 and 13, these are laminated and heated in the direction of the arrow using a hot press at a temperature of 210.
Press pressure 300kg/c at 0℃ and 1 hour holding time
It was fired by applying tJ.

上述した平均粒径100μm(7)SiC粗粒10から
なるグリーンシート12及び平均粒径2メ1mのZ r
 B 2細粒IIからなるグリーンシート13は以下の
方法で製作した。
A green sheet 12 consisting of the above-mentioned average particle size 100 μm (7) SiC coarse particles 10 and Zr with an average particle size of 2 m and 1 m
The green sheet 13 made of B2 fine grains II was produced by the following method.

1)購入したSiC及びZrBzの原料粉末をサイクロ
ン式の風力遠心分離器及びふるいを用いて分級し、粗粒
粉末として最大粒径1000μm以下て平均粒径が10
0μmの粉末を、そして細粒粉末として最大粒径20 
p m以下で平均粒径が2μmの粉末を得た。
1) The purchased raw material powders of SiC and ZrBz are classified using a cyclone-type wind centrifuge and a sieve, and coarse powders with a maximum particle size of 1000 μm or less and an average particle size of 10
0μm powder and maximum particle size 20 as fine powder.
Powder with an average particle size of 2 μm was obtained at less than pm.

2)上記1)のように分級した粗粒の3iC64vo1
%と粗粒のZrBz36vo1%を措漬機で混合し粗粒
混合粉°末を調整し、且つ同様に細粒S i C,64
v o 1%と細粒ZrRz36vo7i%を混合して
細粒混合粉末を調整し7た。
2) Coarse grained 3iC64vo1 classified as in 1) above
% and coarse particles of ZrBz36vol.
A fine mixed powder was prepared by mixing vo 1% and fine grain ZrRz36vo 7i%.

3)遠赤外線放射層3を用いる原料粉末は上記2)で調
整した粗粒混合粉末を60von%、細粉混合粉末を4
0voJ%混合したものであり、緻密層7には細粒混合
粉末をそのまま用いた。
3) The raw material powder used for the far-infrared emitting layer 3 is 60 von% of the coarse mixed powder prepared in 2) above, and 4% of the fine mixed powder.
The fine-grained mixed powder was used as it was for the dense layer 7.

4)各層の原料粉末はそれぞれ第1表に示す分散媒、結
合剤及び再製剤の所定重量部を混合してスラリとした。
4) The raw material powder for each layer was made into a slurry by mixing predetermined parts by weight of the dispersion medium, binder, and reformulation shown in Table 1, respectively.

これを24時間ボールミルで攪拌して均一化した。This was homogenized by stirring in a ball mill for 24 hours.

5)上記4)で得たスラリをマイラシート(シリコンコ
ートによる離型処理を施したポリエステルシート)上に
、シート表面との間を1.51mあけた刃で引き伸ばし
た。第4図はこの工程を説明する概略図で、14は原料
スラリ、15はマイラシート、16はドクターブレード
、12.13はドクターブレード16によって引き伸さ
れたスラリからなるグリーンシート12.13を示す。
5) The slurry obtained in 4) above was stretched onto a Mylar sheet (a polyester sheet subjected to mold release treatment with silicone coating) using a blade with a distance of 1.51 m from the sheet surface. FIG. 4 is a schematic diagram illustrating this process, in which 14 is a raw material slurry, 15 is a mylar sheet, 16 is a doctor blade, and 12.13 is a green sheet 12.13 made of the slurry stretched by the doctor blade 16. .

6)マイラシート15上に引き伸ばしたスラリは常温で
10時間以上乾燥した。通風速度は0.1m / s以
下にした急速な乾燥による割れの発生を防止する必要が
ある。上記4)、5)及び6)の工程を第5図に工程図
として示す。図示のごとく、原料粉末は結合剤、分散媒
、再製剤(有機溶媒)を加えて混漿混合され、ドクター
ブレード法によりグリーンシートに形成された後乾燥さ
れる。
6) The slurry spread on Mylar sheet 15 was dried at room temperature for 10 hours or more. The ventilation speed must be 0.1 m/s or less to prevent cracks from occurring due to rapid drying. The steps 4), 5) and 6) above are shown as a process diagram in FIG. As shown in the figure, the raw material powder is mixed with a binder, a dispersion medium, and a reformulation (organic solvent), formed into a green sheet by a doctor blade method, and then dried.

7)乾燥したシートはホットプレスできるように170
φの円形に切り出した(第3図参照)。シートには可撓
性があるため切り出し方法はナイフ、打ち抜き機等の任
意の方法が選べる。尚、成形体の形状はホットプレスが
可能であるならば、円形に限定されるものではない。
7) Dry sheet can be hot pressed at 170°C.
It was cut out into a circular shape of φ (see Figure 3). Since the sheet is flexible, any method such as a knife or punching machine can be used to cut it out. Note that the shape of the molded body is not limited to a circular shape as long as hot pressing is possible.

8)シートの厚さは表2に示しである。緻密層7は焼成
後の厚さを3.5關とするため焼成前の層の厚さが7.
21111となった。この厚さのシートを製作するのは
困難なため、1枚1.2msのシートを6枚積層した(
第3図参照)。このように各層の厚さはシート1枚の厚
さとその積層枚数により調整出来る。
8) The thickness of the sheet is shown in Table 2. Since the dense layer 7 has a thickness of 3.5 mm after firing, the thickness of the layer before firing is 7.5 mm.
It became 21111. Since it is difficult to produce sheets of this thickness, we stacked 6 sheets of 1.2 ms each (
(See Figure 3). In this way, the thickness of each layer can be adjusted by adjusting the thickness of one sheet and the number of sheets laminated.

9)積層した成形体はホットプレス装置によりプレス圧
300kg/cnl、焼成温度2100℃、保持時間1
hの条件で焼成した。
9) The laminated molded body is pressed using a hot press device at a pressing pressure of 300 kg/cnl, a firing temperature of 2100°C, and a holding time of 1.
It was fired under the conditions of h.

10)上記9)で焼成した焼成体をダイヤモンド工具で
研磨、加工しそして第1図に示した形状にした。回路の
両端にニッケル線を真空雰囲気中で950℃において圧
接し、リード線8 (第1図)とした。
10) The fired body fired in step 9) above was polished and processed using a diamond tool to form the shape shown in FIG. Nickel wires were pressure-welded to both ends of the circuit at 950° C. in a vacuum atmosphere to form lead wires 8 (FIG. 1).

本実施例では遠赤外線放射層と緻密層の両方ともグリー
ンシート化し成形したが、緻密層は乾式プレスによる圧
粉体とすることも出来る。
In this example, both the far-infrared emitting layer and the dense layer were formed into green sheets and molded, but the dense layer can also be formed into a powder compact by dry pressing.

また、上記のシート製作条件は同一種類の原料であって
もその粒度分布、比表面積、活性度等で大きく影響を受
けるため、原料によっては多少条件を変更する必要が生
じる m1述のように、遠赤外線の放射率はその放射面の表面
積に比例するため、放射率の向上のためには遠赤外線放
射層を構成する粒子の径は大きい程良く、少なくとも3
0μm以上が望ましい。しかし粒径が2000μm以上
では粉末の成形が困難となるため粗粒径は30〜200
011mの範囲が適当であり、本実施例では平均粒径1
00μmで最大粒径1000μmn以下の粉末を用いた
In addition, the above sheet manufacturing conditions are greatly affected by the particle size distribution, specific surface area, activity, etc. of the same type of raw material, so it may be necessary to change the conditions somewhat depending on the raw material, as mentioned in m1. The emissivity of far infrared rays is proportional to the surface area of its emitting surface, so in order to improve the emissivity, the larger the diameter of the particles constituting the far infrared emitting layer, the better;
A thickness of 0 μm or more is desirable. However, if the particle size is 2000 μm or more, it will be difficult to mold the powder, so the coarse particle size should be 30 to 200 μm.
A range of 0.011 m is suitable, and in this example, the average particle size is 1.0 m.
Powder with a maximum particle size of 1000 μm or less was used.

ここで表面積を粗粒のみで構成した場合、粗粒は焼結性
に乏しいため粒子の結合力が弱く発熱時に剥離して使用
に耐えない。したがって、粗粒間の結合のため焼結性に
冨んだ細粒を混合する必要がある。
If the surface area is made up only of coarse particles, the coarse particles have poor sintering properties, and the bonding force between the particles is weak, causing them to peel off during heat generation, making it unusable. Therefore, it is necessary to mix fine grains with rich sinterability to bond between coarse grains.

この場合、細粒の混合比が大きい程粗粒間の結合力が増
加するが、細粒を加え過ぎると粗粒が細粒に埋まり表面
積が小さくなる。第6図は平均粒径100μmの粗粒に
平均粒径2μmの細粒を混合した場合の遠赤外線放射面
の強度と表面積に及ぼす細粒の混合比の影響を示したも
のであり、表面積は平均粒径2μmの原料粉末のみ用い
た焼結体の表面積の比で表しである。このグラフに示さ
れるごとく粗粒への細粒の混合量を増すと40V01%
以上で強度が向上するが、逆に表面積は減少する。この
結果、実用性の点から遠赤外線放射層の強度と表面積の
バランスを考えると、細粒の□混合比は20〜5Qvo
1%、即ち粗粒含有率が50〜80vo1%の範囲が適
当であり、特に本実施例では細粒混合比が4Qvojl
!%の場合に最適であった。第6図中、Sは各混合比に
おける述べ表面積、Soは粗粒のみの焼結体の述べ表面
積である。
In this case, as the mixing ratio of fine particles increases, the bonding force between the coarse particles increases, but if too much fine particles are added, the coarse particles are buried in the fine particles and the surface area becomes smaller. Figure 6 shows the influence of the mixing ratio of fine particles on the intensity and surface area of the far-infrared radiation surface when coarse particles with an average particle size of 100 μm and fine particles with an average particle size of 2 μm are mixed, and the surface area is It is expressed as a ratio of the surface area of a sintered body using only raw material powder with an average particle size of 2 μm. As shown in this graph, increasing the amount of fine grains mixed into coarse grains results in 40V01%.
With the above, the strength increases, but the surface area decreases. As a result, considering the balance between the strength and surface area of the far-infrared emitting layer from a practical point of view, the mixing ratio of fine particles is 20 to 5Qvo.
1%, that is, a coarse particle content in the range of 50 to 80 vol.
! % was optimal. In FIG. 6, S is the stated surface area at each mixing ratio, and So is the stated surface area of the sintered body containing only coarse particles.

遠赤外線放射層より下の層はヒータの高強度化の点から
緻密な細粒構造が望ましく、その構成材料の原料の平均
粒径は少なくとも10μm以下であることが望ましい。
The layer below the far-infrared radiation layer preferably has a dense fine grain structure from the viewpoint of increasing the strength of the heater, and it is desirable that the average grain size of the raw material for its constituent material is at least 10 μm or less.

以上のように粒度調整された原料粉末を用いたヒータは
その遠赤外線放射面が比較的多孔質となり、細粒のみの
原料粉末を用いたヒータより表面積が2倍近く増加し、
放射率が増大する。
The far-infrared radiation emitting surface of a heater using raw material powder whose particle size has been adjusted as described above is relatively porous, and the surface area is nearly twice as large as that of a heater using raw material powder with only fine particles.
Emissivity increases.

本発明において構成材料の種類と含有量は実施例に限定
されるものではなく、ZrBZ、zrc。
In the present invention, the types and contents of constituent materials are not limited to those in the examples, and include ZrBZ and zrc.

TaN等の導電性を有する遠赤外線放射物質を1種ある
いは2種以上から構成されるヒータ、もしくは上記の導
電性材料と他の絶縁性または半導体の遠赤外線放射物質
との混合物から構成されるヒータにも適用出来る。本発
明において使用可能な材料を第13図に示す。
A heater made of one or more conductive far-infrared emitting substances such as TaN, or a mixture of the above-mentioned conductive materials and other insulating or semiconductor far-infrared emitting substances. It can also be applied to Materials that can be used in the present invention are shown in FIG.

第7図は本発明による遠赤外線ヒータの放射率の向上を
示したもので、図においてAは平均粒径2μmの原料を
用いた従来のヒータ、Bは焼成後表面加工したヒータ、
Cは本発明によるヒータを示す。放射効率比ε/ε0に
おいてεは放射率、eoは従来の平均粒径2μmの原料
を用いたヒータの放射率である。第7図から明らかなよ
うに、従来のごとく細粒の原料粉末のみで構成されたヒ
ータAの放射効率比を1とすると、本発明によるヒータ
Cは約2倍はど放射効率比が向上しており、また、焼成
後の表面加工により放射率を向上させたヒータBよりも
放射効率比が向上している。
Figure 7 shows the improvement in emissivity of the far-infrared heater according to the present invention.
C shows a heater according to the invention. In the radiation efficiency ratio ε/ε0, ε is the emissivity, and eo is the emissivity of a conventional heater using a raw material with an average particle size of 2 μm. As is clear from FIG. 7, if the radiation efficiency ratio of the conventional heater A, which is composed only of fine-grained raw material powder, is 1, then the radiation efficiency ratio of the heater C according to the present invention is improved by about twice. Furthermore, the radiation efficiency ratio is higher than that of heater B, which has improved emissivity through surface processing after firing.

(発明の効果) 以上説明したように、本発明によれば、遠赤外線放射層
の強度を増加し、ヒータの表面積を増大し且つまた放射
率も高くなっており、上記従来技術の欠点を除いて優れ
た機能を遠赤外線ヒータを提供することが出来る。
(Effects of the Invention) As explained above, according to the present invention, the intensity of the far-infrared radiation layer is increased, the surface area of the heater is increased, and the emissivity is also increased, thereby eliminating the drawbacks of the above-mentioned prior art. It is possible to provide a far infrared heater with excellent functions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による遠赤外線ヒータの一実施例を示す
斜視図、第2図は本発明による遠赤外線ヒータの遠赤外
線放射層近傍の組織を示す模式図、第3図は本発明によ
る遠赤外線ヒータの製作手順を略示する斜視図、第4図
は遠赤外線ヒータの製作に用いるグリーンシートの製作
方法を示す概略図、第5図は遠赤外線ヒータの製作に用
いる第4図のグリーンシートの原料から乾燥までを示す
工程図、第6図は遠赤外線放射層の強度と表面積に及ぼ
す細粒の混合比の影響を示す特性図、第7図は本発明に
よる遠赤外線ヒータと従来のヒータとの遠赤外線放射率
の比較を示すグラフ、第8a図。 第8b図及び第8C図は遠赤外線ヒータの使用状況を示
す図、第9図は遠赤外線ヒータと従来の赤外線ヒータの
放射特性を示す比較図、第10図は従来の遠赤外綿ヒー
タの構造を示す部分断面図、第11図はグリーンシート
製作時の原料スラリ調整条件を示す表、第12図は積層
するグリーンシートの条件を示す図、第13図は本発明
に適用し得る遠赤外線放射物質を列挙する図である。 3・・・遠赤外線放射物質層、7・・・緻密層。 外し大梁 第2図 第2図 /I’) 第3rM 第6図 0     25   5Q    75   100
紐粒への徊呻1のW上と(Vo1%) 第7図 第8図 第9図 赤外1i+(μm) 第1I図 第12図
FIG. 1 is a perspective view showing an embodiment of the far-infrared heater according to the present invention, FIG. 2 is a schematic diagram showing the structure near the far-infrared radiation layer of the far-infrared heater according to the present invention, and FIG. 3 is a far-infrared heater according to the present invention. Fig. 4 is a schematic diagram showing the method for producing a green sheet used for producing a far-infrared heater, and Fig. 5 is a perspective view schematically showing the manufacturing procedure of an infrared heater. Fig. 6 is a characteristic diagram showing the influence of the mixing ratio of fine particles on the intensity and surface area of the far-infrared emitting layer, and Fig. 7 shows the far-infrared heater according to the present invention and the conventional heater. FIG. 8a is a graph showing a comparison of far-infrared emissivity with . Figures 8b and 8C are diagrams showing the usage status of far-infrared heaters, Figure 9 is a comparison diagram showing the radiation characteristics of far-infrared heaters and conventional infrared heaters, and Figure 10 is a diagram of the conventional far-infrared cotton heater. A partial sectional view showing the structure, Fig. 11 is a table showing raw material slurry adjustment conditions during green sheet production, Fig. 12 is a diagram showing conditions for stacking green sheets, and Fig. 13 is a far infrared ray that can be applied to the present invention. It is a diagram listing radioactive substances. 3... Far-infrared emitting material layer, 7... Dense layer. Removal girder Figure 2 Figure 2/I') 3rd rM Figure 6 0 25 5Q 75 100
W top of wandering 1 to string grain (Vo1%) Fig. 7 Fig. 8 Fig. 9 Infrared 1i+ (μm) Fig. 1I Fig. 12

Claims (1)

【特許請求の範囲】[Claims] ZrB_2、ZrC、TaN、TaC等の導電性を有す
る赤外線放射物質の1種類もしくは2種類以上の組合わ
せとSiC、Si_4N_4、Al_2O_3等の1種
類もしくは2種類以上の絶縁体または半導体の遠赤外線
放射物質の複合焼結体から構成され、通電によつて遠赤
外線物質が直接自己発熱する遠赤外線ヒータにおいて、
外表面の遠赤外線放射面が粒径30乃至2000μmの
範囲の遠赤外線放射物質を50乃至80vol%含有す
る層によつて構成されることを特徴とする遠赤外線ヒー
タ。
One type or a combination of two or more types of conductive infrared emitting substances such as ZrB_2, ZrC, TaN, TaC, etc. and one type or two or more types of insulating or semiconductor far infrared emitting substances such as SiC, Si_4N_4, Al_2O_3, etc. In the far-infrared heater, which is composed of a composite sintered body, the far-infrared material directly generates heat by itself when energized.
1. A far-infrared heater, wherein the far-infrared radiation surface on the outer surface is constituted by a layer containing 50 to 80 vol% of a far-infrared radiation material having a particle size in the range of 30 to 2000 μm.
JP25280285A 1985-11-13 1985-11-13 Far-infrared heater Withdrawn JPS62113377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25280285A JPS62113377A (en) 1985-11-13 1985-11-13 Far-infrared heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25280285A JPS62113377A (en) 1985-11-13 1985-11-13 Far-infrared heater

Publications (1)

Publication Number Publication Date
JPS62113377A true JPS62113377A (en) 1987-05-25

Family

ID=17242431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25280285A Withdrawn JPS62113377A (en) 1985-11-13 1985-11-13 Far-infrared heater

Country Status (1)

Country Link
JP (1) JPS62113377A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198493U (en) * 1987-12-23 1989-06-30
JPH0267597U (en) * 1988-11-11 1990-05-22
JPH0362489A (en) * 1989-07-28 1991-03-18 Nippon Pillar Packing Co Ltd Far infrared heating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198493U (en) * 1987-12-23 1989-06-30
JPH0267597U (en) * 1988-11-11 1990-05-22
JPH0362489A (en) * 1989-07-28 1991-03-18 Nippon Pillar Packing Co Ltd Far infrared heating device

Similar Documents

Publication Publication Date Title
JPS6410468B2 (en)
CN106376107B (en) High-power silicon nitride ceramic heating plate and manufacturing method of high-power silicon nitride ceramic heating plate with soft inside and hard outside
CN108928062A (en) A kind of heat loss through radiation composite aluminum substrate and preparation method thereof
US4806739A (en) Plate-like ceramic heater
WO2009000114A1 (en) Energy saving electric heating fan and the making method of its electric heating element
JPS62113377A (en) Far-infrared heater
JPH0465360A (en) Conductive ceramic sintered compact and its production
JPH11339933A (en) Expansion graphite flat heating element and its manufacture
JP2685370B2 (en) Ceramics heater
JPS5849665A (en) Ceramic body for dielectric heating
CN111350097A (en) Preparation method of heating film
JP2712527B2 (en) Heating device for infrared radiation
JPS6060990A (en) Far infrared ray radiation heater
KR102154129B1 (en) High-capacity ceramic heater for electric vehicle and manufacturing method thereof
JPS6168380A (en) Ceramic infrared radiator and manufacture
CN113709917B (en) High-temperature flexible infrared heating film and preparation method thereof
CN1185086A (en) Inorganic and composite resistance film, and method for preparing same
JPH0321501B2 (en)
JPH02295733A (en) Far infrared radiation composite film
KR940005079B1 (en) Process for producing of ceramic a heating element
JPH03141576A (en) Manufacture of far infrared radiation heating element
JPH0642385B2 (en) Ceramic sheet heating element
JPS6217976A (en) Far infrared radiating body
JP2955127B2 (en) Ceramic heater
JP2601657B2 (en) Ceramic heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees