JPH0361574B2 - - Google Patents

Info

Publication number
JPH0361574B2
JPH0361574B2 JP58011006A JP1100683A JPH0361574B2 JP H0361574 B2 JPH0361574 B2 JP H0361574B2 JP 58011006 A JP58011006 A JP 58011006A JP 1100683 A JP1100683 A JP 1100683A JP H0361574 B2 JPH0361574 B2 JP H0361574B2
Authority
JP
Japan
Prior art keywords
film
less
die
air
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58011006A
Other languages
Japanese (ja)
Other versions
JPS59136224A (en
Inventor
Kyoshi Namikawa
Takeshi Fujii
Satoru Hosoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58011006A priority Critical patent/JPS59136224A/en
Publication of JPS59136224A publication Critical patent/JPS59136224A/en
Publication of JPH0361574B2 publication Critical patent/JPH0361574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
    • B29C48/902Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies internally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/9125Cooling of hollow articles of tubular films internally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0019Combinations of extrusion moulding with other shaping operations combined with shaping by flattening, folding or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エチレンとα−オレフインとの共重
合体をフイルム加工することによつて得られる配
向が抑制された引裂強度バランスの良い厚さ30μ
以下の新規な超高耐衝撃性フイルムの製造法に関
する。更に詳しく言えば、密度が0.895〜0.935
g/cm3で、かつメルトインデツクスが0.5g/10
分以下のエチレンと炭素数が3以上18以下のα−
オレフインとの共重合体(以下エチレン−α−オ
レフイン共重合体樹脂)をフイルム加工すること
によつて得られるフイルム加工時の機械方向を基
準とした結晶格子b軸の配向関数fβが−0.1以上
で、かつc軸の配向関数fεが0.1以下である配向
が抑制された引裂強度バランスの良い厚さ30μ以
下の超高耐衝撃性フイルムの製造法に関するもの
である。 エチレン−α−オレフイン共重合体樹脂は、所
謂チーグラー型触媒やフイリツプス型触媒を用い
て種々のプロセスで工業的に生産されている。昨
今直鎖状低密度ポリエチレンとして市販されてい
るものは、その一つである。エチレン−α−オレ
フイン共重合体樹脂は、一般的には加熱プレスシ
ートにおける引張り特性や耐衝撃性等の機械的性
質は非常に優れているが、加工時のトルクが高
く、また溶融物の強度(以下メルトテンシヨンと
略称する。)が小さいために加工安定性が悪いと
いう欠点を有している。 エチレン−α−オレフイン共重合体樹脂におい
ては、プレスシートの耐衝撃性、加工性に対する
メルトインデツクスや密度などの影響は次のとお
りである。メルトインデツクスが小さく密度が小
さいほど耐衝撃性は向上する。一方メルトインデ
ツクスが小さいほど加工時のトルクが高くメルト
テンシヨンが高くなり、加工時にモーター消費電
力は多いが反面加工安定性は改良される。従つ
て、小さいメルトインデツクスのもののトルクを
低下させるために異なるメルトインデツクスの樹
脂をブレンドしたり、特別な触媒を用いて重合
し、分子量分布を広くする等の手法が一般的にと
られている。更にエチレン−α−オレフイン共重
合体樹脂の成形物の耐衝撃性は、成形物の厚みに
よつてもまた成形加工法によつても大きく変化す
る。即ちシート、パイプおよび型物等の厚物成形
物においては、機械的性質のMD/TDバランス
が良く樹脂本来の良好な耐衝撃性が得られる。し
かしTダイフイルム、インフレーシヨンフイルム
等の薄物成形物においては、成形加工時における
特有の分子配向のために、機械的性質のMD/
TDバランスが悪く、また樹脂本来の良好な耐衝
撃性が得られない。この傾向は、30μ以下の薄物
フイルムにおいて著しい。ここでMDは成形加工
時の機械方向を表わし、TDはそれに垂直な方向
を表わす。機械的性質のMD/TDバランスは、
エチレン−α−オレフイン樹脂のメルトインデツ
クスが小さいほど、また密度が高いほど悪くなり
結果として本来の良好な耐衝撃性が得られない。 これらの点を解決するために現在までにメルト
インデツクスの小さい高密度ポリエチレン(以
下、高分子量高密度ポリエチレンと略称する。)
について、種々のフイルム加工法が提案されてお
り、薄物フイルムにおいて、樹脂本来の良好な耐
衝撃性が得られることが知られている。この高分
子量高密度ポリエチレンフイルムの製造技術の一
例は、極薄強化フイルム成形法として知られ、
種々の文献において解説がなされている。(例え
ば木下、“プラスチツクス”、29巻12号、p70〜
78、1978年)この極薄強化フイルムは最近規格
装、ゴミ袋やレジ袋等広範囲に用いられている。 本発明者らはかかるエチレン−α−オレフイン
共重合体樹脂フイルムの耐衝撃性について鋭意検
討を重ねた結果、密度が0.895〜0.935g/cm3でか
つメルトインデツクスが0.5g/10分以下のエチ
レン−α−オレフイン共重合体を以下に述べる方
法でフイルム加工することにより得られる、MD
方向を基準とした結晶格子b軸の配向関数fβが−
0.1以上、c軸の配向関数fεが0.1以下である配向
の抑制された厚み30μ以下のフイルムが引裂強度
バランスが良く超高耐衝撃性を発現するという驚
くべき事実を発見し、本願発明に至つたものであ
る。 すなわち、本願発明は、密度が0.895g/cm3
上0.935g/cm3以下で、かつメルトインデツクス
が0.5g/10分以下のエチレンと炭素数が3以上
18以下のα−オレフインとの共重合体を溶融押出
法にてダイスから押出すことにより管状溶融体を
得、該管状溶融体を該ダイスと同芯の円錘状内部
マンドレルを用いて該マンドレルに添わせる形で
ダイスの口径より小さくくびれさせ、次いでブロ
ーアツプ比3以上に膨張させてバブルを形成させ
固化位置をダイ出口からダイの口径の5倍以上の
位置にくるように空冷を行なうことにより、配向
関数fβが−0.1以上、配向関数fεが0.1以下および
厚みが30μ以下であるフイルムを得ることを特徴
とする超高耐衝撃性フイルムの製造法に関するも
のである。 ここで各格子軸の配向関数はsteinらに従い、
偏光赤外吸収スペクトルからMDを基準として次
式によつて求められる。(R.E.Read.R.Stein.
Macromolecules.1.116(1968年)) fα=(D730-1)/(D730+2) =(3cos2α-1)/2 (1) fβ=(D720-1)/(D720+2) =(3cos2β-1)/2 (2) fε=−(fα+fβ) (3) D730=A(730cm-1)/A⊥(730cm-1) (4) D720=A(720cm-1)/A⊥(720cm-1) (5) 各記号の表わす意味は次の通りである。 fα,fβ及びfεは各々結晶格子a軸b軸及びc軸
の配向関数である。D730及びD720は各々波数
730cm-1及び720cm-1における赤外二色比であり、
表示波数におけるMD及びTDの各々の偏光赤外
スペクトルの吸光度A及びA⊥の比として式(4)
及び(5)で定義される。 またα及びβは各々a軸及びb軸とMDのなす
角度である。インフレーシヨンフイルムにおいて
最も配向が進んだ状態においては、結晶格子のc
軸とMDが一致しα=β=90°となりfα=−0.5,
fβ=−0.5,fε=1となる。実際のインフレーシ
ヨンフイルムにおいては、fα,fβ>−0.5,fε<
1でありこれらの値がインフレーシヨンフイルム
の配向の抑制状態を表現している。(インフレー
シヨンフイルムの配向をモデル的に計算した一例
として、松村、長沢、“高分子論文集”、33巻4
号、p171(1976年)がある。) 本発明で用いられるエチレン−α−オレフイン
共重合体は、エチレンと炭素数が3以上18以下の
α−オレフインとの共重合体であり、共重合成分
であるα−オレフインとしては、一般式R−CH
=CH2(式中Rは炭素数1〜16のアルキル基を示
す。)で表わされる化合物で、その具体例として
はプロピレン、ブテン−1、ペンテン−1、ヘキ
セン−1、ヘプテン−1、オクテン−1、ノネン
−1、デセン−1、4−メチル−ペンテン−1、
4−メチル−ヘキセン−1、4,4−ジメチル−
ペンテン−1等があげられる。かかるエチレン−
α−オレフイン共重合体は、エチレンとα−オレ
フインを遷移金属触媒を用いて共重合することに
より得られる。密度については、α−オレフイン
の種類及び共重合量によつて制御され、メルトイ
ンデツクスは連鎖移動剤の種類及び量によつて制
御される。触媒や重合方法については特に制約は
なく、例えば触媒としては、所謂チーグラー型触
媒やフイリツプス型触媒が挙げられ、重合方法と
しては所謂スラリー重合、溶液重合や気相重合等
が挙げられる。 エチレン−α−オレフイン共重合体としては、
密度が0.895〜0.935g/cm3でかつメルトインデツ
クスが0.5g/10分以下のものが用いられ、特に
密度が0.910〜0.920g/cm3でありかつメルトイン
デツクスが0.3g/10分以下のものが好適である。
密度が0.895g/cm3未満のものは、フイルムのブ
ロツキングが大きいので実用上用いられない。ま
た0.935g/cm3を超えるものはフイルムの耐衝撃
性が十分に得られず用いられない。またメルトイ
ンデツクスが0.5g/10分を超えるものは、フイ
ルムの耐衝撃性が十分に得られず、また以下に述
べる空冷インフレーシヨンフイルム加工において
バブルの安定性が十分でなく用いられない。 かかるエチレン−α−オレフイン共重合体を本
発明によるフイルム加工法を用いて加工しMD方
向を基準とした結晶格子b軸の配向関数fβを−
0.1以上でかつc軸の配向関数fεを0.1以下に制御
すれば配向の抑制された引裂強度バランスが良い
30μ以下の超高耐衝撃性の薄物フイルムが得られ
る。b軸の配向関数fβが−0.1未満であるか若し
くはc軸の配向関数fεが0.1を超える30μ以下の薄
物フイルムは本来の超高耐衝撃性は得られない。
また30μ以下の薄物フイルムのb軸の配向関数fβ
が−0.1以上でかつc軸の配向関数fεが0.1以下で
あつても、原料のエチレン−α−オレフイン共重
合体樹脂のメルトインデツクスが0.5g/10分を
超えるものは、本来耐衝撃性が低いので超高耐衝
撃性薄物フイルムは得られない。 一般的な空冷インフレーシヨンフイルム成形プ
ロセスは、溶融体を管状スリツト(以下ダイと略
称する)から押出し、内部に一定容量の空気を吹
き込んで膨張させること、更に外側からブロワー
を用いて空気冷却しながら、一定の引取速度で引
き取り巻取機に巻取ることより構成される。本発
明にによるフイルム加工法を次に説明する。空冷
インフレーシヨンフイルム加工する際、ダイと同
芯の円錘状内部マンドレルを用いて、ダイより押
出された管状溶融体の口径を該マンドレルに添わ
せる形で、ダイの口径より小さくくびれさせてか
ら、ブローアツプ比3以上に膨張させてバブルを
形成させ、固化位置をダイ出口からダイの口径の
5倍以上の位置にくる様に空冷を行つて成形加工
する方法である。以下該空冷インフレーシヨンフ
イルム加工法の要旨を図面を用いて説明する。第
1図−1及び第1−2は各々本発明19μ以下及び
20〜30μの薄物フイルムの空冷インフレーシヨン
フイルム加工におけるくびれたバブル形状及び使
用する円錘状内部マンドレル4の形状を示す概念
図である。(以下、これらの加工法を各々加工法
1及び加工法2と略称する。)第2図は通常の空
冷インフレーシヨンフイルム加工におけるバブル
の形状を示す概念図である。(以下本加工法を加
工法3と略称する。)本発明の配向が抑制された
厚さ30μ以下の超高耐衝撃性インフレーシヨンフ
イルムの加工上の肝要な点は、ダイス1より押出
された管状溶融体の口径を、ダイス1の口径より
小さくくびれさせてから、ブローアツプ比3以上
に膨張させてバブルを形成させ、固化位置3をダ
イ出口からダイの口径の5倍以上の位置にくる様
にエアリング2で空冷を行うことである。円錘状
内部マンドレル4はバブルの安定性を保持するた
めに用いられたものであるが、メルトインデツク
スが0.5g/10分を超えるエチレン−α−オレフ
イン共重合体樹脂は円錘状内部マンドレルを用い
てもなおバブルの安定性を保持し得ない。加工法
3の通常の空冷インフレーシヨン加工法において
はバブルの安定性を保持するためには、ブローア
ツプ比を3未満にし、固化位置3はダイ出口から
ダイ口径の2〜5倍になる様にエアリング2で空
冷を行う必要があり、その場合には加工法1また
は2の様なバブルの形状はとり得ない。 また密度が0.920g/cm3以下の低密度のエチレ
ン−α−オレフイン共重合体樹脂の加工法1によ
る空冷インフレーシヨンフイルム加工においては
ダイスを出た円管状溶融体の円錘状内部マンドレ
ル4への粘着が不規則に発生することがあり、バ
ブルの安定性を損うことがある。この場合には、
第3図に示す様に特殊円錘状内部マンドレル5と
微少空気循環システム6を組み合わせて用いるこ
とにより、くびれたバブルの安定化を図ると同時
に微少流量でかつ微少圧力の空気を循環させるこ
とによつてフイルムの内部マンドレルへの粘着の
防止を図ることが必要である。(以下本加工法を
加工法4と略称する。) 以下本発明により得られる超高耐衝撃性フイル
ムは、薄物フイルムで耐衝撃性の要求される用
途、例えば農業用ポリエチレンフイルム、ゴミ
袋、規格袋等において好適に用いられ同一性能を
発揮するために従来のフイルムより薄肉化出来る
ため省資源の面において実用上極めて価値の高い
ものである。 次に本発明で使用する物性値の定義を以下に示
す。 (1)メルトインデツクス JIS K6760−1981に規定
された方法による。測定温度は190℃である。 (2)密度 JIS K6760−1981に規定された方法によ
る。 (3)引張衝撃強度 ASTM D1822−61に規定され
た方法による。 (4)配向関数 偏光赤外吸収スペクトル法を用い
R.Steinらの方法による。(Macromoleules.1,
116(1968年)参照) (5)引裂き強度 エルメンドルフ引裂き強さのこと
で、JIS Z−1702に規定された方法による。大
きいほど引裂き性が優れている。 (6)引裂き強度バランス 引裂き強度のMD値の
TD値に対する比で表わす。1に近いほどバラ
ンスは良好である。 (7)落錘衝撃強度 ダートインパクトのことで、
ASTM D1709に規定さされた方法による。 次に本発明を実施例によつて具体的に説明する
が、本発明は要旨を逸脱しない限り実施例に限定
されるものではない。 以下の実施例においては、次の空冷インフレー
シヨンフイルム加工条件が共通の条件として用い
られる。 (1) 装置:トミー機械工業(株)製IFA−600−
50 (2) ダイ:75φ、ギヤツプ2.5mm、マニスピルダイ (3) 加工温度:200℃ (4) 押出量:15Kg/Hr (5) 冷却:空冷一段冷却 その他の条件、(6)ブローアツプ比、(7)固化位置
及び(8)フイルム厚みについては個々の実施例にお
いて述べる。 実施例1〜2、比較例1 エチレン−α−オレフイン共重合体樹脂として
第1表に示す様な種々のエチレン−ブテン−1共
重合体(原料樹脂1〜3)を用い、加工法2を用
いて空冷インフレーシヨンフイルム加工を行い、
バブルの安定性の評価を行つた。各実施例及び比
較例の加工法、ブローアツプ比、固化位置及びフ
イルム厚みの加工条件は第1表に示す通りであ
る。第1表に示す様に、メルトインデツクスが
0.5g/10分以下のエチレン−ブテン−1共重合
体(原料樹脂1〜2)はバブルの安定性は十分良
い(実施例1〜2)が、メルトインデツクスが
0.5g/10分を超えるエチレン−ブテン−1共重
合体(原料樹脂3)はバブルの安定性が十分でな
い。(比較例1) 実施例3〜5、比較例2〜4 エチレン−α−オレフイン共重合体樹脂として
メルトインデツクスが0.30g/10分、密度が
0.917g/cm3のエチレン−ブテン−1共重合体
(原料樹脂4)を、本発明に示す空冷インフレー
シヨンフイルム加工法(加工法1,2もしくは
4)及び通常の空冷インフレーシヨンフイルム加
工法(加工法3)を用いて、各々10、20及び30μ
のフイルムを製膜しフイルム物性の比較を行つ
た。各実施例及び比較例の加工法、ブローアツプ
比、固化位置及びフイルム厚みの加工条件は第2
表に示す通りである。ブローアツプ比については
通常の空冷インフレーシヨンフイルム加工法(比
較例2〜4)においては、バブルの安定性を考え
て、2.3と小さい条件を用いた。いずれの加工法
を用いてもフイルム厚みが小さいほど、結晶格子
c軸の配向が進み、フイルムの引裂き強度バラン
スが悪くなる。落錘衝撃強度は通常の空冷インフ
レーシヨンフイルム加工法を用いて製膜したもの
がフイルム厚みが減少すると共に大幅に低下する
(比較例2〜4)に対し、本発明に示す空冷イン
フレーシヨンフイルム加工法を用いて製膜したも
のは逆に大幅に向上する。(実施例3〜5)結晶
格子b軸の配向関数fβが−0.1以上でかつc軸の
配向関数が0.1以下の本発明のフイルム(実施例
3〜5)がこの両者の配向関数の条件を満足しな
い通常の空冷インフレーシヨンフイルム(比較例
2〜4)と同一厚さのフイルムにおいて、大幅に
引裂き強度バランスが優れ、落錘衝撃強度が優れ
ていることがわかる。 実施例6、比較例5 エチレン−α−オレフイン共重合体樹脂として
第3表に示すエチレン−ブテン−1共重合体(原
料樹脂5〜6)を用い、原料樹脂5については本
発明に示す空冷インフレーシヨンフイルム加工法
(加工法2)、原料樹脂6については通常の空冷イ
ンフレーシヨンフイルム加工法(加工法3)を用
いて、共に30μのフイルムを製膜しフイルム物性
の比較を行つた。各実施例及び比較例の加工法、
ブローアツプ比、固化位置及びフイルム厚みの加
工条件は第3表に示す通りである。ブローアツプ
比は通常の空冷インフレーシヨンフイルム加工
(比較例5)においては、バブルの安定性を考え
て2.3と小さい条件を用いた。比較例5において
は、フイルムの結晶格子b軸の配向関数fβが−
0.1以上でかつc軸の配向関数が0.1以下の条件は
満足しているもののメルトインデツクスが0.5
g/10分を超えているため、シートの引張衝撃強
度が低く、フイフイルムの落錘衝撃強度も低い。
実施例6においては、フイルムの上記の配向関数
の条件を満足し、メルトインデツクスが0.5g/
10分以下であり、シートの引張衝撃強度が高くフ
イルムの落錘衝撃強度も極めて高い。また引裂強
度バランスも後者の方が優れている。 実施例7〜9、比較例6〜8 エチレン−α−オレフイン共重合体樹脂とし
て、メルトインデツクスが0.15g/10分、密度が
0.918g/cm3のエチレン−ブテン−1共重合体
(原料樹脂7)及び市販品Aを本発明に示す空冷
インフレーシヨンフイルム加工法(加工法1,2
もしくは4)を用いて、各々10,20及び30μのフ
イルムを製膜しフイルム物性の比較を行つた。各
実施例及び比較例の加工法、ブローアツプ比、固
化位置及びフイルム厚の加工条件は第4表に示す
通りである。本発明の原料樹脂7の10、20及び
30μフイルム(各々実施例7,8及び9)は空冷
インフレーシヨンフイルム加工条件においてブロ
ーアツプ比4.0と、の10、20及び30μフイルム
(各々比較例6、7及び8)のブローアツプ比5.0
と比較して、配向の抑制の点で不利な加工をして
いるにも拘らず、フイルムの結晶格子b軸の配向
関数fβが−0.1以上で、かつc軸の配向関数が0.1
以下であり、引裂の強度のバランスに優れ落錘衝
撃強度も大幅に優れている。
The present invention produces a film with a thickness of 30 μm that has a well-balanced tear strength and suppresses orientation, which is obtained by processing a copolymer of ethylene and α-olefin into a film.
The present invention relates to a method for producing the following novel ultra-high impact resistant film. To be more specific, the density is 0.895 to 0.935
g/ cm3 and melt index is 0.5g/10
Ethylene of 3 or less and α- with carbon number of 3 to 18
A film obtained by processing a copolymer with olefin (hereinafter referred to as ethylene-α-olefin copolymer resin) has an orientation function fβ of the b-axis of the crystal lattice based on the machine direction during film processing of -0.1 or more The present invention relates to a method for producing an ultra-high impact resistant film having a thickness of 30 μm or less, which has a c-axis orientation function fε of 0.1 or less, has a suppressed orientation, and has a well-balanced tear strength. Ethylene-α-olefin copolymer resins are industrially produced by various processes using so-called Ziegler type catalysts and Phillips type catalysts. One of these is the linear low-density polyethylene commercially available these days. Ethylene-α-olefin copolymer resins generally have very good mechanical properties such as tensile properties and impact resistance when used in heated press sheets, but they require high torque during processing and have low strength when melted. (hereinafter abbreviated as melt tension) is small, resulting in poor processing stability. Regarding the ethylene-α-olefin copolymer resin, the effects of melt index, density, etc. on the impact resistance and processability of the press sheet are as follows. The smaller the melt index and density, the better the impact resistance. On the other hand, the smaller the melt index, the higher the torque during processing and the higher the melt tension, which means that the motor consumes more power during processing, but on the other hand, processing stability is improved. Therefore, in order to reduce the torque of products with a small melt index, methods such as blending resins with different melt indexes or polymerizing using special catalysts to widen the molecular weight distribution are generally taken. There is. Furthermore, the impact resistance of a molded article of ethylene-α-olefin copolymer resin varies greatly depending on the thickness of the molded article and the molding method. That is, in thick molded products such as sheets, pipes, molds, etc., the MD/TD balance of mechanical properties is good and good impact resistance inherent to the resin can be obtained. However, in thin molded products such as T-die films and inflation films, due to the unique molecular orientation during the molding process, the mechanical properties of MD/
The TD balance is poor, and the good impact resistance inherent to the resin cannot be obtained. This tendency is remarkable in thin films of 30 μm or less. Here, MD represents the machine direction during molding, and TD represents the direction perpendicular to it. The MD/TD balance of mechanical properties is
The smaller the melt index and the higher the density of the ethylene-α-olefin resin, the worse it becomes, and as a result, the original good impact resistance cannot be obtained. To solve these problems, high-density polyethylene with a small melt index (hereinafter abbreviated as high-molecular-weight high-density polyethylene) has been developed up to now.
Various film processing methods have been proposed for this purpose, and it is known that good impact resistance inherent to resins can be obtained in thin films. One example of the manufacturing technology for this high molecular weight high density polyethylene film is known as the ultra-thin reinforced film forming method.
Explanations have been made in various literature. (For example, Kinoshita, “Plastics”, Vol. 29, No. 12, p. 70~
78, 1978) This ultra-thin reinforced film has recently been widely used in standard packaging, garbage bags, plastic shopping bags, etc. The present inventors have conducted extensive studies on the impact resistance of such ethylene-α-olefin copolymer resin films, and have found that they have a density of 0.895 to 0.935 g/cm 3 and a melt index of 0.5 g/10 minutes or less. MD obtained by processing an ethylene-α-olefin copolymer into a film using the method described below.
The orientation function fβ of the crystal lattice b axis based on the direction is −
We have discovered the surprising fact that a film with a thickness of 30 μm or less with suppressed orientation and a c-axis orientation function fε of 0.1 or more and 0.1 or less exhibits a well-balanced tear strength and ultra-high impact resistance, leading to the present invention. It is ivy. That is, the present invention uses ethylene having a density of 0.895 g/cm 3 or more and 0.935 g/cm 3 or less and a melt index of 0.5 g/10 min or less and a carbon number of 3 or more.
A copolymer with an α-olefin of 18 or less is extruded from a die by melt extrusion to obtain a tubular melt, and the tubular melt is transferred to the mandrel using a conical internal mandrel concentric with the die. By making the constriction smaller than the diameter of the die in a shape that corresponds to the diameter of the die, then expanding it to a blow-up ratio of 3 or more to form a bubble, and cooling with air so that the solidification position is at least 5 times the diameter of the die from the die exit. The present invention relates to a method for producing an ultra-high impact resistant film, which is characterized by obtaining a film having an orientation function fβ of -0.1 or more, an orientation function fε of 0.1 or less, and a thickness of 30μ or less. Here, the orientation function of each lattice axis is according to Stein et al.
It is obtained from the polarized infrared absorption spectrum using the following formula with MD as a reference. (RERead.R.Stein.
Macromolecules.1.116 (1968)) fα=(D730-1)/(D730+2) =(3cos 2 α-1)/2 (1) fβ=(D720-1)/(D720+2) =(3cos 2 β-1)/2 (2) fε=−(fα+fβ) (3) D730=A(730cm -1 )/A⊥(730cm -1 ) (4) D720=A(720cm -1 )/A⊥( 720cm -1 ) (5) The meaning of each symbol is as follows. fα, fβ, and fε are orientation functions of the a-axis, b-axis, and c-axis of the crystal lattice, respectively. D730 and D720 are wave numbers respectively
Infrared dichroic ratio at 730 cm -1 and 720 cm -1 ,
Expression (4) as the ratio of absorbance A and A⊥ of each polarized infrared spectrum of MD and TD at the indicated wave number
and (5). Further, α and β are angles formed by the a-axis and the b-axis, respectively, and MD. In the most advanced state of orientation in the inflation film, the crystal lattice c
The axis and MD match, α=β=90°, and fα=−0.5,
fβ=−0.5, fε=1. In actual inflation film, fα, fβ>−0.5, fε<
1, and these values express the state in which the orientation of the blown film is suppressed. (As an example of calculating the orientation of an inflation film using a model, see Matsumura and Nagasawa, “Collection of Polymer Papers”, Vol. 33, 4).
No., p171 (1976). ) The ethylene-α-olefin copolymer used in the present invention is a copolymer of ethylene and α-olefin having 3 to 18 carbon atoms, and the α-olefin as a copolymerization component has the general formula R-CH
= CH2 (In the formula, R represents an alkyl group having 1 to 16 carbon atoms.) Specific examples thereof include propylene, butene-1, pentene-1, hexene-1, heptene-1, and octene. -1, nonene-1, decene-1, 4-methyl-pentene-1,
4-Methyl-hexene-1,4,4-dimethyl-
Examples include pentene-1. Such ethylene-
The α-olefin copolymer is obtained by copolymerizing ethylene and α-olefin using a transition metal catalyst. The density is controlled by the type and amount of copolymerization of the α-olefin, and the melt index is controlled by the type and amount of the chain transfer agent. There are no particular restrictions on the catalyst or polymerization method, and examples of the catalyst include so-called Ziegler type catalysts and Phillips type catalysts, and examples of the polymerization method include so-called slurry polymerization, solution polymerization, gas phase polymerization, and the like. As the ethylene-α-olefin copolymer,
Those with a density of 0.895 to 0.935 g/cm 3 and a melt index of 0.5 g/10 minutes or less are used, particularly those with a density of 0.910 to 0.920 g/cm 3 and a melt index of 0.3 g/10 minutes or less. Preferably.
If the density is less than 0.895 g/cm 3 , film blocking is large and therefore cannot be used practically. If the weight exceeds 0.935 g/cm 3 , the film will not have sufficient impact resistance and cannot be used. If the melt index exceeds 0.5 g/10 minutes, the film will not have sufficient impact resistance, and the bubble stability will not be sufficient in the air-cooled inflation film processing described below, so it cannot be used. This ethylene-α-olefin copolymer is processed using the film processing method according to the present invention, and the orientation function fβ of the crystal lattice b axis with respect to the MD direction is -
If the orientation function fε of the c-axis is controlled to be 0.1 or more and 0.1 or less, the tear strength is well balanced with orientation suppressed.
A thin film with ultra-high impact resistance of 30μ or less can be obtained. A thin film of 30 μm or less in which the b-axis orientation function fβ is less than −0.1 or the c-axis orientation function fε exceeds 0.1 cannot have the original ultra-high impact resistance.
Also, the b-axis orientation function fβ of a thin film of 30μ or less
Even if the c-axis orientation function fε is -0.1 or more and the c-axis orientation function fε is 0.1 or less, if the melt index of the raw material ethylene-α-olefin copolymer resin exceeds 0.5 g/10 minutes, it is inherently impact resistant. is low, making it impossible to obtain ultra-high impact resistant thin films. A typical air-cooled inflation film forming process involves extruding a molten material through a tubular slit (hereinafter referred to as die), blowing a certain volume of air into the interior to expand it, and then cooling it with air from the outside using a blower. However, the material is wound on a take-up winder at a constant take-up speed. The film processing method according to the present invention will now be described. When processing air-cooled inflation films, a conical internal mandrel that is concentric with the die is used, and the diameter of the tubular melt extruded from the die is aligned with the mandrel so that it is constricted to be smaller than the diameter of the die. In this method, the material is expanded to a blow-up ratio of 3 or more to form bubbles, and air-cooled to form a solidified portion at a position at least 5 times the diameter of the die from the die exit. The gist of the air-cooled inflation film processing method will be explained below with reference to the drawings. Figures 1-1 and 1-2 are 19μ or less according to the present invention and
FIG. 2 is a conceptual diagram showing a constricted bubble shape and the shape of a conical internal mandrel 4 used in air-cooled inflation film processing of a thin film of 20 to 30 μm. (Hereinafter, these processing methods will be abbreviated as processing method 1 and processing method 2, respectively.) FIG. 2 is a conceptual diagram showing the shape of a bubble in normal air-cooled inflation film processing. (Hereinafter, this processing method will be abbreviated as Processing Method 3.) The important point in processing the orientation-suppressed ultra-high impact resistant inflation film of the present invention with a thickness of 30 μm or less is that the film is extruded from the die 1. The diameter of the tubular melt is constricted to be smaller than the diameter of the die 1, and then expanded to a blow-up ratio of 3 or more to form a bubble, and the solidification position 3 is located at a position 5 times or more the diameter of the die from the die exit. Similarly, air cooling is performed using air ring 2. The conical internal mandrel 4 was used to maintain the stability of the bubble, but the ethylene-α-olefin copolymer resin with a melt index exceeding 0.5 g/10 minutes is Even if the bubble is used, the stability of the bubble cannot be maintained. In the normal air-cooled inflation processing method of processing method 3, in order to maintain bubble stability, the blow-up ratio should be less than 3, and the solidification position 3 should be 2 to 5 times the die diameter from the die exit. It is necessary to perform air cooling with the air ring 2, and in that case, the bubble shape as in processing method 1 or 2 cannot be obtained. In addition, in air-cooled inflation film processing by processing method 1 of low-density ethylene-α-olefin copolymer resin with a density of 0.920 g/cm 3 or less, the conical internal mandrel 4 of the cylindrical melt exits the die. Adhesion may occur irregularly and may impair the stability of the bubble. In this case,
As shown in Figure 3, by using a special conical internal mandrel 5 in combination with a minute air circulation system 6, it is possible to stabilize the constricted bubble and at the same time circulate air at a minute flow rate and minute pressure. Therefore, it is necessary to prevent the film from sticking to the internal mandrel. (Hereinafter, this processing method will be abbreviated as Processing Method 4.) The ultra-high impact resistant film obtained by the present invention is suitable for use as a thin film that requires impact resistance, such as agricultural polyethylene film, garbage bags, and standards. It is suitable for use in bags, etc., and can be made thinner than conventional films in order to exhibit the same performance, making it extremely valuable in terms of resource conservation. Next, definitions of physical property values used in the present invention are shown below. (1) Melt index According to the method specified in JIS K6760-1981. The measurement temperature is 190℃. (2)Density According to the method specified in JIS K6760-1981. (3) Tensile impact strength According to the method specified in ASTM D1822-61. (4) Orientation function using polarized infrared absorption spectroscopy
According to the method of R. Stein et al. (Macromoleules.1,
116 (1968)) (5) Tear strength Elmendorf tear strength, based on the method specified in JIS Z-1702. The larger the size, the better the tearability. (6) Tear strength balance MD value of tear strength
Expressed as a ratio to the TD value. The closer it is to 1, the better the balance is. (7) Falling weight impact strength Dirt impact
According to the method specified in ASTM D1709. Next, the present invention will be specifically explained using examples, but the present invention is not limited to the examples unless it departs from the gist. In the following examples, the following air-cooled inflation film processing conditions are used as common conditions. (1) Equipment: IFA−600− manufactured by Tomy Machine Industry Co., Ltd.
50 (2) Die: 75φ, gap 2.5mm, manispill die (3) Processing temperature: 200℃ (4) Extrusion rate: 15Kg/Hr (5) Cooling: Single stage air cooling Other conditions, (6) Blow-up ratio, (7) ) Solidification position and (8) film thickness will be described in individual examples. Examples 1 to 2, Comparative Example 1 Using various ethylene-butene-1 copolymers (raw material resins 1 to 3) as shown in Table 1 as ethylene-α-olefin copolymer resins, processing method 2 was carried out. air-cooled inflation film processing using
We evaluated the stability of the bubble. The processing method, blow-up ratio, solidification position, and film thickness processing conditions for each Example and Comparative Example are as shown in Table 1. As shown in Table 1, the melt index
Ethylene-butene-1 copolymer (raw material resins 1-2) at a rate of 0.5 g/10 minutes or less has good bubble stability (Examples 1-2), but the melt index is low.
Ethylene-butene-1 copolymer (raw material resin 3) exceeding 0.5 g/10 minutes does not have sufficient bubble stability. (Comparative Example 1) Examples 3 to 5, Comparative Examples 2 to 4 The ethylene-α-olefin copolymer resin had a melt index of 0.30 g/10 min and a density of
0.917 g/cm 3 of ethylene-butene-1 copolymer (raw material resin 4) was processed by the air-cooled inflation film processing method shown in the present invention (processing methods 1, 2, or 4) and by ordinary air-cooled inflation film processing. 10, 20 and 30μ, respectively, using the method (processing method 3).
A film was prepared and the physical properties of the film were compared. The processing method, blow-up ratio, solidification position, and film thickness processing conditions for each example and comparative example are as follows.
As shown in the table. Regarding the blow-up ratio, in the ordinary air-cooled inflation film processing method (Comparative Examples 2 to 4), a small condition of 2.3 was used in consideration of bubble stability. No matter which processing method is used, the smaller the film thickness, the more the crystal lattice c-axis is oriented, and the tear strength balance of the film becomes worse. The falling weight impact strength of films formed using the normal air-cooled inflation film processing method decreases significantly as the film thickness decreases (Comparative Examples 2 to 4), whereas the air-cooled inflation film shown in the present invention On the contrary, the film formed using the film processing method has a significant improvement. (Examples 3 to 5) Films of the present invention (Examples 3 to 5) in which the crystal lattice b-axis orientation function fβ is -0.1 or more and the c-axis orientation function is 0.1 or less meet the conditions for both orientation functions. It can be seen that the films having the same thickness as the unsatisfied ordinary air-cooled inflation films (Comparative Examples 2 to 4) have a significantly better tear strength balance and excellent falling weight impact strength. Example 6, Comparative Example 5 Ethylene-butene-1 copolymers (raw material resins 5 to 6) shown in Table 3 were used as the ethylene-α-olefin copolymer resin, and the material resin 5 was air-cooled as shown in the present invention. Using the inflation film processing method (processing method 2) and the ordinary air-cooled inflation film processing method (processing method 3) for raw resin 6, 30μ films were formed for both and the physical properties of the films were compared. . Processing method of each example and comparative example,
The processing conditions of blow-up ratio, solidification position and film thickness are as shown in Table 3. In the ordinary air-cooled inflation film processing (Comparative Example 5), the blow-up ratio was set to a low value of 2.3 in consideration of bubble stability. In Comparative Example 5, the orientation function fβ of the b-axis of the crystal lattice of the film is -
Although the conditions of 0.1 or more and c-axis orientation function of 0.1 or less are satisfied, the melt index is 0.5.
g/10 minutes, the tensile impact strength of the sheet is low, and the falling weight impact strength of the film is also low.
In Example 6, the film satisfies the above orientation function conditions and has a melt index of 0.5 g/
It takes less than 10 minutes, and the tensile impact strength of the sheet is high, and the falling weight impact strength of the film is also extremely high. The latter also has a better balance of tear strength. Examples 7 to 9, Comparative Examples 6 to 8 The ethylene-α-olefin copolymer resin had a melt index of 0.15 g/10 minutes and a density of
0.918 g/cm 3 of ethylene-butene-1 copolymer (raw material resin 7) and commercial product A were processed into an air-cooled inflation film processing method according to the present invention (processing methods 1 and 2).
Alternatively, 10, 20, and 30μ films were formed using 4) and the physical properties of the films were compared. The processing method, blow-up ratio, solidification position, and film thickness processing conditions for each example and comparative example are shown in Table 4. Raw material resin 7 of the present invention, 10, 20 and
The 30μ films (Examples 7, 8, and 9, respectively) had a blow-up ratio of 4.0 under air-cooled inflation film processing conditions, and the 10, 20, and 30μ films (Comparative Examples 6, 7, and 8, respectively) had a blow-up ratio of 5.0.
Although the processing is disadvantageous in terms of suppressing orientation compared to
The tear strength is well balanced and the falling weight impact strength is also significantly superior.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図−1は本発明の19μ以下のフイルムの空
冷インフレーシヨンフイルム加工におけるくびれ
たバブル形状および使用する円錘状内部マンドレ
ルの形状を示す概念図である。(加工法1)第1
図−2は本発明20〜30μのフイルムの空冷インフ
レーシヨンフイルム加工におけるくびれたバブル
形状および使用する円錘状内部マンドレルの形状
を示す概念図である。(加工法2)第2図は、通
常の空冷インフレーシヨンフイルム加工における
バブルの形状を示す概念図である。(加工法3)
第3図は本発明密度0.925g/cm3以下の低密度フ
イルムの空冷インフレーシヨン加工において、円
管状溶融体の円錘状内部マンドレルへの粘着防止
のために用いられる空冷インフレーシヨンフイル
ム加工システムの概念図である。次に符号の説明
をおこなう。 1:ダイ、2:エアリング、3:同化位置、
4:円錘状内部マンドレル、5:特殊円錘状内部
マンドレル、6:微少空気循環システム、4円錘
状内部マンドレルは、空冷インフレーシヨンフイ
ルム加工において、くびれたバブルの安定を図る
ための支持体である。更に、5特殊円錘状内部マ
ンドレルは、6微少空気循環システムと相俟つ
て、くびれたバブルの安定化を図ると同時に、微
少流量でかつ微少圧力の空気を循環させることに
よつて、フイルムの内部マンドレルへの粘着の防
止を図つているものである。(加工法4)なお図
中の矢印は空気の流れの方向を表わす。
FIG. 1 is a conceptual diagram showing the constricted bubble shape and the shape of the conical internal mandrel used in air-cooled inflation film processing of a film of 19 μm or less according to the present invention. (Processing method 1) 1st
FIG. 2 is a conceptual diagram showing the constricted bubble shape and the shape of the conical inner mandrel used in the air-cooled inflation film processing of a 20 to 30 μm film according to the present invention. (Processing method 2) FIG. 2 is a conceptual diagram showing the shape of a bubble in normal air-cooled inflation film processing. (Processing method 3)
Figure 3 shows an air-cooled inflation film process used to prevent the cylindrical melt from sticking to the conical inner mandrel in the air-cooled inflation process of low-density films with a density of 0.925 g/cm 3 or less according to the present invention. It is a conceptual diagram of the system. Next, the symbols will be explained. 1: Die, 2: Air ring, 3: Assimilation position,
4: Conical internal mandrel, 5: Special conical internal mandrel, 6: Micro air circulation system, 4 conical internal mandrels are used to support the stabilization of constricted bubbles in air-cooled inflation film processing. It is the body. Furthermore, the special conical internal mandrel (5), together with the (6) minute air circulation system, stabilizes the constricted bubble and at the same time circulates air at a minute flow rate and pressure, thereby improving the film quality. This is intended to prevent adhesion to the internal mandrel. (Processing method 4) The arrows in the figure indicate the direction of air flow.

Claims (1)

【特許請求の範囲】 1 密度が0.895g/cm3以上0.935g/cm3以下で、
かつメルトインデツクスが0.5g/10分以下のエ
チレンと炭素数が3以上18以下のα−オレフイン
との共重合体を溶融押出法にてダイスから押出す
ことにより管状溶融体を得、該管状溶融体を該ダ
イスと同芯の円錘状内部マレンドレルを用いて該
マンドレルに添わせる形でダイスの口径より小さ
くくびれさせ、次いでブローアツプ比3以上に膨
張させてバブルを形成させ固化位置をダイ出口か
らダイの口径の5倍以上の位置にくるように空冷
を行なうことにより、配向関数fβが−0.1以上、
配向関数fεが0.1以下および厚みが30μ以下である
フイルムを得ることを特徴とする超高耐衝撃性フ
イルムの製造法。 2 共重合体の密度が0.910g/cm3以上0.920g/
cm3以下であり、かつメルトインデツクスが0.3
g/10分以下である特許請求の範囲第1項記載の
製造法。
[Claims] 1. The density is 0.895 g/cm 3 or more and 0.935 g/cm 3 or less,
A copolymer of ethylene with a melt index of 0.5 g/10 min or less and α-olefin with a carbon number of 3 to 18 is extruded through a die using a melt extrusion method to obtain a tubular melt. The molten material is constricted to a size smaller than the diameter of the die by using a conical internal mandrel that is concentric with the die, and then expanded to a blow-up ratio of 3 or more to form a bubble, and the solidification position is set at the die exit. By performing air cooling so that the position is at least 5 times the diameter of the die, the orientation function fβ is -0.1 or more,
A method for producing an ultra-high impact resistant film, characterized by obtaining a film having an orientation function fε of 0.1 or less and a thickness of 30μ or less. 2 The density of the copolymer is 0.910g/cm3 or more and 0.920g/cm3 or more.
cm 3 or less, and the melt index is 0.3
The manufacturing method according to claim 1, wherein the manufacturing method is 1 g/10 minutes or less.
JP58011006A 1983-01-25 1983-01-25 Ultra-high impact resistant film and preparation thereof Granted JPS59136224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58011006A JPS59136224A (en) 1983-01-25 1983-01-25 Ultra-high impact resistant film and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58011006A JPS59136224A (en) 1983-01-25 1983-01-25 Ultra-high impact resistant film and preparation thereof

Publications (2)

Publication Number Publication Date
JPS59136224A JPS59136224A (en) 1984-08-04
JPH0361574B2 true JPH0361574B2 (en) 1991-09-20

Family

ID=11766028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58011006A Granted JPS59136224A (en) 1983-01-25 1983-01-25 Ultra-high impact resistant film and preparation thereof

Country Status (1)

Country Link
JP (1) JPS59136224A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626397A (en) * 1984-10-29 1986-12-02 Union Camp Corporation Method for controlled orientation of extruded resins
US4606879A (en) * 1985-02-28 1986-08-19 Cerisano Frank D High stalk blown film extrusion apparatus and method
US4994324A (en) * 1989-01-19 1991-02-19 Union Camp Corporation Hot-fill polyethylene bags
JPH0386514A (en) * 1989-08-30 1991-04-11 Idemitsu Petrochem Co Ltd Easily-tearable film and its manufacture
FR2735065A1 (en) * 1995-06-06 1996-12-13 Ribeyron & Cie Ets MASKING FILM AGAINST SPRAY.
EP2523994B1 (en) 2010-01-12 2018-08-15 Greenrock, Ltd. Paper-like film and process for making it

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102376A (en) * 1976-02-24 1977-08-27 Nippon Petrochemicals Co Ltd Method of producing tubular film
JPS52102375A (en) * 1976-02-24 1977-08-27 Nippon Petrochemicals Co Ltd Method of producing tubular film
JPS5375266A (en) * 1976-12-17 1978-07-04 Idemitsu Petrochemical Co Molding of tubular film
JPS5446266A (en) * 1977-09-21 1979-04-12 Idemitsu Petrochemical Co Method of forming tublar film
JPS552180A (en) * 1979-04-21 1980-01-09 Ohbayashigumi Ltd Vibration proof machine foundation
JPS55154126A (en) * 1979-05-22 1980-12-01 Showa Denko Kk Forming method and device for inflation film
JPS5646729A (en) * 1979-09-26 1981-04-28 Showa Denko Kk Internal portion stabilizing device for tubular film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523856Y2 (en) * 1975-10-09 1980-06-07

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102376A (en) * 1976-02-24 1977-08-27 Nippon Petrochemicals Co Ltd Method of producing tubular film
JPS52102375A (en) * 1976-02-24 1977-08-27 Nippon Petrochemicals Co Ltd Method of producing tubular film
JPS5375266A (en) * 1976-12-17 1978-07-04 Idemitsu Petrochemical Co Molding of tubular film
JPS5446266A (en) * 1977-09-21 1979-04-12 Idemitsu Petrochemical Co Method of forming tublar film
JPS552180A (en) * 1979-04-21 1980-01-09 Ohbayashigumi Ltd Vibration proof machine foundation
JPS55154126A (en) * 1979-05-22 1980-12-01 Showa Denko Kk Forming method and device for inflation film
JPS5646729A (en) * 1979-09-26 1981-04-28 Showa Denko Kk Internal portion stabilizing device for tubular film

Also Published As

Publication number Publication date
JPS59136224A (en) 1984-08-04

Similar Documents

Publication Publication Date Title
US4354004A (en) Film compositions from olefin polymer blends
US4082880A (en) Paper-like thermoplastic film
US4585604A (en) Process for preparing an air-permeable film
US4987025A (en) Inflation film of ultrahigh molecular weight polyethylene
US4169910A (en) Multilayer film including polyolefin layers and a polybutylene layer useful for the production of bags
EP0144999B1 (en) Coextrusion multi-layer tubular film
GB1466408A (en) Processing ethylene oxide resins
JPH10500157A (en) Medium modulus film and method of manufacture
US5110686A (en) Low temperature heat shrinkable film and process for producing the same
US4505970A (en) Multilayer films comprising mixtures of a melt index and 2 melt index linear low density polyethylene
US5344714A (en) LLDPE composite film free of melt fracture
JPH0361574B2 (en)
US3944530A (en) Article made of propylene-ethylene copolymer
JPH0733048B2 (en) Method for producing polybutylene terephthalate resin film
US4913977A (en) Low temperature heat shrinkable film
JPH0424220B2 (en)
JPS6243872B2 (en)
JP4475699B2 (en) High strength high molecular weight polyolefin film excellent in transparency and method for producing the same
JPH0822564B2 (en) Method for producing polyacetal resin film
EP0434322B1 (en) Improved heat shrinkable polyolefin film
FI87749B (en) FOERFARANDE FOER FRAMSTAELLNING AV BLAOST FILM
US5209892A (en) Process for producing thermoformable polypropylene films and sheets
JP4345901B2 (en) High molecular weight polyolefin transparent film having high elongation and method for producing the same
JP3407899B2 (en) Soft transparent film molding method
JPH0230514A (en) Ultrahigh molecular-weight biaxially oriented polyethylene film and its manufacture