JPH0424220B2 - - Google Patents

Info

Publication number
JPH0424220B2
JPH0424220B2 JP58153163A JP15316383A JPH0424220B2 JP H0424220 B2 JPH0424220 B2 JP H0424220B2 JP 58153163 A JP58153163 A JP 58153163A JP 15316383 A JP15316383 A JP 15316383A JP H0424220 B2 JPH0424220 B2 JP H0424220B2
Authority
JP
Japan
Prior art keywords
film
stretching
density
films
inflation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58153163A
Other languages
Japanese (ja)
Other versions
JPS6085946A (en
Inventor
Toshio Taka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP58153163A priority Critical patent/JPS6085946A/en
Publication of JPS6085946A publication Critical patent/JPS6085946A/en
Publication of JPH0424220B2 publication Critical patent/JPH0424220B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は同一樹脂による多層構造をもつインフ
レーシヨンフイルムの製造方法に関する。 プラスチツクスフイルムの成膜法の一つにイン
フレーシヨン法がある。このインフレーシヨン法
は、一般に、押出機に取付られたインフレーシヨ
ンダイから押出されたチユーブ内に空気を送り込
み膨張させ冷却し、連続的にプラスチツクスフイ
ルムを作る方法である。 一般に、インフレーシヨン法でのフイルムの製
造に於いては、チユーブ状の2枚のフイルムをブ
ロツキングさせないようにするため様々苦慮して
いる。例えば、上記に於いて、チユーブ状フイル
ムはガイド板により誘導され、次いでニツプロー
ルにより引き取られるが、この際、ニツプロール
はその回転によりフイルムを単に引き取るだけで
ある。又、ブロツキングを防止するためにブロツ
キング防止剤を使用することもある。 本発明者らはシユリンクパツケージ(収縮包
装)に使用できる透明性の良い等すぐれた特性を
有する低温熱収縮性のポリエチレンフイルムにつ
いて鋭意検討中、従来の出来るだけブロツキング
させないようにするという技術に替えて逆の発想
を行い、密度0.940g/cm3以下の短鎖分岐を有す
る着鎖状ポリエチレン樹脂を使用し、冷却インフ
レーシヨン法又は水冷インフレーシヨン法により
フイルムをチユーブ状に成形し、かつ充分な冷却
を行い、同時にチユーブ状のフイルムをガイド板
により折りたたみながら強いニツプロール圧によ
り2枚のフイルムを強くブロツキングさせて二層
構造のフイルムを作つたところ、当該ポリエチレ
ン樹脂はインフレーシヨン成形法に於いて冷却効
率を良くした急冷法により著しくブロツキングし
易いという特長があること、従つて当該樹脂を冷
却効率の良い水冷インフレーシヨン法や2段空冷
インフレーシヨン法等により成形することによ
り、容易にチユーブ状フイルムをブロツキングさ
せる事が可能であることが判つた。 更に、上記で得られたフイルムを加熱ロールに
より延伸したところ、これにより2枚のフイルム
のブロツキングが更に一段と強いものとなり、簡
単には2枚に分離し難い二層構造の延伸フイルム
が得られ、同時に透明性も急激に向上し、ビニロ
ンフイルムと同等の高透明性〔ヘイズ(Haze)
値(曇り度);3%以下〕のものが得られること
が判明した。 又上記延伸フイルムはブロツキングした二層構
造になつているため、衝撃強度や引裂強度等のフ
イルム強度、特に縦裂き強度が一段とすぐれてい
ることも判り、後述する比較例にも示すように、
同一厚味の単層構造のインフレーシヨンフイルム
やTダイフイルム等と比較して衝撃強度が格段に
すぐれている他、引裂強度が一段とすぐれたフイ
ルムを製造し得ることを見い出した。 通常フイルム強度が要求される場合はフイルム
の厚味を厚くするのが一般であるが、この場合透
明性が落ちがちである。 しかるに、上記のように本発明ではむしろ透明
性が良くなることが判明した。 ところで、従来、低温シユリンクパツケージ等
に使用される一軸延伸フイルムとしては、一般
に、高圧法ポリエチレンといわれる長鎖分岐を有
する低密度ポリエチレン樹脂又は本樹脂にエチレ
ン−酢酸ビニル共重合体あるいはブテン系ゴム等
のブレンド物によるフイルムを1.5〜3.0倍に延伸
することにより、90〜100℃で30〜50%の低温収
縮性能を出すようにしたフイルムが使用されてい
た。 しかしながら、このフイルムは延伸倍率が低倍
率のため均一な延伸が出来ず延伸ムラが残つた
り、フイルムに内部歪みが残るため厚味ムラや蛇
行等が生じるという欠点があり、製品上の品質面
で大きな問題点があつた。又フイルムの透明性に
於いてもHaze値が5%以上あり、充分なデイス
プレー効果を出すためのレベルには到つていない
という欠点があつた。 これに対し、本発明ではフイルム原料として密
度0.940g/cm3以下の短鎖分岐を有する直鎖状ポ
リエチレン樹脂(以下LLDPEという)を使用す
ることにより、フイルムの延伸倍率を高倍率(3
〜6倍)にすることが可能となり、均一な延伸に
よりフイルムの厚味ムラのない均一なフイルムが
得られ、しかも上述したように従来のインフレー
シヨンフイルム等に比して、低温で熱収縮性を有
し、かつ著しく透明性がすぐれ、その強度特に耐
縦裂き性が抜群にすぐれた特長を有する多層構造
のフイルムを得ることに成功した。 本発明は上記知見に基づき完成されたもので、
密度0.940g/cm3以下の短鎖分岐を有する直鎖状
ポリエチレン樹脂より成る複数のフイルムを圧着
し、延伸することを特徴とする多層構造を有する
インフレーシヨンフイルムの製造方法に係るもの
である。 本発明に使用するLLDPEは密度0.940g/cm3
下の樹脂であり、密度が0.940g/cm3を超えると
チユーブ状の2枚のフイル間の充分なブロツキン
グが得られず、又得られた延伸フイルム物性に於
いても縦裂きし易いため好ましくない。この
LLDPEは密度0.940g/cm3以下の樹脂であるから
して、通常LLDPEとして供給される0.905g/cm3
以上の樹脂の他、0.905g/cm3以下の例えば0.890
g/cm3〜0.905g/cm3のものも包含することはも
ちろんであり、下限としてはフイルム成形後の巻
取りの作業性等を考慮すると0.890g/cm3が適し
ている。 上記LLDPEのメルトインデツクスについては、
フイルム成形できれば特に制限がないが、0.1〜
10g/10分が好ましい。 本発明に使用するLLDPEを例示するに、エチ
レンと炭素数3〜12のα−オレフイン例えばプロ
ピレン、ブテン−1、ヘキセン−1、4−メチル
−1−ペンテン、オクテン−1、デカン−1等の
少なくとも1種を、チーグラ型触媒の存在下、従
来公知の中低圧法又は高圧法によつて製造される
ものがある。更に中低圧法としては、気相法、ス
ラリー法、溶液法等いずれの方法によるものでも
よい。本発明に使用される上記LLDPEには、上
記ポリエチレン樹脂に、好ましくは40wt%以下
でエチレン−酢酸ビニル共重合体、ブデン系ゴム
や長鎖分岐を有する高圧法低密度ポリエチレン等
をブレンドしてなるブレンド物も包含する。 本発明のインフレーシヨンフイルムの製造方法
はLLDPEより成るチユーブ状フイルムを圧着後、
延伸する。本発明のこの圧着により、シート厚の
厚いものが容易に得ることができる。例えば、チ
ユーブ状フイルムの片側フイルム厚100μのもの
から容易に200μ厚のフイルム(シート)が得ら
れる。これに対し、通常のインフレーシヨン法に
より200μ厚のような厚いフイルムを作ることは
困難である。従つて本発明によればコスト安く厚
いフイルムが作成でき、上記に於いて片側フイル
ム厚を例えば200μ厚とすれば400μ厚の如き厚い
フイルムが容易にできる。得られたフイルムはそ
の厚さにもかかわらず透明性が良好である。チユ
ーブ状フイルムを得るに、通常の空冷インフレー
シヨン法によつてもよいが、水冷インフレーシヨ
ン法や2段空冷インフレーシヨン法等(例えば、
特開昭58−39420号公報)の冷却効率の良い方法
を用いることが好ましい。充分に冷却することに
より透明性の良いフイルムが得られると同時に後
工程でのチユーブ状フイルムのブロツキングを容
易にすることができる。チユーブ状フイルムは、
ガイド板により折りたたまれながら次いで強いニ
ツプロール圧例えば4〜5Kg/cm2圧で2枚のフイ
ルムを強く圧着される。上記ブロツキングはダイ
スとニツプロール間の距離にも関係するので、こ
の距離を適宜調節する。フイルムについて、急冷
し、早期にニツプロール間を通すとブロツキング
を強める。これにより二層構造を有するインフレ
ーシヨンフイルムとなる。延伸は、上記で得られ
た圧着フイルムを、例えば、ロール直径200mmφ
以下の2本のロール間でエアーキヤツプ10m/m
以下で一軸延伸することにより行うのがよい。 本発明の如きLLDPEフイルムの延伸に於いて
はネツキングが大きくなる特性を有し、延伸ロー
ルの直径が200mmφを超えるとフイルムのネツキ
ングが大きくなつて好ましくなく、かつ2本の延
伸ロールのエアーギヤツプが10m/mを超えると
やはりフイルムのネツキングが大きくなつて好ま
しくない。ここにエアーギヤツプとは、延伸する
ための2本の低速ロールと高速ロールの間で、先
ずフイルムが低速ロールを通過して当該ロールか
ら外れる接点より、次にフイルムが高速ロールに
接するまでの区間をいう。又延伸倍率は前述の如
く従来の高圧法ポリエチレン樹脂の延伸倍率に比
して大きくできる。この延伸倍率が3.0倍未満で
は延伸ムラが大きく厚味ムラ等で問題となり、ま
た透明性も不良となり、一方延伸倍率が6.0倍を
超える延伸切れが生じ易く安定生産が困難とな
る。従つて延伸倍率3.0〜6.0倍の範囲内で適宜選
択するのがよい。 更に延伸温度はロール温度で70〜100℃が好ま
しく、特に80〜100℃の温度範囲がすぐれた低温
収縮特性を発揮するので好ましい。 次に、本発明を実施例及び比較例をもつて説明
する。尚以下の例中で用いたフイルム物性の測定
方法は次の通りである。 ※(1) Haze値(%);ASTMD−1003 ※(2) 衝撃強度(Kg/mm);振子式 衝撃子=
1インチ半球 ※(3) 引裂強度(Kg/cm);JISZ1702 ※(4) 熱収縮率(%);JISZ1709(90℃) 実施例 1 密度0.917g/cm3の短鎖分岐を有する直鎖状低
密度ポリエチレン樹脂(昭和電工社製商品名シヨ
ウレツクス108FS、メルトインデツクス0.8g/
10分)を使用し、2段空冷インフレーシヨン法に
よりフイルムをチユーブ状に成形し、ニツプロー
ル圧4.0Kg/cm2のニツプロール間を通してブロツ
キングさせ、かつ延伸温度85℃、延伸倍率4.0倍
で延伸フイルムを成形した。フイルムの物性評価
結果は第1表に示す通りである。 実施例 2 密度0.935g/cm3の短鎖分岐を有する直鎖状低
密度ポリエチレン樹脂(メルトインデツクス1.0
g/10分、コモノマー;ヘキセン−1)を使用
し、延伸温度を90℃、延伸倍率を5.0とした以外
は実施例1と同様にして延伸フイルムを得た。結
果を第1表に示す。 実施例 3 密度0.928g/cm3の短鎖分岐を有する直鎖状低
密度ポリエチレン樹脂(メルトインデツクス3.0
g/10分、コモノマー;ブテン−1)を使用し、
水冷インフレーシヨン法により、延伸温度を75
℃、延伸倍率を3.5とした以外は実施例1と同様
にして延伸フイルムを得た。結果を第1表に示
す。 比較例 1 空冷インフレーシヨン法とし、ニツプロール圧
1.5Kg/cm2のニツプロール間を通した他は実施例
1と同様にして、延伸フイルムを得た。結果を第
1表に示す。 比較例 2 密度0.921g/cm3の高圧法LDPE(昭和電工社製
商品名シヨウレツクスF113,メルトインデツク
ス1.0g/10分)を使用し、第1表に示す条件下
で延伸し、空冷インフレーシヨン法により延伸フ
イルムを得た。結果を第1表に示す。 比較例 3 密度0.921g/cm3の高圧法LDPE(昭和電工社製
商品名シヨウレツクスF151,メルトインデツク
ス5.0g/10分)を使用し、第1表に示す条件下
で延伸を行い、Tダイ法による延伸フイルムを得
た。結果を第1表に示す。 比較例 4 密度0.921g/cm3の高圧法LDPE(昭和電工社製
商品名シヨウレツクスF113、メルトインデツク
ス1.0g/10分)を使用し、延伸温度70℃、延伸
倍率3.2倍とした以外は実施例3と同様にして延
伸フイルムの成形を行つたが、フイルムは延伸切
れで切断してしまつた。
The present invention relates to a method for producing an inflation film having a multilayer structure made of the same resin. One of the methods for forming plastic films is the inflation method. The inflation method generally involves feeding air into a tube extruded from an inflation die attached to an extruder to expand and cool the tube to continuously produce a plastic film. Generally, in the production of film by the inflation method, various efforts are made to prevent blocking of the two tube-shaped films. For example, in the above, the tube-shaped film is guided by the guide plate and then taken up by the nip roll, but at this time, the nip roll simply takes up the film by its rotation. Further, an antiblocking agent may be used to prevent blocking. The present inventors are actively studying a low-temperature heat-shrinkable polyethylene film that has excellent properties such as good transparency that can be used in shrink packaging, and are currently considering replacing the conventional technology of preventing blocking as much as possible. Using the opposite idea, we used a chain polyethylene resin with short chain branches with a density of 0.940 g/cm 3 or less, formed a film into a tube shape by a cooling inflation method or a water-cooling inflation method, and After sufficient cooling, the tube-shaped film was simultaneously folded using a guide plate and the two films were strongly blocked using strong nip roll pressure to create a two-layered film. The resin has the feature that it is extremely easy to block due to the rapid cooling method with improved cooling efficiency, and it can be easily molded by molding the resin using a water-cooled inflation method or a two-stage air-cooled inflation method, etc., which have high cooling efficiency. It has been found that it is possible to block a tube-like film. Furthermore, when the film obtained above was stretched with a heating roll, the blocking of the two films became even stronger, and a stretched film with a two-layer structure that was difficult to separate into two films was obtained. At the same time, transparency has improved rapidly, with high transparency equivalent to that of vinylon film (Haze).
It was found that a value (haze) of 3% or less could be obtained. In addition, since the above-mentioned stretched film has a blocked two-layer structure, it was found that the film strength such as impact strength and tear strength, especially longitudinal tear strength, was even better.As shown in the comparative example described below,
It has been discovered that it is possible to produce a film that has much better impact strength and even better tear strength than single-layer inflation films, T-die films, etc. of the same thickness. Normally, when film strength is required, the thickness of the film is generally increased, but in this case transparency tends to decrease. However, as described above, it has been found that the present invention actually improves transparency. By the way, conventionally, uniaxially stretched films used for low-temperature shrink packages and the like are generally made of low-density polyethylene resin with long chain branches called high-pressure polyethylene, or this resin plus ethylene-vinyl acetate copolymer or butene-based rubber. By stretching a film made of a blend of the above by 1.5 to 3.0 times, a film has been used that exhibits low-temperature shrinkage performance of 30 to 50% at 90 to 100°C. However, this film has disadvantages in that the stretching ratio is low, so it cannot be stretched uniformly, leaving uneven stretching, and internal distortions remain in the film, resulting in uneven thickness and meandering. There was a big problem. Furthermore, the transparency of the film had a drawback in that the haze value was over 5%, which did not reach the level required to produce a sufficient display effect. In contrast, in the present invention, by using a linear polyethylene resin (hereinafter referred to as LLDPE) having short chain branches with a density of 0.940 g/cm 3 or less as the film raw material, the stretching ratio of the film is increased to a high ratio (3
~6 times), and by uniform stretching, a uniform film with no uneven thickness can be obtained, and as mentioned above, compared to conventional inflation films, it shrinks at low temperatures. We succeeded in obtaining a multilayered film that has excellent properties such as excellent transparency, strength, and especially longitudinal tear resistance. The present invention was completed based on the above knowledge,
This relates to a method for producing an inflation film having a multilayer structure, which comprises compressing and stretching a plurality of films made of linear polyethylene resin having short chain branches having a density of 0.940 g/cm 3 or less. . The LLDPE used in the present invention is a resin with a density of 0.940 g/cm 3 or less, and if the density exceeds 0.940 g/cm 3 , sufficient blocking between the two tube-shaped films cannot be obtained, and Regarding the physical properties of the stretched film, it is not preferable because it tends to tear longitudinally. this
Since LLDPE is a resin with a density of 0.940g/cm 3 or less, it is usually supplied as LLDPE at 0.905g/cm 3
In addition to the above resins, 0.905g/ cm3 or less, such as 0.890
Of course, this also includes those having a weight of 0.890 g/cm 3 to 0.905 g/cm 3 , and a suitable lower limit is 0.890 g/cm 3 in consideration of the workability of winding after film forming. Regarding the melt index of LLDPE mentioned above,
There is no particular limit as long as it can be formed into a film, but from 0.1 to
10g/10 minutes is preferred. Examples of LLDPE used in the present invention include ethylene and α-olefins having 3 to 12 carbon atoms, such as propylene, butene-1, hexene-1, 4-methyl-1-pentene, octene-1, decane-1, etc. There is one in which at least one kind is produced by a conventionally known medium-low pressure method or high-pressure method in the presence of a Ziegler type catalyst. Further, as the medium-low pressure method, any method such as a gas phase method, a slurry method, a solution method, etc. may be used. The LLDPE used in the present invention is made by blending the polyethylene resin with ethylene-vinyl acetate copolymer, budene rubber, high-pressure low-density polyethylene having long chain branches, etc., preferably at 40 wt% or less. Blends are also included. The method for manufacturing the blown film of the present invention is to press a tube-shaped film made of LLDPE, and then
Stretch. By this pressure bonding of the present invention, a thick sheet can be easily obtained. For example, a film (sheet) with a thickness of 200 μm can be easily obtained from a tube-shaped film with a film thickness of 100 μm on one side. On the other hand, it is difficult to make a film as thick as 200 μm using the normal inflation method. Therefore, according to the present invention, a thick film can be produced at low cost, and in the above case, if the film thickness on one side is set to 200 microns, for example, a film as thick as 400 microns can be easily produced. The resulting film has good transparency despite its thickness. To obtain the tube-shaped film, the usual air-cooled inflation method may be used, but water-cooled inflation method, two-stage air-cooled inflation method, etc. (for example,
It is preferable to use the method disclosed in Japanese Patent Laid-Open No. 58-39420, which has good cooling efficiency. By cooling sufficiently, a film with good transparency can be obtained, and at the same time, blocking of the tubular film in the subsequent process can be facilitated. Tubular film is
While being folded by a guide plate, the two films are then strongly pressed together using a strong nip roll pressure, for example, 4 to 5 kg/cm 2 pressure. Since the above-mentioned blocking is also related to the distance between the die and the nip roll, this distance is adjusted as appropriate. As for the film, if it is rapidly cooled and passed through Nitprol at an early stage, blocking will be strengthened. This results in an inflation film having a two-layer structure. For stretching, the crimped film obtained above is stretched, for example, with a roll diameter of 200 mmφ.
Air cap 10m/m between the following two rolls
It is preferable to perform uniaxial stretching below. The stretching of the LLDPE film of the present invention has a characteristic that the netting increases, and if the diameter of the stretching roll exceeds 200 mmφ, the netting of the film increases, which is not preferable, and the air gap between the two stretching rolls is 10 m. If it exceeds /m, netting of the film increases, which is not preferable. Here, the air gap refers to the area between two low-speed rolls and high-speed rolls for stretching, from the point of contact where the film first passes through the low-speed roll and comes off the roll, until the film contacts the high-speed roll. say. Further, as mentioned above, the stretching ratio can be made larger than that of conventional high-pressure polyethylene resins. If the stretching ratio is less than 3.0 times, stretching unevenness will be large, causing problems such as uneven thickness, and the transparency will also be poor, while if the stretching ratio exceeds 6.0 times, stretch breakage is likely to occur, making stable production difficult. Therefore, the stretching ratio should be appropriately selected within the range of 3.0 to 6.0 times. Further, the stretching temperature is preferably a roll temperature of 70 to 100°C, and a temperature range of 80 to 100°C is particularly preferred since excellent low-temperature shrinkage properties are exhibited. Next, the present invention will be explained using Examples and Comparative Examples. The method for measuring the physical properties of the film used in the following examples is as follows. *(1) Haze value (%); ASTMD-1003 *(2) Impact strength (Kg/mm); Pendulum impactor =
1 inch hemisphere *(3) Tear strength (Kg/cm); JISZ1702 *(4) Heat shrinkage rate (%); JISZ1709 (90℃) Example 1 Straight chain with short chain branches with density 0.917g/ cm3 Low-density polyethylene resin (product name: Showa Denko Co., Ltd., product name: SHOUREX 108FS, melt index: 0.8g/
The film was formed into a tube shape using a two-stage air-cooled inflation method (10 minutes), passed between nip rolls at a nip roll pressure of 4.0 kg/cm 2 for blocking, and stretched at a stretching temperature of 85°C and a stretching ratio of 4.0 times. was molded. The physical property evaluation results of the film are shown in Table 1. Example 2 Linear low-density polyethylene resin with short chain branches with a density of 0.935 g/cm 3 (melt index 1.0)
A stretched film was obtained in the same manner as in Example 1, except that the comonomer (hexene-1) was used, the stretching temperature was 90° C., and the stretching ratio was 5.0. The results are shown in Table 1. Example 3 Linear low-density polyethylene resin with short chain branches with a density of 0.928 g/cm 3 (melt index 3.0)
g/10 min, using comonomer; butene-1),
Stretching temperature is 75% by water-cooled inflation method.
A stretched film was obtained in the same manner as in Example 1, except that the temperature and the stretching ratio were 3.5. The results are shown in Table 1. Comparative example 1 Air-cooled inflation method, Nipprol pressure
A stretched film was obtained in the same manner as in Example 1, except that the film was passed between 1.5 kg/cm 2 nip rolls. The results are shown in Table 1. Comparative Example 2 A high-pressure LDPE with a density of 0.921 g/cm 3 (product name: SHOUREX F113 manufactured by Showa Denko Co., Ltd., melt index: 1.0 g/10 minutes) was used, stretched under the conditions shown in Table 1, and subjected to air-cooled inflation. A stretched film was obtained by the Shion method. The results are shown in Table 1. Comparative Example 3 High-pressure LDPE with a density of 0.921 g/cm 3 (product name: SHOUREX F151, manufactured by Showa Denko K.K., melt index: 5.0 g/10 minutes) was stretched under the conditions shown in Table 1, and a T-die film was used. A stretched film was obtained by the method. The results are shown in Table 1. Comparative Example 4 High-pressure LDPE with a density of 0.921 g/cm 3 (product name: SHOUREX F113 manufactured by Showa Denko Co., Ltd., melt index: 1.0 g/10 minutes) was used, the stretching temperature was 70°C, and the stretching ratio was 3.2 times. A stretched film was formed in the same manner as in Example 3, but the film was cut due to lack of stretching.

【表】 以上本発明によれば低温で熱収縮性を有し、か
つ著しく透明性がすぐれると同時にその強度が抜
群にすぐれ、特に耐縦裂き性にすぐれた特徴を有
する多層構造よりなるフイルムが得られ、フイル
ム厚が均一であることとも相俟つて、これら特性
を利用した各種の用途が期待され、例えば低温熱
収縮性を活かしたシユリンクフイルム分野以外に
高透明性を生かしたビニロンフイルムやポリ塩化
ビニル(PVC)フイルム等が使用されている各
種包装分野への使用も可能である。 尚上記本発明に於いては二層構造のインフレー
シヨンフイルムの他三層以上例えば四層、六層の
構造のインフレーシヨンフイルムを得ることもで
きる。
[Table] According to the present invention, the present invention provides a film having a multilayer structure that is heat-shrinkable at low temperatures, has excellent transparency, has excellent strength, and has particularly excellent vertical tear resistance. Coupled with the fact that the film has a uniform thickness, these properties are expected to be used in a variety of applications. It can also be used in various packaging fields where polyvinyl chloride (PVC) films and the like are used. In addition to the two-layer structure of the inflation film, the present invention can also produce inflation films of three or more layers, for example, four or six layers.

Claims (1)

【特許請求の範囲】[Claims] 1 密度0.940g/cm3以下の短鎖分岐を有する直
鎖状ポリエチレン樹脂より成る複数のフイルムを
圧着し、延伸することを特徴とする多層構造を有
するインフレーシヨンフイルムの製造方法。
1. A method for producing an inflation film having a multilayer structure, which comprises compressing and stretching a plurality of films made of linear polyethylene resin having short chain branches having a density of 0.940 g/cm 3 or less.
JP58153163A 1983-08-24 1983-08-24 Inflation film and manufacture thereof Granted JPS6085946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58153163A JPS6085946A (en) 1983-08-24 1983-08-24 Inflation film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58153163A JPS6085946A (en) 1983-08-24 1983-08-24 Inflation film and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6085946A JPS6085946A (en) 1985-05-15
JPH0424220B2 true JPH0424220B2 (en) 1992-04-24

Family

ID=15556417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58153163A Granted JPS6085946A (en) 1983-08-24 1983-08-24 Inflation film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6085946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080123A1 (en) 2020-10-16 2022-04-21 文夫 高橋 Air purification device, air purification method, and air purification system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653407B2 (en) * 1987-07-17 1994-07-20 富士写真フイルム株式会社 Packaging material
US4981734A (en) * 1987-07-17 1991-01-01 Fuji Photo Film Co., Ltd. Packaging materials
WO1999044806A1 (en) * 1998-03-05 1999-09-10 Standard Starch, L.L.C. Extrusion die for biodegradable material with die orifice modifying device and flow control device
JP2002292731A (en) * 2001-03-28 2002-10-09 Nuova Pansac Spa Plant and method for producing transpiration film of polyolefin
JP5422173B2 (en) * 2008-10-27 2014-02-19 オカモト株式会社 Agricultural coating
JP2020055156A (en) * 2018-09-28 2020-04-09 大日本印刷株式会社 Laminate, packaging material, packaging bag and stand pouch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080123A1 (en) 2020-10-16 2022-04-21 文夫 高橋 Air purification device, air purification method, and air purification system

Also Published As

Publication number Publication date
JPS6085946A (en) 1985-05-15

Similar Documents

Publication Publication Date Title
US6391411B1 (en) Machine direction oriented high molecular weight, high density polyethylene films with enhanced water vapor transmission properties
JP2007528309A (en) Multi-layer film stretched in the machine direction
JPH048530A (en) Manufacture of polypropylene multi-layer oriented film
JPH0416330B2 (en)
EP0204843B1 (en) Low temperature heat shrinkable film and process for producing the same
US6413346B1 (en) Production of stretch plastic film
GB2039249A (en) Stretching ethylene-vinyl-alcohol copolymer film
US6344250B1 (en) Multilayered polyolefin high shrinkage, low shrink force shrink film
JPH0424220B2 (en)
JP7053157B2 (en) Manufacturing method of melt extrusion molded film for sealing
US5904964A (en) Process for manufacturing heat-shrinkable polyethylene film
JPH0899393A (en) Polyolefinic heat-shrinkable laminated film
JP5467296B2 (en) Polyamide-based laminated film with excellent water vapor and alcohol permeability
EP0434322B1 (en) Improved heat shrinkable polyolefin film
JPS6026697B2 (en) Method for producing ethylene-vinyl alcohol copolymer film
US6162318A (en) Production of stretch plastic film
JP2003145695A (en) Method for manufacturing polyethylenic heat-shrinkable film
JP4507031B2 (en) High-molecular-weight polyolefin film having highly transparent portion and method for producing the same
JP2821252B2 (en) Sealant film
JPH10250012A (en) Heat-shrinkable multilayer film of crosslinked polyethylene
CA2207698C (en) Multilayered polyolefin high shrinkage, low shrink force shrink film
JPS60180818A (en) Manufacture of inflated film from polymer compound based on polyethylene
KR100203444B1 (en) Ldpe film and there manufacturing method
JP2957660B2 (en) Heat shrinkable laminated film
WO2000074929A1 (en) Machine direction oriented high molecular weight, high density polyethylene films with enhanced water vapor transmission properties