JPS59150410A - Stationary induction apparatus - Google Patents

Stationary induction apparatus

Info

Publication number
JPS59150410A
JPS59150410A JP1545383A JP1545383A JPS59150410A JP S59150410 A JPS59150410 A JP S59150410A JP 1545383 A JP1545383 A JP 1545383A JP 1545383 A JP1545383 A JP 1545383A JP S59150410 A JPS59150410 A JP S59150410A
Authority
JP
Japan
Prior art keywords
refrigerant
tank
coolant
heat exchanger
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1545383A
Other languages
Japanese (ja)
Inventor
Sanae Sekida
関田 早苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1545383A priority Critical patent/JPS59150410A/en
Publication of JPS59150410A publication Critical patent/JPS59150410A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/18Liquid cooling by evaporating liquids

Abstract

PURPOSE:To improve a cooling ability and reduce the size and the weight and solve the problem of a space and noise by a method wherein a coolant-path through which coolant liquid flows is provided to or near a wall of a tank so that this coolant path works as a heat exchanger and at the same time as a cooler. CONSTITUTION:A winding 2 in a transformer tank 1 is applied on a core 3 and coolant 4 for cooling the winding 2 is stored in a coolant bath 5 with the winding 2 and the heat from the winding 2 in the coolant bath 5 is absorbed by the coolant 4. A path 9 of the coolant 4, composed of a group of tubes or a press- board or the like, is provided to a wall or near an inside wall of the tank 1 and, by connecting a pump 6 and a pipe 7 to a standing part of the coolant 4, the coolant 4 is supplied into the coolant path 9 from the top of the tank 1. By providing the bottom end of the coolant path 9 to the standing part of the coolant 4 below the liquid surface, gas and vapor in the system can not penetrate into the coolant path 9. With this constitution, a liquid-cooled heat exchanger, in which only the liquid of the coolant 4 flows, can be obtained. The 2nd heat exchanger 10 is provided to the standing part of the coolant 4 and the secondary coolant 11 is supplied from outside of the tank 1 through a pipe 12.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は巻線を冷却する冷却媒体(以下冷媒という)と
鶏:気的絶縁性の高い不凝縮性ガスをタンク内に充填し
た蒸発冷却式の静止誘導機器に関する0 [発明の技術的背景とその間地点] 電力需要および人口の過密化した都市部に大電力を供給
するには大容量高電圧の変圧器が要求される。一方用地
費の高騰、用地取得の困難等といつた事情により変圧器
等の静止誘導機器の小型・軽量化あるいはタンク内の絶
縁材や冷却材の不燃化、また機器の低騒音化といった諸
要求を満たす新しい変圧器等の静止誘導機器の開発が望
まれている。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an evaporative cooling system in which a tank is filled with a cooling medium for cooling windings (hereinafter referred to as a refrigerant) and a non-condensable gas with high gas insulation properties. [Technical Background of the Invention and Intermediate Points] Large-capacity, high-voltage transformers are required to supply large amounts of electric power to urban areas with dense electric power demands and populations. On the other hand, due to rising land costs, difficulties in acquiring land, etc., there are demands for smaller and lighter stationary induction equipment such as transformers, nonflammability of insulating materials and coolants in tanks, and lower noise of equipment. The development of new static induction equipment such as transformers that satisfies the requirements is desired.

このような機器として、例えば変圧器については低温下
ミニおける起動時の絶縁性を維持するためにガス性の扁
絶縁拐(例えば8F6ガス等)をタンク内に混入せしめ
、変圧器巻線部を冷媒(例えばフロンまたはフロロカー
ボン等)に授し、この巻線部等から発生する熱を前記冷
媒の気化時に潜熱として奪う蒸発冷却式のセミプール式
ガス絶縁変圧器が提案はれている。
For example, in the case of a transformer, gaseous flat insulation (for example, 8F6 gas, etc.) is mixed into the tank to maintain insulation during startup when the transformer is placed in a low-temperature environment, and the transformer windings are An evaporative cooling semi-pool type gas insulated transformer has been proposed in which heat generated from the windings of a refrigerant (such as fluorocarbon or fluorocarbon) is absorbed as latent heat when the refrigerant is vaporized.

しかして、  sy6等の電気的高絶縁ガスしtフロン
等の冷媒蒸気と比ルが異なるため冷媒の蒸気と絶縁ガス
とは完全C二は混合せず、分離して存在する1114向
にあり、また絶縁ガスが不凝縮性ガスである場合には冷
媒の蒸気とは熱交換を行なわない。
However, since the ratio of electrically highly insulating gas such as SY6 is different from that of refrigerant vapor such as CFC, the refrigerant vapor and insulating gas do not completely mix, but exist separately. Further, when the insulating gas is a non-condensable gas, it does not exchange heat with the refrigerant vapor.

さらに、8F6ガス等の絶縁ガスの封入を増加させると
タンク容積の大半を絶縁ガスが占める様6ユなり冷媒の
蒸気と混合状態で存在し、絶縁ガスが不凝縮性ガスであ
る場合には冷媒の蒸気とけ熱交換を行なわないで存在す
る。
Furthermore, if the filling of an insulating gas such as 8F6 gas is increased, the insulating gas will occupy most of the tank volume, and will exist in a mixed state with refrigerant vapor, and if the insulating gas is a non-condensable gas, the refrigerant will exists without any heat exchange.

そしてタンク内の冷媒の蒸気を冷却する熱交換器(sf
縮器)が機器の上部もしくは外部側面に配置、され、巻
線部等で蒸発した冷媒の蒸気を凝縮させて機内の温度上
昇および圧力上昇を制御している。
A heat exchanger (sf) cools the refrigerant vapor in the tank.
A condenser (condenser) is placed on the top or external side of the equipment, and condenses the refrigerant vapor that has evaporated in the windings, etc., to control the rise in temperature and pressure inside the machine.

ところでタンク内に封入される絶縁ガスが不凝縮性ガス
等の場合には絶縁ガスと冷媒の蒸気との間や絶縁ガスと
熱交換器間等では熱交換は行なわれない。
By the way, when the insulating gas sealed in the tank is a non-condensable gas or the like, heat exchange is not performed between the insulating gas and the refrigerant vapor or between the insulating gas and the heat exchanger.

しかもかかる絶縁カスがタンク内の容積の半分以上を占
めるように封入されると、タンク内の冷媒蒸気め占める
容積は極度に減少し、冷媒蒸気は絶縁ガスと混合状態で
存在し、不凝縮性ガスである絶縁ガス(−阻害されるた
め効率よく熱交換器に到達せず、タンク内C二滞溜し、
タンク内の温度上昇および圧力上昇が大きくなる。
Moreover, if such insulating scum is sealed in such a way that it occupies more than half of the volume inside the tank, the volume occupied by the refrigerant vapor in the tank will be extremely reduced, and the refrigerant vapor will exist in a mixed state with the insulating gas, making it non-condensable. Insulating gas (-) does not reach the heat exchanger efficiently because it is inhibited, and C2 remains in the tank,
The temperature and pressure rise inside the tank increases.

このため熱交換器を大型化する等して冷却性能(gに凝
縮性能)を維持する必要がある。
Therefore, it is necessary to maintain cooling performance (condensing performance in g) by increasing the size of the heat exchanger.

熱交換器が大型化すると機器も大型となり、これに伴っ
て用地問題が生じ、さらに熱交換器の配置檜等から騒音
も発生しやすくなる。
As the heat exchanger becomes larger, the equipment also becomes larger, which leads to site problems and also makes it easier for noise to be generated from the cypresses where the heat exchanger is placed.

[発明の目的] 本発明の目的は上記の点C1鑑みなさ力だもので。[Purpose of the invention] The purpose of the present invention is to take into consideration the above point C1.

その目的は小形で騒音が少く冷却性能の秀れた高電圧・
大容量変圧器s ’h ’−セミプール式のカス絶縁変
圧器等の静止誘導機器を提供するC二ある。
Its purpose is to provide high-voltage, compact, low-noise, and excellent cooling performance.
Large-capacity transformer s 'h' - There are C2 types that provide stationary induction equipment such as semi-pool type cass isolation transformers.

1発明の概要] 本発明は上記の目的を達成するために、静止誘導機器の
タンク内番二絶縁ガスを光填するととも(−このタンク
内の中間部1m−1,i:巻線を巻回した鉄心と冷媒と
を収納した冷媒槽を配置し、さらC−タンク内壁面に冷
媒油、路を配f1ζし、タンク底部と冷媒槽およびタン
ク壁の冷媒通路との間をポンプを介して配管(二より連
通し、タンク底部に榴った冷媒を酎h((槽および冷媒
通路へ送る。
1 Summary of the Invention] In order to achieve the above object, the present invention optically fills the inside of a tank of a stationary induction device with insulating gas. A refrigerant tank containing the rotated iron core and refrigerant is arranged, and a refrigerant oil passage is arranged on the inner wall surface of the C-tank, and a pump is installed between the bottom of the tank, the refrigerant tank, and the refrigerant passage on the tank wall. The piping is connected through two pipes, and the refrigerant spilled to the bottom of the tank is sent to the tank and the refrigerant passage.

巻線部等から発生した熱は冷媒1−吸収させ、冷媒は蒸
気となりタンク内壁の冷媒通路が熱交換器の餉きをし、
冷媒蒸気を冷却させ液化する、と共にタンク底部の冷奴
の溜り部に第二次の冷媒を通過させた熱交換器を配置す
るようにしたことを特徴とするものである。
The heat generated from the windings, etc. is absorbed by the refrigerant, and the refrigerant turns into vapor, and the refrigerant passage on the inner wall of the tank fills the heat exchanger.
This system is characterized by a heat exchanger that cools and liquefies the refrigerant vapor and allows a secondary refrigerant to pass through a reservoir of cold water at the bottom of the tank.

[発明の実施例] 以下本発明の一実施例を図面を参照して説明する0 第1図は本発明の静止誘導機器であるガス絶縁変圧器の
概略断面図であり、この図示さilているように変圧器
タンク1内の巻線2は鉄心3に巻回されており、この巻
Iv!12を冷却するための冷ff!r14け巻線2と
ともに冷媒槽5内に収納されている。
[Embodiments of the Invention] An embodiment of the present invention will be described below with reference to the drawings. FIG. As shown, the winding 2 in the transformer tank 1 is wound around the iron core 3, and this winding Iv! Cold ff for cooling 12! It is housed in the refrigerant tank 5 together with the r14 winding 2.

したがって、冷媒槽5内の巻線2の発熱は冷媒4が吸収
する。
Therefore, the heat generated by the winding 2 in the refrigerant tank 5 is absorbed by the refrigerant 4.

この丸め冷tIL4は蒸気となりタンク1内に気化する
This rounded cold tIL4 becomes vapor and evaporates into the tank 1.

タンク1内の底部には冷媒4の溜り部があり、冷媒槽5
内で冷媒4が気化し%蒸発して不足する分をポンプ6と
配管7とを通して冷媒槽5へ冷媒4を補充する。
There is a reservoir of refrigerant 4 at the bottom of the tank 1, and a refrigerant tank 5
The refrigerant 4 is vaporized and % evaporated within the tank, and the refrigerant 4 is replenished into the refrigerant tank 5 through the pump 6 and piping 7.

変圧器タンク1内を二は低温時での変圧器の起動に際し
て冷媒4の蒸気がほとんど有・在しないためタンク1内
の圧力は低下し絶縁性が劣るので、予め高絶縁性のガス
8が封入されている。
In the transformer tank 1, when starting the transformer at low temperatures, there is almost no vapor of the refrigerant 4, so the pressure in the tank 1 decreases and the insulation is poor, so a highly insulating gas 8 is pre-filled. It is enclosed.

ところが、この絶縁ガス8が不凝縮性ガスである柳な場
合には、絶縁ガス8は冷媒4の蒸気によって加熱されて
も熱交換を行なわないため、タンク1内で冷媒4の蒸気
が絶縁カス8をタンク1の土部へ押し込む状態となり、
タンク1の下部C1冷々l+!4の蒸気が多く存在する
状態となる。
However, when the insulating gas 8 is a non-condensable gas, the insulating gas 8 does not exchange heat even when heated by the vapor of the refrigerant 4, so the vapor of the refrigerant 4 in the tank 1 8 is pushed into the soil of tank 1,
Lower part of tank 1 C1 cold l+! A state is reached in which a large amount of vapor No. 4 exists.

このため、俊゛圧器タンク1内の温度分布は第11図の
Xl−示すようC二なる。
Therefore, the temperature distribution within the depressurizer tank 1 becomes C2 as shown in FIG.

第111ン1において縦軸rr’、b、cは変圧器タン
クの上下方向位置を、横軸乙、Tにタンク1内の中央部
よ1)内壁1n1近傍の温度上昇111を各々示す。
In the 111th line 1, the vertical axes rr', b, and c indicate the vertical position of the transformer tank, and the horizontal axes B and T indicate the temperature rise 111 from the center of the tank 1 to the vicinity of the inner wall 1n1, respectively.

(の図から分るようにタンク上部aは温度上昇値が小さ
く、タンク下部Cは温度上タ1.値は犬きくなっている
(As can be seen from the figure, the temperature rise value is small in the tank upper part a, and the temperature rise value is small in the tank lower part C.

これll″を卸5縁カス8が不凝縮性カスであるような
場合には、冷媒4の蒸気が絶縁ガス8と混合しながら絶
縁ガス8を加熱し、タンク1の上部αへ押し上げる状態
となり、タンク1の上部αけ冷iW:蒸気の濃度が薄く
なり逆に絶縁ガスの#度が濃くな暑ハタンク上部aから
中央部すにかけて冷塊層が形成され、冷媒蒸気濃度の濃
いタンク1の中央部すから下部Cにかけては温黒−上昇
値が最大と々るとともに容積一定のタンク内で加熱され
14分たけ圧力が上昇する。
If the edge sludge 8 is non-condensable sludge, the vapor of the refrigerant 4 will mix with the insulating gas 8 and heat the insulating gas 8, pushing it up to the upper part α of the tank 1. , the upper part of tank 1 is cooled iW: When the concentration of vapor becomes thinner and the degree of insulating gas becomes thicker, a cold lump layer is formed from the upper part of the tank to the center part. From the center part to the lower part C, the temperature rise value reaches its maximum and the pressure increases by 14 minutes due to heating in a tank with a constant volume.

このことは系内が完全にガスと考えて、次の簡単な状態
式から明らかである。
This is clear from the following simple equation of state, assuming that the system is completely gas.

PV  =  GRT ここにPは圧力、■は容積、Gは声量、Rはガス定数、
Tは温度である。
PV = GRT where P is pressure, ■ is volume, G is volume, R is gas constant,
T is temperature.

この温度上昇値の最大部つまりタンク1の中央部から下
部、すなわち巻線2を収納する冷#檜5の対向部から下
側の部分のタンクlの壁面に熱交換器を配置することに
より冷媒4の蒸気は効率よく液化され第11図のYに示
すような温度上昇値に減少する。
By arranging a heat exchanger on the wall of the tank 1 at the maximum part of this temperature increase, that is, from the center to the lower part of the tank 1, that is, from the opposite part of the refrigerated #cypress 5 that houses the winding 2, the refrigerant The vapor of No. 4 is efficiently liquefied and the temperature rise is reduced to the value indicated by Y in FIG.

第12図は巻線・2を熱源としたときの入熱流束。。Figure 12 shows the heat input flux when winding 2 is used as the heat source. .

(”/Crl )を横軸にし、系内の到達圧力P (K
f/1ri−ar)s )を縦軸(−とったものである
(''/Crl) is the horizontal axis, and the ultimate pressure P (K
f/1ri-ar)s) is plotted on the vertical axis (-).

タンク1の壁面もしくFi壁壁面近傍C熟熱交換器ない
場合は第12図のXで示すように熱流束Q、の比較的小
さい値で圧力容器の限界1#: M (3Kg/rFI
I−oba )を超えるが、タンク1の壁面もしくは内
壁面近傍に熱交換器を具備することにより、第12図の
Yで示す様に熱流束Q5が高くなっても圧力容器の限界
116M(二は到達しない。
If there is no C heat exchanger near the wall of the tank 1 or the Fi wall, the limit of the pressure vessel 1#: M (3Kg/rFI
However, by providing a heat exchanger near the wall or inner wall of the tank 1, even if the heat flux Q5 becomes high as shown by Y in Fig. 12, the pressure vessel limit of 116M (2 is not reached.

この熱交換器はタンク1の壁面もしくは内壁面近傍(1
管11rもしくはプレスポード等で第14成した冷媒4
の通路9を設け、タンク1の下部の冷媒4の溜り部から
ポンプ6と配管7を連通し、タンク1の上部から冷媒通
路9へ冷媒4を供給し、冷媒〕11路9の下端はタンク
1の冷聾4の溜り部にある冷1194の液面下に設置す
ることにより、冷媒通路9内に系内のガス及び蒸気が浸
入することはなく。
This heat exchanger is installed near the wall or inner wall of tank 1 (1
Refrigerant 4 formed in the pipe 11r or press port etc.
A passage 9 is provided to communicate the pump 6 and piping 7 from the refrigerant 4 reservoir at the bottom of the tank 1, and supply the refrigerant 4 from the upper part of the tank 1 to the refrigerant passage 9. By installing the refrigerant 1194 below the liquid level in the reservoir of the refrigerant 4, gas and vapor within the system will not enter into the refrigerant passage 9.

冷ll114の液体のみが流動する、液冷の熱交換器が
形成される。
A liquid-cooled heat exchanger is formed in which only the liquid of cold 114 flows.

冷傅4の溜り部C二は第二の熱交換器1()を設置し、
タンク1の外より、例えば常温の水などの二次冷媒11
を配管12により供給する。
A second heat exchanger 1 () is installed in the reservoir part C2 of the reifu 4,
A secondary refrigerant 11 such as water at room temperature is supplied from outside the tank 1.
is supplied through piping 12.

この熱交換器10は管群もしくけプレスポード等により
製作し、上下方向または半径方向ともに単層もしくは多
層で構成し、タンク1の下部の冷媒4の溜り部で構造上
空いているスペースを十分活用するよう(=配置するこ
とにより、液体と液体との熱交換であり、さら(二冷媒
4と冷媒11とはそれぞれ流れを有するため最適な熱交
換がなされ、溜り部の冷媒4を有効g二冷却することが
できる。
This heat exchanger 10 is manufactured using a tube group or a press pod, etc., and is composed of a single layer or multiple layers in both the vertical and radial directions, and makes full use of the structurally vacant space in the reservoir of the refrigerant 4 at the bottom of the tank 1. By arranging the refrigerant 4 and the refrigerant 11, optimal heat exchange is achieved, and the refrigerant 4 in the reservoir is effectively cooled. can do.

nil記溜り部で冷却された冷媒4はポンプ6と配管7
とを経由1,7て冷媒槽5お工びタンク1の上部にある
冷媒通路9に供給される。− 冷媒通路9に供給された冷〃す、4はタンク壁面に冷奴
通−路9を設置し7た場合、タンク1の外部の外気とさ
らに熱交換を行ない冷却さオ]、且つタンク1内の冷媒
4の蒸気と熱交換を行ない熱を吸収して、前記溜り部へ
戻り、熱交換器10により再び冷却されるヤイクルをす
る。
The refrigerant 4 cooled in the nil storage section is transferred to the pump 6 and piping 7.
The refrigerant is supplied to the refrigerant passage 9 in the upper part of the tank 1 via the refrigerant tank 5 and the refrigerant passages 1 and 7. - If the refrigerant passage 9 is installed on the wall of the tank, the refrigerant supplied to the refrigerant passage 9 is further cooled by exchanging heat with the outside air outside the tank 1, and the inside of the tank 1 is cooled. It exchanges heat with the vapor of the refrigerant 4, absorbs the heat, returns to the reservoir, and is cooled again by the heat exchanger 10.

前記冷媒通路9の上端は冷媒槽5の上端対向部もしくけ
前記対向部の上方のどこC二あってもよI/)が、冷媒
通路9は内・外の熱交換を促進させるため(二は長い方
が有利である0 またタンク1の構造上杵されるならばタンク1の上面に
も、冷媒通路9を設けることも有゛効である。このこと
は、タンク1の上部に冷媒4の蒸気が希薄ながら存在し
、熱交換するためである〇一方、前HrL溜り部の冷I
s、4は前記目ζンブ6と配置管7とを経由(この部分
は別個の配管7と別イ1司σ)ポンプ6でもよい)し1
冷媒槽5内へ供給し、巻締2等から熱を吸収して蒸発し
、巻線2等を冷肩1・させる。
The upper end of the refrigerant passage 9 is located at the upper end of the refrigerant tank 5, and may be located anywhere above the opposing part. The longer the refrigerant passage 9 is, the more advantageous it is.0 Furthermore, if the structure of the tank 1 is to be punched, it is also effective to provide the refrigerant passage 9 on the upper surface of the tank 1. On the other hand, the cold I vapor in the front HrL reservoir is
s and 4 pass through the eye ζ tube 6 and the arrangement pipe 7 (this part may be a separate piping 7 and a separate pump 6) and 1
The refrigerant is supplied into the refrigerant tank 5, absorbs heat from the windings 2, etc., and evaporates, making the windings 2, etc. cold shoulder 1.

蒸発した冷媒4を袖9程度に冷媒4を供給する場合は、
冷媒槽5内の冷媒4はほぼ飽和温度C近く巻線2等はか
なり温度上昇し、タンク1内の温lJj上昇値は前記第
11図のYの値となり圧力は第12図の同じくYで示さ
れる状態である。
When supplying evaporated refrigerant 4 to sleeve 9,
The refrigerant 4 in the refrigerant tank 5 is close to the saturation temperature C, and the temperature of the winding 2, etc. increases considerably, and the temperature lJj increase in the tank 1 becomes the value Y in FIG. 11, and the pressure is also the same Y in FIG. This is the state shown.

そこで、宿イリ部の冷媒4の供給量を増力口させて、冷
媒槽5の上部より外$1111=落下するようC二冷媒
4を供給すると巻線2と冷媒4との熱交換が促進され、
いわゆるサブクールされるため、巻線2の温度上昇値は
有効Cユ低下し、タンク1内の温筬上昇値は前記第11
図の2となり、系内圧力は第12図の2の状態となる。
Therefore, by increasing the supply amount of the refrigerant 4 in the storage area and supplying the C2 refrigerant 4 so that it falls from the top of the refrigerant tank 5 to the outside, heat exchange between the winding 2 and the refrigerant 4 is promoted. ,
Because of the so-called subcooling, the temperature rise value of the winding 2 is reduced by effective C, and the temperature rise value in the tank 1 is equal to the above-mentioned 11th temperature rise value.
2 in the figure, and the system pressure becomes the state 2 in FIG. 12.

次に本発明の他の実施例を説明する。第2図は冷媒通路
9の他の実施例を示す要部概略断面図である。
Next, another embodiment of the present invention will be described. FIG. 2 is a schematic sectional view of a main part showing another embodiment of the refrigerant passage 9.

冷媒通路9はタンク1の壁m1近傍に設置することによ
り、タンク1内の冷媒4の蒸気との接触面積が拡大され
るため、冷媒蒸気と、冷却された冷媒4との熱交換を促
進することができる。
By installing the refrigerant passage 9 near the wall m1 of the tank 1, the contact area with the vapor of the refrigerant 4 in the tank 1 is expanded, thereby promoting heat exchange between the refrigerant vapor and the cooled refrigerant 4. be able to.

第3図は冷媒4の冷却力法に関する他の実施例を示す要
部断面図である。
FIG. 3 is a sectional view of a main part showing another embodiment of the cooling power method of the refrigerant 4. In FIG.

タンク1の下部の冷媒4の溜り部のスペースが十分とれ
ず、第二次冷媒で前記溜り部の冷媒4を十分冷却できな
い様な場合(−は、w、3図C二示すようζ−ポンプ6
の前段もしくは後段に熱交換器13を配置し、例えば常
温の水などの二次冷媒11を配管12により供給して冷
媒4を冷却させる。
If there is not enough space for the refrigerant 4 reservoir at the bottom of the tank 1, and the secondary refrigerant cannot sufficiently cool the refrigerant 4 in the reservoir (- means w, ζ-pump as shown in Figure 3C2). 6
A heat exchanger 13 is disposed before or after the refrigerant 4, and a secondary refrigerant 11 such as water at room temperature is supplied through a pipe 12 to cool the refrigerant 4.

熱交換器1.3 Fi第1図の熱交換器1.(lと併用
して用いハばさらに効率よく冷媒4を冷却すること75
(できるO 第4図は冷媒槽5の位置に関する他の実施例を示す要部
断面図で冷媒槽5の底部とタンク1の溜り部の冷媒4の
液面との間は隙間がなl、N様C二するかもしく0伶媒
槽5の底部を前記冷媒4の液1石−丁にすること(二よ
り、冷媒m5より蒸yI’f′iL、た冷々椿4の蒸気
は冷媒槽5の下面≦1溜まること力玉なくなるため、つ
まり冷媒4の蒸気が滞留する′#積75二減少し、冷媒
4の蒸気は効率よく冷却さ才りること(=なるC 第5図から第1C1図までは冷t1M一槽5内の冷媒4
0入口と、冷媒液4の末節牙11度(すブタ−21度)
を強めるための他の実施例を示す狭部VLyi面図であ
る。
Heat Exchanger 1.3 Fi Heat Exchanger 1. (If used in combination with l, the refrigerant 4 can be cooled more efficiently.
(Can be done) FIG. 4 is a cross-sectional view of a main part showing another embodiment regarding the position of the refrigerant tank 5, and there is no gap between the bottom of the refrigerant tank 5 and the liquid level of the refrigerant 4 in the reservoir of the tank 1. The bottom of the refrigerant tank 5 should be made into a liquid of the refrigerant 4. Since the lower surface of 5 ≦ 1 accumulates and there are no more power balls, that is, the vapor of refrigerant 4 stagnates decreases by 752, and the vapor of refrigerant 4 is efficiently cooled (= becomes C). Up to 1C1 figure, cold t1M refrigerant 4 in one tank 5
0 inlet and refrigerant liquid 4 distal phalanx 11 degrees (subbuta -21 degrees)
FIG. 7 is a plan view of a narrow portion VLyi showing another embodiment for increasing the strength.

第5図C二おいて冷媒41’l+ 5の側面の内外面に
讃・もしくけ板形状の冷媒ゴI】路14を配置し、前記
冷媒jl+路I4の下端≦二配管7を打、続し、冷媒通
路14C)上端から冷媒@5に艙1人して冷媒槽5内の
下方から冷媒4を供給すると、前記冷媒槽5の外側C二
ある冷tJIJ通路14内は冷却された冷媒5が通過す
るたV)熱交換器と同じ作用を有し、加熱された冷媒4
の蒸気を凝縮せしめ、タンク1内の温度上昇値を抑制さ
せ、圧力上外を減少させる。
In FIG. 5C2, a refrigerant passage 14 in the shape of a plate is arranged on the inner and outer surfaces of the side surfaces of the refrigerant 41'l+5, and the lower end of the refrigerant jl+ passage I4 ≦2 piping 7 is connected. Then, when one person supplies the refrigerant 4 to the refrigerant@5 from the upper end of the refrigerant passage 14C) from the lower part of the refrigerant tank 5, the inside of the cold JIJ passage 14 located outside the refrigerant tank 5 is filled with the cooled refrigerant 5. V) Has the same effect as a heat exchanger and heated refrigerant 4
The steam is condensed, the temperature rise inside the tank 1 is suppressed, and the pressure rise is reduced.

また、前記配管7と冷媒通路14を連通して、冷媒4の
供給量を増加させると、冷媒槽5内の加熱した冷媒4i
t前記冷媒通路14の外面を伝ってタンク1の冷媒4の
溜り部へ落下する際に、熱交換され、冷媒4の末節オ■
度が高められ、さらに有効(二冷却される。
Moreover, when the piping 7 and the refrigerant passage 14 are connected to increase the supply amount of the refrigerant 4, the heated refrigerant 4i in the refrigerant tank 5
t When the refrigerant 4 falls along the outer surface of the refrigerant passage 14 into the pool of the refrigerant 4 in the tank 1, heat is exchanged and the refrigerant 4 is
The temperature is increased and further effective (secondary cooling is performed).

第6図は第5図の実施例の冷111に1 ’>16路1
4を早層C二した実施例で、冷媒通路14の上ifl〜
5−配管7を連通し、冷媒4を供給してもよい。
Figure 6 shows the cold 111 of the embodiment shown in Figure 5.
In this example, the upper part of the refrigerant passage 14 is
5-Piping 7 may be connected to supply the refrigerant 4.

第7図は第5図の実施例の冷−媒連路14は冷媒槽5内
で冷媒槽5や上端と中火部との中間ハi(−二前記冷媒
通路14の出口を内4fS L fもので、配管7と冷
媒通路14を連通した冷媒4は冷媒槽5内の過熱した冷
媒4と混合する際(二、冷媒4vI15内で冷奴4が上
下位置で温度の大きな差がない様に設置したものである
FIG. 7 shows that the refrigerant passage 14 of the embodiment shown in FIG. When the refrigerant 4 communicating with the piping 7 and the refrigerant passage 14 is mixed with the superheated refrigerant 4 in the refrigerant tank 5 (2. In the refrigerant 4vI 15, the refrigerant 4 is heated so that there is no large difference in temperature between the upper and lower positions. It was installed.

第8図は冷媒槽に関する他の実施例を示す要部断面図で
冷媒槽5の側面に管もしくけ枡形状で構hVシた黙契換
器15を配置し、タンク1外より例えば常温の水などを
用いた第二次冷w、11を配管16を軽重して供給する
ことにより、直接的(−冷媒4!15内の冷媒4を冷却
ぜしぬ未fFrd和度を高め、さらにタンク1の溜り部
の冷媒4を配管7による供給量をJ゛、・f加させる場
合1−は第5図の場合よりも強力に冷却することができ
る。
FIG. 8 is a cross-sectional view of a main part showing another embodiment of the refrigerant tank, in which a silent exchanger 15 configured in the form of a pipe or a square is arranged on the side of the refrigerant tank 5, and water at room temperature, for example, is supplied from outside the tank 1. By supplying the secondary cooling w, 11 using a pipe 16, etc., the temperature of the refrigerant 4 in the tank 1 is increased. In the case where the refrigerant 4 in the reservoir part is increased by J', ·f to the amount supplied through the pipe 7, cooling can be more powerful than in the case shown in FIG.

第9図第用図は巻線2内に冷媒通路J7を配置ずjる実
施例の男(部り面図で、巻線2内に冷好通路17をN9
 置し、前記冷媒通路17の対向部の冷媒槽5の壁+/
iiに冷媒4の出口18を配置し、巻Iv!i+2から
の発熱を効率よく冷傳4に吸収させるものである○「づ
?、明の効果」 以上説明したように本発明C二よればタンクの壁面もし
くけ壁1iii近傍ζ二冷媒の液を通過させる冷媒通路
を配置することにより、冷媒通路が熱交′p器の働きを
すると共(−冷却器の作用も併せ持つという作用にエリ
、冷却性能が向上し、圧力容器の規準以下で運転できる
ため安全性が高く、機器の小型化且つ軽量化をすること
ができみので用地問題や騒音問題も解決することができ
る。
FIG. 9 is a partial view of an embodiment in which the refrigerant passage J7 is not arranged inside the winding 2.
and the wall of the refrigerant tank 5 opposite the refrigerant passage 17 +/
ii, the outlet 18 of the refrigerant 4 is arranged, and the volume Iv! The heat generated from i+2 is efficiently absorbed into the refrigerant 4. ○"Zu?, light effect" As explained above, according to the present invention C2, the liquid of the refrigerant ζ2 is absorbed near the wall surface of the tank and the wall 1iii. By arranging the refrigerant passage to pass through, the refrigerant passage acts as a heat exchanger (and also acts as a cooler), improving cooling performance and allowing operation below the pressure vessel standard. Therefore, it is highly safe, and the equipment can be made smaller and lighter, which also solves site problems and noise problems.

また変圧器等の静止誘導機器が過熱しても絶縁ガス及び
冷媒は不燃性であるため火災等を起すことはなく防爆性
にも秀れている。
In addition, even if stationary induction equipment such as a transformer overheats, the insulating gas and refrigerant are nonflammable, so no fire will occur, and the device is excellent in explosion-proof properties.

本発明を使用することにより安全性の高い、高電圧で大
容量の変圧器等の静止誘導機器を掃供することができる
By using the present invention, stationary induction equipment such as high-voltage, large-capacity transformers can be swept with high safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による静止誘導機器のl!i
f、略断面図、第2図から第w図は要部を示す概略断面
図、第1]図第12図は温度と圧カC関する特性図であ
る。 1・・・変圧器タンク  2・・・巻線3・・・鉄心 
     4・・・冷媒5・・・冷媒槽     6・
・・ポンプ7、・・・配管      8・・・絶縁ガ
ス9・・・冷媒通路    lO・・・熱交換器11・
・・二次冷媒    12・・・配管13・・・熱交換
器    14・・・冷媒通路15・・・熱交換器  
  16川配管17・・・冷液通路    18川冷媒
の出口代理人 弁理士 則 近 憲 佑 (はが1名)
第1図 乙    / 第2図 第3図 第4図 第5図 9 第6図 第7図 第8図 第9図 第10図 第11図 第12図
FIG. 1 shows l! of a stationary induction device according to an embodiment of the present invention. i
Figures 2 to 5 are schematic cross-sectional views showing important parts, Figure 1 and Figure 12 are characteristic diagrams relating to temperature and pressure C. 1...Transformer tank 2...Winding 3...Iron core
4... Refrigerant 5... Refrigerant tank 6.
... Pump 7, ... Piping 8 ... Insulating gas 9 ... Refrigerant passage lO ... Heat exchanger 11.
... Secondary refrigerant 12 ... Piping 13 ... Heat exchanger 14 ... Refrigerant passage 15 ... Heat exchanger
16 River piping 17...Cold liquid passage 18 River Refrigerant outlet agent Patent attorney Noriyuki Chika (1 person)
Figure 1 Figure B / Figure 2 Figure 3 Figure 4 Figure 5 Figure 9 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12

Claims (1)

【特許請求の範囲】 (1)  タンク内に絶縁ガスを充填するとともに該タ
ンク内の中間部に巻線を巻回した鉄心と冷媒とを収納し
た冷媒槽を配fF1.L 、前記タンク内下部に前記冷
媒の溜り部を設け、この榴り部に第二次冷媒を通過させ
る熱交換器を設け、前記タンク内下部の冷媒の溜り部と
、前記冷媒槽との曲をポンプを介して配管により連つ1
口7、前記タンクの壁面もしくけ内壁面近傍C二管群も
しくはブレスホード等C二より構成した冷媒通路を設け
、前記冷媒通路の上部は前記冷媒の溜り部との間をポン
プを介して配管により連通し、前記冷媒通路の下部は前
記冷U!i+の溜り部の冷媒液面下に配置することを特
徴とする静止誘4機器、。 5 (2、特許請求の範囲第1拍記載の静止誘導機器におい
て前記冷媒の溜り部と前記冷媒槽および前記冷媒)内路
への配管のポンプの前部もしくはポンプの後部(二第二
次冷奴を通過させる熱交排器を1台もしくけ機数台配置
することを特徴とする静止誘導機器。 (81前記冷媒槽の外壁もしくけ内壁3二冷媒通路を配
置子ることを特徴とする特許り青水の範囲第1項および
第2項記載の静止誘導機器。 (4)前配巻線内に冷媒通路を設け、前記冷婢、通路に
対向する冷媒槽に前記冷媒の出口部を配置することを特
徴とする特許請求の範囲第1項および第2項記載の静止
誘導機器。
[Scope of Claims] (1) A refrigerant tank filled with an insulating gas and storing a refrigerant and an iron core around which a winding is wound in the middle part of the tank is arranged at fF1. L, a refrigerant reservoir is provided in the lower part of the tank, a heat exchanger for passing the secondary refrigerant is provided in the curved part, and a curve is formed between the refrigerant reservoir in the lower part of the tank and the refrigerant tank. connected by piping via a pump 1
Port 7, a refrigerant passage consisting of a group of pipes or a breather is provided near the wall surface or inner wall surface of the tank, and the upper part of the refrigerant passage is connected to the refrigerant reservoir by piping via a pump. The lower part of the refrigerant passage is connected to the cooling U! A stationary diode 4 device, characterized in that it is disposed below the refrigerant liquid level in the i+ reservoir. 5 (2. In the stationary induction device according to claim 1, the refrigerant reservoir, the refrigerant tank, and the refrigerant) are connected to the front part of the pump or the rear part of the pump (the second secondary refrigerated tube). A stationary induction device characterized by arranging one or several heat exchanger exhaust devices to allow the refrigerant to pass through. The stationary induction device according to paragraphs 1 and 2, wherein a refrigerant passage is provided in the front winding, and an outlet portion of the refrigerant is arranged in a refrigerant tank facing the passage. A stationary guidance device according to claims 1 and 2, characterized in that:
JP1545383A 1983-02-03 1983-02-03 Stationary induction apparatus Pending JPS59150410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1545383A JPS59150410A (en) 1983-02-03 1983-02-03 Stationary induction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1545383A JPS59150410A (en) 1983-02-03 1983-02-03 Stationary induction apparatus

Publications (1)

Publication Number Publication Date
JPS59150410A true JPS59150410A (en) 1984-08-28

Family

ID=11889215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1545383A Pending JPS59150410A (en) 1983-02-03 1983-02-03 Stationary induction apparatus

Country Status (1)

Country Link
JP (1) JPS59150410A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109215990A (en) * 2018-09-04 2019-01-15 常逸坤 A kind of low noise level transformer
US11594364B2 (en) * 2020-03-18 2023-02-28 Hamilton Sundstrand Corporation Systems and methods for thermal management in inductors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109215990A (en) * 2018-09-04 2019-01-15 常逸坤 A kind of low noise level transformer
US11594364B2 (en) * 2020-03-18 2023-02-28 Hamilton Sundstrand Corporation Systems and methods for thermal management in inductors

Similar Documents

Publication Publication Date Title
JPS58111307A (en) Gas-insulated transformer
CN108352372A (en) For the cooling method and apparatus for immersing the superconducting device in liquid nitrogen
WO2009105966A1 (en) Cooling system of oil-immersed transformer and method thereof
JPS5863111A (en) Electromagnetic induction device
JPS59150410A (en) Stationary induction apparatus
EP0117349B1 (en) Cooling apparatus for an electrical transformer
JPS5860512A (en) Evaporation cooling induction electric appliance
CN209691532U (en) A kind of 220kV transpiration-cooled transformer
JPS62141398A (en) Method of raising temperature of low temperature lpg and apparatus thereof
JPS6032334B2 (en) transformer
JPS62266810A (en) Oil-immersed induction electric apparatus
JPS63153807A (en) Induction type electric apparatus utilizing evaporative cooling
JPS624309A (en) Cryogenic apparatus
JPH03113255A (en) Evaporation cooling type electric equipment
JPH02184006A (en) Electromagnetic induction apparatus
JPS6336658Y2 (en)
JPS61107096A (en) Method of transferring heat energy
JPS5984509A (en) Stationary induction electric apparatus
US3299669A (en) Absorption refrigeration
JP3028853B2 (en) Stationary induction device
JPS596507A (en) Stationary induction apparatus
JPS59124109A (en) Stationary induction electric apparatus
JPS5961019A (en) Oil immersed transformer
JPS5852466Y2 (en) Heat exchanger for absorption refrigerator
JPS6011422Y2 (en) evaporative cooling equipment