JPH0362291B2 - - Google Patents

Info

Publication number
JPH0362291B2
JPH0362291B2 JP20934087A JP20934087A JPH0362291B2 JP H0362291 B2 JPH0362291 B2 JP H0362291B2 JP 20934087 A JP20934087 A JP 20934087A JP 20934087 A JP20934087 A JP 20934087A JP H0362291 B2 JPH0362291 B2 JP H0362291B2
Authority
JP
Japan
Prior art keywords
condensable
coil
liquid
heat
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20934087A
Other languages
Japanese (ja)
Other versions
JPS63153807A (en
Inventor
Hitoshi Ookubo
Tsuneji Teranishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP20934087A priority Critical patent/JPS63153807A/en
Publication of JPS63153807A publication Critical patent/JPS63153807A/en
Publication of JPH0362291B2 publication Critical patent/JPH0362291B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は凝縮性液体をコイル部分の絶縁および
冷却媒体として用い、非凝縮性絶縁気体をコイル
部分以外の部分の絶縁および冷却媒体として用い
た蒸発冷却誘導電器に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention uses a condensable liquid as an insulation and cooling medium for a coil portion, and a non-condensable insulating gas for insulation and cooling of a portion other than the coil portion. This invention relates to an evaporative cooling induction electric appliance used as a cooling medium.

(従来技術) 従来変圧器・リアクトルのような誘導電器にお
いて、フロン等の凝縮性液体が液相から気相に相
変化する時に必要とする気化熱を、その誘導電器
の冷却に利用する蒸発冷却誘導電器があることは
よく知られている。このような蒸発冷却誘導電
器、例えば蒸発冷却変圧器(以下変圧器と略記す
る)においてコイルや鉄心などの発熱部を冷却す
る方法には大別すると次の2種類がある。その1
つはタンク内を凝縮性液体で満しその中に変圧器
本体を浸漬させる方法であり、他の1つは変圧器
本体の上部から凝縮性液体を発熱部に散布する方
法である。前者は変圧器の発熱部が完全に凝縮性
液体で覆われるためすべての発熱部の冷却が万遍
なく行なわれかつ凝縮性液体は気体となつた場合
より液体状態の方が絶縁耐力が高いため絶縁的に
も有利であるという長所を有する一方、凝縮性液
体を多量に必要とするため変圧器全体の重量が重
くなるという欠点がある。一方後者の場合、冷却
に最低限必要な量を発熱部に散布すればよいため
凝縮性液体の量が少なくてよく従つて重量も軽い
という長所がある。
(Prior art) Evaporative cooling uses the heat of vaporization required when condensable liquids such as fluorocarbons change from liquid phase to gas phase to cool induction electric appliances such as transformers and reactors. It is well known that there are induction electric devices. There are roughly two types of methods for cooling heat generating parts such as coils and iron cores in such evaporative cooling induction electric appliances, such as evaporative cooling transformers (hereinafter abbreviated as transformers). Part 1
One method is to fill a tank with a condensable liquid and immerse the transformer body therein, and the other method is to spray the condensable liquid from the top of the transformer body to the heat generating part. The former is because the heat-generating parts of the transformer are completely covered with condensable liquid, so all heat-generating parts are evenly cooled, and the condensable liquid has a higher dielectric strength in its liquid state than when it becomes a gas. Although it has the advantage of being good for insulation, it has the disadvantage that it requires a large amount of condensable liquid, which increases the weight of the entire transformer. On the other hand, in the latter case, the minimum amount necessary for cooling needs to be sprayed onto the heat generating part, so the amount of condensable liquid is small and the weight is light.

(発明が解決しようとする問題点) しかしながら、特に高電圧用の変圧器のように
内部構造が複雑なものには、凝縮性液体を発熱部
に万遍なく供給することが困難となり、発熱部の
温度分布に不均衡を生じさせるおそれがある。ま
たこの方法では内部の絶縁を気化した凝縮性液体
に依存しているため、変圧器が課電されず本体が
冷えた状態では変圧器内部に気化した凝縮性液体
が充満していないため変圧器課電直後には絶縁媒
体となるものが非常に秘薄であることになる。こ
れを防ぐため一般には前記凝縮性液体の他に非凝
縮性絶縁気体(例えばSF6等)を混入して冷時の
絶縁を分担させている。ところが凝縮性液体は非
凝縮性絶縁気体が混在した状態では気相から液相
への相変化が起りにくいという性質をもつため、
冷却性能が大幅に低下する。そこでこれを防ぐた
めには変圧器内部の温度が上昇し気化した凝縮性
液体が内部に充満して充分に絶縁機能を果せる状
態になつた時に前記非凝縮性絶縁気体を専用の容
器に回収し分離してしまうことが望ましく、その
ようにした例もあるが構造が複雑になるという欠
点がある。
(Problem to be solved by the invention) However, especially for devices with complex internal structures such as high-voltage transformers, it is difficult to evenly supply condensable liquid to the heat generating parts. This may cause an imbalance in the temperature distribution. In addition, this method relies on vaporized condensable liquid for internal insulation, so when the transformer is not energized and the main body is cold, the transformer is not filled with vaporized condensable liquid, so the transformer Immediately after applying electricity, the insulating medium is very thin. To prevent this, generally a non-condensable insulating gas (for example, SF 6 , etc.) is mixed in with the condensable liquid to share insulation during cold conditions. However, condensable liquids have the property that phase change from gas phase to liquid phase is difficult to occur when non-condensable insulating gases are present.
Cooling performance will be significantly reduced. To prevent this, the non-condensable insulating gas is collected and separated into a special container when the temperature inside the transformer rises and the vaporized condensable liquid fills the inside so that it can perform its insulating function sufficiently. It is desirable to do so, and there are some examples of doing so, but the disadvantage is that the structure becomes complicated.

本発明の目的は誘導電器内の発熱量の多いコイ
ル部分をタンク内の他の部分から気密に保つ容器
に納めてこの容器内に満した凝縮性液体により冷
却および絶縁を行ない、コイル部分以外の比較的
発熱量の少ない部分に対しては非凝縮性絶縁気体
により冷却および絶縁を行なわせることにより構
造簡単にして冷却性能を高めた蒸発冷却誘導器を
提供することにある。
The object of the present invention is to house the coil part of an induction electric device that generates a large amount of heat in a container that is kept airtight from other parts of the tank, and to cool and insulate it with a condensable liquid filled in this container. It is an object of the present invention to provide an evaporative cooling inductor which has a simplified structure and improved cooling performance by cooling and insulating a portion with a relatively small amount of heat generation with a non-condensable insulating gas.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用) 本発明の蒸発冷却誘導電器では、タンク内に電
器本体を形成する鉄心およびコイルを収納し、こ
のコイルのみは気密構造の絶縁性の容器内に空間
を設けて収容すると共に前記空間内に凝縮性液体
を充てんし、前記タンク内の前記容器内外の空間
には非凝縮性絶縁気体を充てんし、前記凝縮性液
体を熱交換器を通して循環させるようにして構成
される。
(Means and effects for solving the problems) In the evaporative cooling induction electric appliance of the present invention, an iron core and a coil forming the electric appliance body are housed in a tank, and only this coil is placed in an airtight insulating container. The space is filled with a condensable liquid, the space inside and outside the container in the tank is filled with a non-condensable insulating gas, and the condensable liquid is circulated through a heat exchanger. It consists of

本発明の蒸発冷却誘導電器においては、電器本
体の比較的発熱量の多いコイルにに対しては凝縮
性気体にコイルを浸漬させその気化熱を利用して
蒸発冷却を行ない、鉄心等他の部分に対しては非
凝縮性絶縁気体により冷却するようにしたので、
凝縮性液体を大量に使用することなくコイルを効
果的に冷却するこができる上、電器内部が冷えた
状態でも内部空間の絶縁性が低下することなく、
経済的で冷却および絶縁性能に優れた蒸発冷却誘
導電器を提供することができる。
In the evaporative cooling induction electric appliance of the present invention, the coil of the electric appliance body, which generates a relatively large amount of heat, is immersed in a condensable gas and the heat of vaporization is used to perform evaporative cooling, and other parts such as the iron core are cooled. For this purpose, we used a non-condensable insulating gas to cool the
In addition to being able to effectively cool the coil without using large amounts of condensable liquid, the insulation of the internal space does not deteriorate even when the inside of the appliance is cold.
It is possible to provide an evaporatively cooled induction electric appliance that is economical and has excellent cooling and insulation performance.

(実施例) 以下本発明の一実施例を図に示す蒸発冷却変圧
器の場合について説明する。図において1は変圧
器タンクを示し、このタンク1内に、変圧器本体
を形成する鉄心2およびこれに巻装されたコイル
3を収容する。コイル3は気密構造の絶縁性の容
器4内にその周囲に十分な空間4aを設けて収容
する。容器4内には例えばフロン113等の凝縮性
液体5が満されており、また容器4の上部はコイ
ル3を冷却することにより気化した凝縮性液体5
の蒸気の排出と再び凝縮して液化した凝縮性液体
5を容器4内に入れる管6a,6bが設けてあ
る。タンク1の上部には凝縮性液体5の蒸気を凝
縮させる熱交換器7を設けこの熱交換器7の入口
および出口を容器4の管6a,6bに接続する。
一方タンク1内の容器4内以外の空間には常温で
は気体状態にあつてコイル3以外の発熱部(鉄心
2等)を冷却しかつ内部空間の絶縁耐力を高める
例えばSF6等の非凝縮性絶縁気体8を充てんして
いる。なお図示の構造では鉄心2を締付けるクラ
ンプ金具やコイル3の絶縁部材およびそれらの上
下から支える絶縁部材は説明を簡潔にするため省
略してある。またコイル3は夫々多数のコイルセ
クシヨンから形成されているがそれらをすべて図
示することはできないため夫々簡略化して図示し
てある。
(Example) An example of the present invention will be described below with reference to an evaporative cooling transformer shown in the figure. In the figure, reference numeral 1 indicates a transformer tank, and the tank 1 accommodates an iron core 2 forming a main body of the transformer and a coil 3 wound around the core. The coil 3 is housed in an airtight insulating container 4 with a sufficient space 4a around it. The container 4 is filled with a condensable liquid 5 such as Freon 113, and the upper part of the container 4 is filled with a condensable liquid 5 that has been vaporized by cooling the coil 3.
Pipes 6a and 6b are provided for discharging the vapor and introducing the condensable liquid 5, which has condensed and liquefied again, into the container 4. A heat exchanger 7 for condensing the vapor of the condensable liquid 5 is provided in the upper part of the tank 1, and the inlet and outlet of the heat exchanger 7 are connected to the pipes 6a and 6b of the container 4.
On the other hand, in the space other than the container 4 in the tank 1, there is a non-condensing material such as SF 6 , which is in a gaseous state at room temperature and which cools heat-generating parts other than the coil 3 (iron core 2, etc.) and increases the dielectric strength of the internal space. It is filled with insulating gas 8. In the illustrated structure, the clamp fittings for tightening the iron core 2, the insulating members of the coil 3, and the insulating members supporting them from above and below are omitted for the sake of brevity. Each coil 3 is formed from a large number of coil sections, but since it is not possible to illustrate all of them, each coil section is shown in a simplified manner.

次に上記変圧器の作用について説明する。容器
4内のコイル3で発熱が生じると、コイル3に接
する凝縮性液体5は熱せられて気化が起こりこの
時にコイル3を冷却する。それにより気泡となつ
た蒸気は凝縮性液体5内を上昇し容器4内上部の
蒸気溜め9にたまり、さらに管6a,6bを経て
タンク1上部の熱交換器7内に入る。熱交換器7
は図示しないが複数個の熱交換パイプを備えてお
り、熱交換器7に入つた凝縮性液体5の蒸気はこ
の熱交換パイプを通過する間に熱を奪われ冷却液
化し、この液化した凝縮性液体5は熱交換器7か
ら管6a,6bを経て容器4内に再び戻る。この
循環によりコイル3は冷却される。
Next, the operation of the above transformer will be explained. When heat is generated in the coil 3 in the container 4, the condensable liquid 5 in contact with the coil 3 is heated and vaporized, cooling the coil 3 at this time. As a result, the vapor that becomes bubbles rises in the condensable liquid 5, accumulates in a vapor reservoir 9 at the upper part of the container 4, and further enters the heat exchanger 7 at the upper part of the tank 1 through pipes 6a and 6b. heat exchanger 7
is equipped with a plurality of heat exchange pipes (not shown), and the vapor of the condensable liquid 5 that enters the heat exchanger 7 is deprived of heat while passing through the heat exchange pipes, cools and liquefies, and the liquefied condensate The liquid 5 returns from the heat exchanger 7 to the container 4 via tubes 6a, 6b. The coil 3 is cooled by this circulation.

一方コイル3部分以外の発熱部(鉄心2等)は
タンク1内の容器4以外の空間に充てんされた非
凝縮性絶縁気体8により熱を奪われ冷却される。
鉄心2等から熱を奪つて熱せられた非凝縮性絶縁
気体8は図示しないが必要に応じて設けられた外
部冷却器に入り冷却された後タンク1内に戻ると
いうサイクルを繰返す。一般に鉄心2の発熱量は
コイル3の発熱量に比べ数分の1程度であるため
非凝縮性絶縁気体8の対流による自然循環で充分
に冷却することが可能であるが、前述のように必
要に応じて外部冷却器を取付けて冷却効果を上げ
ることもできる。
On the other hand, the heat generating parts other than the coil 3 portion (iron core 2, etc.) are cooled by removing heat from the non-condensable insulating gas 8 filled in the space other than the container 4 in the tank 1.
The non-condensable insulating gas 8 heated by taking heat from the iron core 2 and the like enters an external cooler (not shown) provided as needed, cools down, and then returns to the tank 1, repeating the cycle. Generally, the amount of heat generated by the iron core 2 is about a fraction of that of the coil 3, so it is possible to cool it sufficiently by natural circulation due to convection of the non-condensable insulating gas 8. However, as mentioned above, it is necessary to Depending on the situation, an external cooler can be installed to increase the cooling effect.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば電器本体の比較的
発熱量の多いタンクに対しては凝縮性液体にコイ
ルを浸漬させてその気化熱を利用して蒸発冷却を
行ない、鉄心等他の部分に対しては非凝縮性絶縁
気体により冷却するようにしたので、凝縮性液体
を大量に使用することなくコイルを効果的に冷却
することができる上、電器内部が冷えた状態でも
内部空間の絶縁性が低下することなく、経済的で
冷却および絶縁性能に優れた蒸発冷却誘導電器を
提供することができる。
As described above, according to the present invention, a coil is immersed in a condensable liquid for a tank that generates a relatively large amount of heat in the main body of an electric appliance, and evaporative cooling is performed using the heat of vaporization. By using non-condensable insulating gas to cool the coil, the coil can be effectively cooled without using large amounts of condensable liquid. It is possible to provide an economical evaporative cooling induction electric appliance with excellent cooling and insulation performance without deterioration of performance.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明による蒸発冷却誘導電器の一実施
例を示す一部切欠き縦断面図である。 1…タンク、2…鉄心、3…コイル、4…容
器、4a…空間、5…凝縮性液体、6a,6b…
管、7…熱交換器、8…非凝縮性絶縁気体、9…
蒸気溜め。
The drawing is a partially cutaway vertical sectional view showing an embodiment of the evaporative cooling induction electric appliance according to the present invention. DESCRIPTION OF SYMBOLS 1...tank, 2...iron core, 3...coil, 4...container, 4a...space, 5...condensable liquid, 6a, 6b...
Tube, 7... Heat exchanger, 8... Non-condensable insulating gas, 9...
Steam reservoir.

Claims (1)

【特許請求の範囲】[Claims] 1 タンク内に電器本体を形成する鉄心およびコ
イルを収容し、このコイルのみは気密構造の絶縁
性の容器内に空間を設けて収容すると共に前記空
間内に凝縮性液体を充てんし、前記タンク内の前
記容器内以外の空間には非凝縮性絶縁気体を充て
んし、前記凝縮性液体を熱交換器に通して循環さ
せるようにしたことを特徴とする蒸発冷却誘導電
器。
1. The iron core and coil that form the main body of the electrical appliance are housed in a tank, and only this coil is housed in an airtight insulating container with a space provided therein, and the space is filled with a condensable liquid, and the tank is filled with a condensable liquid. An evaporative cooling induction electric appliance characterized in that a space other than the inside of the container is filled with a non-condensable insulating gas, and the condensable liquid is circulated through a heat exchanger.
JP20934087A 1987-08-25 1987-08-25 Induction type electric apparatus utilizing evaporative cooling Granted JPS63153807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20934087A JPS63153807A (en) 1987-08-25 1987-08-25 Induction type electric apparatus utilizing evaporative cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20934087A JPS63153807A (en) 1987-08-25 1987-08-25 Induction type electric apparatus utilizing evaporative cooling

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9225380A Division JPS5718311A (en) 1980-07-08 1980-07-08 Assembly of stationary induction electric appliance

Publications (2)

Publication Number Publication Date
JPS63153807A JPS63153807A (en) 1988-06-27
JPH0362291B2 true JPH0362291B2 (en) 1991-09-25

Family

ID=16571328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20934087A Granted JPS63153807A (en) 1987-08-25 1987-08-25 Induction type electric apparatus utilizing evaporative cooling

Country Status (1)

Country Link
JP (1) JPS63153807A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540738Y2 (en) * 1988-08-24 1993-10-15
JPH02184006A (en) * 1989-01-11 1990-07-18 Takaoka Electric Mfg Co Ltd Electromagnetic induction apparatus

Also Published As

Publication number Publication date
JPS63153807A (en) 1988-06-27

Similar Documents

Publication Publication Date Title
US3201728A (en) Evaporative cooled inductive apparatus having cast solid insulation with cooling ducts formed therein
US2722616A (en) Evaporative cooling system for dynamo-electric machines
US3024298A (en) Evaporative-gravity cooling systems
JPS58111307A (en) Gas-insulated transformer
JPH0563954B2 (en)
US1471096A (en) Electrical apparatus
JPS5863111A (en) Electromagnetic induction device
JPH0362291B2 (en)
JPS5860512A (en) Evaporation cooling induction electric appliance
US4129845A (en) Vaporization cooled electrical apparatus
JPS59103318A (en) Apparatus for cooling machine or equipment
US2774807A (en) Vaporization-forced liquid cooled transformer
GB1595094A (en) Method and system for cooling electrical apparatus
KR200435314Y1 (en) Electric power equipment cooling device using refrigerant vaporization heat
JPH02129999A (en) Cooling device for electronic elemnt
JP2553157B2 (en) Stationary induction equipment
JPS593906A (en) Gas insulation transformer
JPS6011422Y2 (en) evaporative cooling equipment
JPS6028213A (en) Evaporation cooling type transformer
JPH01111310A (en) Static induction device
JPS6194310A (en) Iron core cooling unit for electric apparatus
JPS58184711A (en) Induction electric apparatus
JPS59123252A (en) Condenser
JPS59150410A (en) Stationary induction apparatus
JPS6336658Y2 (en)