JPH0361355A - Formation of thin garnet film - Google Patents

Formation of thin garnet film

Info

Publication number
JPH0361355A
JPH0361355A JP19419889A JP19419889A JPH0361355A JP H0361355 A JPH0361355 A JP H0361355A JP 19419889 A JP19419889 A JP 19419889A JP 19419889 A JP19419889 A JP 19419889A JP H0361355 A JPH0361355 A JP H0361355A
Authority
JP
Japan
Prior art keywords
garnet
chamber
thin film
substrate
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19419889A
Other languages
Japanese (ja)
Inventor
Shinji Mino
真司 美野
Shigeto Matsuoka
茂登 松岡
Kenichi Ono
小野 堅一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19419889A priority Critical patent/JPH0361355A/en
Publication of JPH0361355A publication Critical patent/JPH0361355A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/186Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering for applying a magnetic garnet film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Abstract

PURPOSE:To obtain a thin garnet film of superior quality at low temp. with superior reproducibility by carrying out sputtering in an electron cyclotron resonance plasma by the use of a garnet material as a target and depositing grains composed of garnet components onto a substrate. CONSTITUTION:Microwaves of 2.456Hz are introduced 1 into a plasma formation chamber 2. At this time, solenoid coils 3A, 3B are disposed around the chamber 2 and electric power is supplied to the coils 3A, 3B from electric power sources 11A, 11B, respectively, to produce 875G as resonant magnetic field in the chamber 2, and a plasma 4 obtained in the chamber 2 is accelerated by means of a divergent magnetic field in a direction of a substrate 8 disposed in a specimen chamber 10. As a result, negative voltage is impressed on a plate target 5A disposed in the chamber 2 and an octagonal cylindrical target 5B disposed at the outlet from the chamber 2 to the chamber 10, respectively, and sputtering is carried out. On the other hand, a gaseous mixture of Ar and O2 is generally used as an electric discharge gas. By this method, grains composed of garnet components as raw materials constituting the targets 5A, 5B are deposited on the substrate 8, and a thin garnet film of superior quality can be formed at low temp. with superior reproducibility.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は、光アイソレータ、 1iii気または光磁気
記録媒体、磁気センサー等に広く用いられる、良質なガ
ーネット薄膜を低温度で再現性よく形成するための新規
な方法に関するものである。
Detailed Description of the Invention [Industrial Application Field 1] The present invention is for forming high-quality garnet thin films at low temperatures with good reproducibility, which are widely used in optical isolators, magneto-optical recording media, magnetic sensors, etc. The invention relates to a novel method for

[従来の技術] 従来から、ガーネット薄膜は磁気バブル材料や磁気メモ
リー材料、あるいは光通信用材料として広く研究され、
そして実用化されてきた。その形成方法としては、一般
に液相エピタキシャル法(LPE) 、スパッタ法等が
ある。
[Prior Art] Garnet thin films have been widely studied as magnetic bubble materials, magnetic memory materials, and optical communication materials.
And it has been put into practical use. The forming method generally includes liquid phase epitaxial method (LPE), sputtering method, etc.

LPE法では、PbO等を融材(フラックス)としてガ
ーネット原料を高温で溶融させ、液相状態から結晶基板
上にガーネット薄膜をエピタキシャル成長させる技術で
あって、結晶性に優れた単結晶膜の高速形成技術として
多くの実績を持っている。この方法はこれまでガーネッ
ト薄膜の形成法として最も一般的な方法であった。
The LPE method is a technology in which a garnet raw material is melted at high temperature using a flux such as PbO, and a thin garnet film is grown epitaxially on a crystal substrate from a liquid phase state.It is a technology that allows for the high-speed formation of a single crystal film with excellent crystallinity. He has a lot of technical experience. This method has been the most common method for forming garnet thin films.

一方、スパッタ法は、一般に、ガーネットの原料をター
ゲットとして、プラズマ中でスパッタを行い、そこで生
じたガーネットの成分から成る粒子を基板上は堆積させ
てガーネット薄膜を形成する気相膜形成法である。
On the other hand, the sputtering method is generally a vapor phase film formation method in which sputtering is performed in plasma using a garnet raw material as a target, and the resulting particles of garnet components are deposited on a substrate to form a garnet thin film. .

[発明が解決しようとする課題〕 上述したように、ガーネット薄膜の形成方法として、L
PE法がこれまで最も一般的であったが、この方法は、
原料を溶融させ、液相から膜成長を行うため、組成の制
御が難しく、しかも薄膜領域での膜厚の制御性に大きく
劣るという問題点があった。しかも、この方法は、本質
的に熱平衡技術であるため、良質膜を得るのに必要な基
板温度が通常900℃以上と高く(例えば、玉城、対馬
、第38回応用磁気学会研究会資料、No、38−5 
、昭和60年、23p)、使用される基板も特定の耐熱
性基板か、あるいは膜と基板との格子定数を厳密に合わ
せた基板に限られていた。しかもまた、融材(フラック
ス)やルツボからの不純物(pb、pt等)の膜中への
混入が避けられず、例えば光通信用として用いた場合に
は、その不純物による光吸収が増加して、性能指数が悪
化する等の大きな問題点があった。
[Problem to be solved by the invention] As mentioned above, as a method for forming a garnet thin film, L
The PE method has been the most common until now, but this method
Since the raw materials are melted and the film is grown from a liquid phase, it is difficult to control the composition, and there are problems in that the controllability of the film thickness in the thin film region is greatly inferior. Moreover, since this method is essentially a thermal equilibrium technology, the substrate temperature required to obtain a good quality film is usually as high as 900°C or higher (for example, Tamaki, Tsushima, 38th Society of Applied Magnetics Research Conference Materials, No. , 38-5
, 1985, p. 23), the substrates used were limited to specific heat-resistant substrates or substrates in which the lattice constants of the film and substrate were precisely matched. Moreover, impurities (PB, PT, etc.) from flux and crucibles are inevitably mixed into the film, and when used for optical communication, for example, light absorption due to the impurities increases. , there were major problems such as deterioration of the figure of merit.

これに対して、スパッタ法は、非熱平衡技術であるため
、上述のLPE法に比べて比較的低7晶でガーネット薄
膜を形成できるものの、通常のスパッタ法では、膜とタ
ーゲットとの組成ずれや、膜のダメージが大きく、しか
も良質のガーネット薄膜を得るのに700℃以上の高温
を必要としていた(例えば、宮崎、第38回応用磁気学
会研究会資料、NoJ8−15、昭和60年、81p)
On the other hand, since sputtering is a non-thermal equilibrium technology, it is possible to form a garnet thin film with relatively low 7 crystals compared to the above-mentioned LPE method. , the film was severely damaged, and high temperatures of over 700°C were required to obtain a good quality garnet thin film (for example, Miyazaki, 38th Society of Applied Magnetics Research Materials, No. J8-15, 1985, p. 81).
.

さらに加えて、膜の酸化度が低下すると、金属イオン(
例えばFeイオン)の価数の変化により光吸収が増加し
たり、結晶性が悪化する問題点があり、この方法がそう
した反応性の制御性という点において優れているとは言
い難かった。
In addition, as the degree of oxidation of the film decreases, metal ions (
For example, there are problems in that light absorption increases and crystallinity deteriorates due to changes in the valence of Fe ions), and it is difficult to say that this method is superior in terms of controllability of such reactivity.

したがって、良質のガーネット薄膜を低温で形成するた
めには、ダメージの少ない、活性度の高い方法が強く望
まれていた。
Therefore, in order to form a high-quality garnet thin film at low temperatures, a method with less damage and high activity has been strongly desired.

そこで、本発明の目的は、良質のガーネット薄膜を低温
でかつ再現性よく形成する方法を提供することにある。
Therefore, an object of the present invention is to provide a method for forming a high-quality garnet thin film at low temperatures and with good reproducibility.

[課題を解決するための手段] 本発明は、従来の問題点を解決するために、ガーネット
薄膜を電子サイクロトロン共鳴(ECR)プラズマを利
用したスパッタ(ECRスパッタ)法によって形成する
[Means for Solving the Problems] In order to solve the conventional problems, the present invention forms a garnet thin film by a sputtering method using electron cyclotron resonance (ECR) plasma (ECR sputtering).

すなわち、本発明は、ガーネットの原料をターゲットと
して、電子サイクロトロン共鳴プラズマ中でスパッタを
行い、ガーネットの成分から成る粒子を基板上に堆積さ
せてガーネット薄膜を形成することを特徴とする。
That is, the present invention is characterized in that sputtering is performed in an electron cyclotron resonance plasma using a garnet raw material as a target, and particles made of garnet components are deposited on a substrate to form a garnet thin film.

本発明では、電子サイクロトロン共鳴プラズマ法で用い
るターゲットとじ−で、得られる薄膜の組成からなる焼
結体、あるいはターゲットと薄膜との組成ずれを補償し
た組成からなる焼結体、あるいはそれらの複合体を用い
ることを特徴とする特 ここでガーネット薄膜の形成中に、酸素ガス、あるいは
酸素ガスとアルゴンを代表とする不活性ガスとの混合ガ
スを、電子サイクロトロン共鳴プラズマを発生させるプ
ラズマ生成室に導入することが好適である。
In the present invention, a sintered body having the composition of a thin film obtained by target binding used in the electron cyclotron resonance plasma method, a sintered body having a composition that compensates for the compositional deviation between the target and the thin film, or a composite thereof. During the formation of the garnet thin film, oxygen gas or a mixed gas of oxygen gas and an inert gas such as argon is introduced into a plasma generation chamber that generates electron cyclotron resonance plasma. It is preferable to do so.

さらにまた、本発明では、酸素ガス、あるいは酸素ガス
とアルゴンを代表とする不活性ガスとの混合ガスを、放
電ガスとするECRプラズマを、ガーネット薄膜の堆積
直前に基板に照射することによって、基板のプラズマク
リーニングを行うことを特徴とする。
Furthermore, in the present invention, the substrate is irradiated with ECR plasma using oxygen gas or a mixed gas of oxygen gas and an inert gas such as argon as the discharge gas immediately before the deposition of the garnet thin film. It is characterized by performing plasma cleaning.

ここで、ECRスパッタ法は、ECRプラズマとスパッ
タとを組み合わせた方法であって、高活性スパッタ法の
一つとして知られている(例えば、Ono、 Taka
hashi、 & Matsuo、 Jpn、J、Ap
pl、Phys、。
Here, the ECR sputtering method is a method that combines ECR plasma and sputtering, and is known as one of the highly active sputtering methods (for example, Ono, Taka
hashi, & Matsuo, Jpn, J.Ap.
pl, Phys.

23 (1984) L534 、やMatsuoka
 & Ono、 J、Appl。
23 (1984) L534, Ya Matsuoka
& Ono, J., Appl.

Phys、 、 65 (1989) 4403 、参
照)。
Phys, 65 (1989) 4403).

[作 用] 本発明によれば、光アイソレータ、磁気または光磁気記
録媒体、磁気センサー等に広く用いられる、良質なガー
ネット薄膜を低温度で再現性よく形成できる。
[Function] According to the present invention, a high-quality garnet thin film, which is widely used in optical isolators, magnetic or magneto-optical recording media, magnetic sensors, etc., can be formed at low temperature with good reproducibility.

すなわち、本発明は、高活性な電子サイクロトロン共0
!%(ECR)プラズマを用いたスパッタ(ECRスパ
ッタ)によりガーネット薄膜を低温形成するものであり
、しかも基板の前処理と膜堆積を一貫して同一プロセス
中で実施するものである。
That is, the present invention provides a highly active electron cyclotron
! This method forms a garnet thin film at a low temperature by sputtering using % (ECR) plasma (ECR sputtering), and also performs substrate pretreatment and film deposition in the same process.

[実施例] 以下、図面に基づいて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail based on the drawings.

本発明の実施例1〜8を第1表にまとめて示す。以上の
実施例では、^「10□混合ガスはすべてプラズマ生成
室から導入した。GGGはGdGaガーネット、SGG
 はSmGaガーネット、 NGG はNdGaガーネ
ットを指し、すべて(111)面である。(100)面
上でもほとんど同じ条件で膜形成が可能である。ターゲ
ットの水素還元処理は、水素中400℃、2時間行い、
ターゲットに導電性を付与し、dcモードでのスパッタ
を可能とした。
Examples 1 to 8 of the present invention are summarized in Table 1. In the above example, all mixed gases were introduced from the plasma generation chamber. GGG is GdGa garnet, SGG
indicates SmGa garnet, NGG indicates NdGa garnet, and all are (111) planes. A film can be formed on the (100) plane under almost the same conditions. Hydrogen reduction treatment of the target was performed in hydrogen at 400°C for 2 hours.
By imparting conductivity to the target, sputtering in DC mode was made possible.

従来のスパッタ法によるガーネット薄膜形成の比較例を
第2表に示す。
Table 2 shows comparative examples of garnet thin film formation using the conventional sputtering method.

第1図は本発明によりガーネット薄膜を形成するのに用
いたEcRスパッタ装置の構成例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of the configuration of an EcR sputtering apparatus used to form a garnet thin film according to the present invention.

ここで、2.45GHzのマイクロ波をマイクロ波導入
窓1を介してプラズマ生成室2内に導入する。プラズマ
生成室2の周囲にはソレノイドコイル3^および3Bを
配置し、それぞれ、電源11Aおよび11Bより給電し
て、プラズマ生成室2の内部に共D!%磁場である87
5Gが得られるようにする。ここでは2個のソレノイド
コイル3Aおよび3Bに流す電流を2OAとした。プラ
ズマ°生成室2で得られたプラズマ4を発散磁場によっ
て、試料室10内に配置した基板8の方向に加速する。
Here, microwaves of 2.45 GHz are introduced into the plasma generation chamber 2 through the microwave introduction window 1. Solenoid coils 3^ and 3B are arranged around the plasma generation chamber 2, and are supplied with power from power sources 11A and 11B, respectively, so that both D! % magnetic field is 87
Make sure you get 5G. Here, the current flowing through the two solenoid coils 3A and 3B was set to 2OA. Plasma 4 obtained in the plasma generation chamber 2 is accelerated toward a substrate 8 placed in the sample chamber 10 by a divergent magnetic field.

プラズマ生成室2内に配置した平板ターゲット5Aおよ
びプラズマ生成室2から試料室1oへの出口に配置した
′8角筒ターゲットのそれぞれに、負の電圧を印加し、
スパッタを行う、基板8は加熱することができる。
A negative voltage is applied to each of the flat plate target 5A placed in the plasma generation chamber 2 and the '8 square cylinder target placed at the exit from the plasma generation chamber 2 to the sample chamber 1o,
The substrate 8 on which sputtering is performed can be heated.

ターゲット5八および5Bとしては、平板状および筒状
の焼結体を組み合わせて用いた。ここでは、筒状のター
ゲット5Bとして8角筒状のターゲットを用いている。
As targets 58 and 5B, a combination of flat and cylindrical sintered bodies was used. Here, an octagonal cylindrical target is used as the cylindrical target 5B.

スパッタ放電モードとしては交流(「f)と直流(da
)があるが、dcモードを用いる方が膜へのダメージが
少なく、膜形成効率が高い等の点から、dcモードの方
が望ましい。その際、ターゲット部の直流放電スパッタ
が容易なように、ターゲットは水素中で還元処理され、
導電性を持たせたほうがよい。
Sputter discharge modes include alternating current (f) and direct current (da
), but the dc mode is more desirable because it causes less damage to the film and has higher film formation efficiency. At this time, the target is reduced in hydrogen to facilitate direct current discharge sputtering of the target part.
It is better to make it conductive.

一方、放電ガスとしては、一般に、アルゴンと酸素の混
合ガス、あるいはアルゴン、酸素単体ガスを用いるが、
酸素ガスはプラズマ生成室2からガス導入口9Aを介し
て導入した方が望ましい。
On the other hand, the discharge gas is generally a mixed gas of argon and oxygen, or a single gas of argon or oxygen.
It is preferable that the oxygen gas be introduced from the plasma generation chamber 2 through the gas introduction port 9A.

第2図に、酸素ガスをプラズマ生成室2からガス導入口
9^を経て導入した場合(a)  と同じく試料室10
からガス導人口9Bを経て導入した場合(b)のプラズ
マ発光スペクトルの比較の結果を示す。プラズマ生成室
2から導入した方(a)が、反応ガスの高い励起がなさ
れており、反応性に優れている。
Figure 2 shows a case where oxygen gas is introduced from the plasma generation chamber 2 through the gas inlet 9^, and the sample chamber 10 is the same as in (a).
The results of a comparison of plasma emission spectra in the case (b) in which the gas is introduced through the gas introduction port 9B are shown. The reaction gas introduced from the plasma generation chamber 2 (a) is highly excited and has excellent reactivity.

さら(、薄膜を形成する場合、特に単結晶基板上にエピ
タキシャル成長を行う場合、その基板表面が種々の不純
物や酸化物で覆われていると、良質な薄膜が得られない
ばかりでなく、エピタキシャル成長が不可能となる。そ
こで、通常は、真空槽に基板を入れる前に、基板を化学
処理したり、あるいは真空槽内で高温処理して、基板表
面の汚染層を除去することが必要である。実際に、洗浄
しない基板を用いた場合、単結晶膜を得るには550℃
以上に基板を加熱する必要があった(実施例4参照)。
Furthermore, when forming a thin film, especially when performing epitaxial growth on a single crystal substrate, if the surface of the substrate is covered with various impurities and oxides, not only will it not be possible to obtain a good quality thin film, but the epitaxial growth will be hindered. Therefore, before placing the substrate in a vacuum chamber, it is usually necessary to chemically treat the substrate or subject it to high temperature treatment in the vacuum chamber to remove the contaminant layer on the surface of the substrate. In fact, when using a substrate that is not cleaned, a temperature of 550°C is required to obtain a single crystal film.
It was necessary to heat the substrate to a higher degree (see Example 4).

しかしながら、酸素ガス、あるいは酸素ガスとアルゴン
を代表とする不活性ガスとの混合ガスを放電ガスとする
ECRプラズマを、薄膜堆積直前に基板を照射すること
によって、基板のプラズマクリーニングを容易に行うこ
とができ、より低温でエピタキシャル成長が可能である
。実施例1〜3および5〜8では、ターゲットの電圧を
印加しない状態で、酸素ガス(流量: 1105ce、
ガス圧0.07D a 1 /rI L +、−hス「
繭イ4ブーy(マノ/y rv −ンrk ’ff −
h 。
However, plasma cleaning of the substrate can be easily performed by irradiating the substrate with ECR plasma using oxygen gas or a mixed gas of oxygen gas and an inert gas such as argon as the discharge gas immediately before thin film deposition. This allows for epitaxial growth at lower temperatures. In Examples 1 to 3 and 5 to 8, oxygen gas (flow rate: 1105 ce,
Gas pressure 0.07D a 1 /rI L +, -h
Mayu i 4 boo y (mano/y rv -nrk 'ff -
h.

200w)を5分間、500℃の温度に加熱された基板
に照射して、プラズマクリーニングを行った。ここで、
プラズマクリーニングガスとしては、Arガスも用いる
ことができるが、この場合には基板表面がかえってダメ
ージを受ける場合があるため、酸素ガスのみの方が望ま
しい。
Plasma cleaning was performed by irradiating the substrate heated to 500° C. with 200 W) for 5 minutes. here,
Ar gas can also be used as the plasma cleaning gas, but in this case, the substrate surface may be damaged, so it is preferable to use only oxygen gas.

次に、Y2B I lFe5012なる組成のガーネッ
ト単結晶膜を形成する方法を示す。Y2BilFe50
xの組成からなる焼結体(酸素の量Xは8から12の範
囲であればよい)をターゲットに用いた場合、Bi組成
がBiの再蒸発により高温基板上では減少するため、所
望の組成の膜を得るじは、この減少量をあらかじめ補償
した組成を持つターゲットを用いる必要がある。
Next, a method for forming a garnet single crystal film having a composition of Y2B I1Fe5012 will be described. Y2BilFe50
When a sintered body having a composition of In order to obtain a film of 10%, it is necessary to use a target with a composition that compensates for this reduction in advance.

第3図心そのとき得られる薄膜組成の基板温度による変
化を示す。
The third centroid shows the change in the composition of the thin film obtained at that time depending on the substrate temperature.

ここで、YおよびBi組成は、それぞれ、2.0および
1.0が化学量論組成に対応している。
Here, Y and Bi compositions of 2.0 and 1.0 correspond to stoichiometric compositions, respectively.

このとき、放電ガスとして、アルゴン酸素混合0.04
Pa)を用い、いずれもプラズマ生成室2から導入した
。基板8としてはガーネット(GdGaガーネット: 
GGG)を用いた。ここで、基板温度がほぼ400℃以
」二で膜が単結晶化するので、ターゲット組成としてほ
ぼY2Bi、、 4Fe50X(Xは8から12の間の
値)の組成のターゲットを用いれば、はぼY2B1+F
e50+2なる化学量論組成の薄膜が400℃以上の温
度で得られる。このようにして得られた薄膜の組成はほ
ぼ化学量論組成であり、良質な単結晶膜であった。
At this time, as a discharge gas, 0.04% of argon and oxygen are mixed.
Both were introduced from the plasma generation chamber 2. The substrate 8 is garnet (GdGa garnet:
GGG) was used. Here, since the film becomes single crystal when the substrate temperature is approximately 400°C or higher, if a target with a composition of approximately Y2Bi, 4Fe50X (X is a value between 8 and 12) is used, the Y2B1+F
A thin film with a stoichiometric composition of e50+2 is obtained at a temperature of 400° C. or higher. The composition of the thin film thus obtained was approximately stoichiometric and was a high quality single crystal film.

さらに、酸素ガスフローを増大させると、エビ臨界温度
が下降し400℃以下でも単結晶膜が得られることが確
かめられた。
Furthermore, it was confirmed that when the oxygen gas flow was increased, the shrimp critical temperature decreased and a single crystal film could be obtained even below 400°C.

本実施例では、ECRスパッタ法によるガーネット薄膜
の形成例として、2つのターゲットを用いる方法のみを
示したが、これは筒状ターゲットのみを用いる方法であ
つ゛〔も同様の効果が得られる。同様に、筒状ターゲッ
トとしては、本実施例のように8角筒である必要はなく
、円筒であっても多角形筒であってもよい。すなわち、
ECRマイクロ波プラズマとスパッタとを組み合わせた
方法でガーネット薄膜を形成するのであれば、その形態
を問わず、上述した本発明の実施例で得られたのと同様
の効果が得られる。
In this embodiment, only a method using two targets was shown as an example of forming a garnet thin film by ECR sputtering, but this method uses only a cylindrical target and the same effect can be obtained. Similarly, the cylindrical target does not need to be an octagonal cylinder as in this embodiment, but may be a cylinder or a polygonal cylinder. That is,
If a garnet thin film is formed by a method combining ECR microwave plasma and sputtering, the same effects as those obtained in the embodiments of the present invention described above can be obtained regardless of the form.

[発明の効果] 以上説明したように、本発明によれば、電子サイクロト
ロン共鳴によって生成された活性度の高いマイクロ波プ
ラズマを用いたスパッタによりガーネット薄膜を形成す
るものであり、良質なガーネット薄膜を低温で、かつ再
現性よく形成することができる。
[Effects of the Invention] As explained above, according to the present invention, a garnet thin film is formed by sputtering using highly active microwave plasma generated by electron cyclotron resonance, and a high-quality garnet thin film can be formed. It can be formed at low temperatures and with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明によりガーネット薄膜を形成するのに
用いたECRスパッタ装置の一例を示す構成図、 第2図は、ガス導入法の違いとして、酸素ガスをプラズ
マ生成室より導入する場合と、同じく試料室より導入す
る場合とを対比して、プラズマ発光スペクトルの違いを
説明するための波長−発光強度特性図、 第3図は、ターゲットとしてY2BiIFe50xの組
成からなる平板状および筒状の焼結体を用いた場合に得
られる薄膜組成の基板温度依存性を示す特性図である。 1・・・マイクロ波導入窓、 2・・・プラズマ生成室、 3A、3B・・・ソレノイドコイル、 4・・・プラズマ、 5A・・・平板ターゲット、 5B−・・8角筒状ターゲツト、 6・・・真空導波管、 7・・・基板加熱機構、 8・・・基板、 9^、9B・・・ガス導入口、 10・・・試料室、 11A、IIB・・・電源。 マイ
Fig. 1 is a block diagram showing an example of an ECR sputtering apparatus used to form a garnet thin film according to the present invention, and Fig. 2 shows a case where oxygen gas is introduced from the plasma generation chamber and a case where oxygen gas is introduced from the plasma generation chamber. Figure 3 shows a wavelength-emission intensity characteristic diagram for explaining the difference in plasma emission spectra in comparison with the case where the plasma is introduced from the sample chamber. FIG. 2 is a characteristic diagram showing the substrate temperature dependence of the thin film composition obtained when a solid is used. DESCRIPTION OF SYMBOLS 1... Microwave introduction window, 2... Plasma generation chamber, 3A, 3B... Solenoid coil, 4... Plasma, 5A... Flat target, 5B-... Octagonal cylindrical target, 6 ...Vacuum waveguide, 7...Substrate heating mechanism, 8...Substrate, 9^, 9B...Gas inlet, 10...Sample chamber, 11A, IIB...Power source. My

Claims (1)

【特許請求の範囲】 1)ガーネットの原料をターゲットとして、電子サイク
ロトロン共鳴プラズマ中でスパッタを行い、ガーネット
の成分から成る粒子を基板上に堆積させてガーネット薄
膜を形成することを特徴とするガーネット薄膜の形成方
法。 2)ターゲットとして、得られる薄膜の組成からなる焼
結体、あるいはターゲットと薄膜との組成ずれを補償し
た組成からなる焼結体、あるいはそれらの複合体を用い
ることを特徴とする請求項1記載のガーネット薄膜の形
成方法。 3)前記ガーネット薄膜の形成中に、酸素ガス、あるい
は酸素ガスとアルゴンを代表とする不活性ガスとの混合
ガスを、電子サイクロトロン共鳴プラズマを発生させる
プラズマ生成室に導入することを特徴とする請求項1ま
たは2記載のガーネット薄膜の形成方法。 4)酸素ガス、あるいは酸素ガスとアルゴンを代表とす
る不活性ガスとの混合ガスを、放電ガスとするECRプ
ラズマを、前記ガーネット薄膜の堆積直前に前記基板に
照射することによって、前記基板のプラズマクリーニン
グを行うことを特徴とする請求項1記載のガーネット薄
膜の形成方法。
[Claims] 1) A garnet thin film characterized in that a garnet thin film is formed by sputtering in an electron cyclotron resonance plasma using a garnet raw material as a target and depositing particles made of garnet components on a substrate. How to form. 2) The target is a sintered body having the composition of the obtained thin film, a sintered body having a composition that compensates for the compositional deviation between the target and the thin film, or a composite thereof. Method of forming garnet thin film. 3) A claim characterized in that during the formation of the garnet thin film, oxygen gas or a mixed gas of oxygen gas and an inert gas such as argon is introduced into a plasma generation chamber that generates electron cyclotron resonance plasma. Item 2. The method for forming a garnet thin film according to item 1 or 2. 4) By irradiating the substrate with ECR plasma using oxygen gas or a mixed gas of oxygen gas and an inert gas such as argon as a discharge gas, immediately before depositing the garnet thin film, the plasma on the substrate is reduced. 2. The method for forming a garnet thin film according to claim 1, wherein cleaning is performed.
JP19419889A 1989-07-28 1989-07-28 Formation of thin garnet film Pending JPH0361355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19419889A JPH0361355A (en) 1989-07-28 1989-07-28 Formation of thin garnet film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19419889A JPH0361355A (en) 1989-07-28 1989-07-28 Formation of thin garnet film

Publications (1)

Publication Number Publication Date
JPH0361355A true JPH0361355A (en) 1991-03-18

Family

ID=16320585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19419889A Pending JPH0361355A (en) 1989-07-28 1989-07-28 Formation of thin garnet film

Country Status (1)

Country Link
JP (1) JPH0361355A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041177A3 (en) * 1999-12-03 2001-12-13 Com Dev Ltd Production of a microwave device by applying a coating of yttrium-iron-garnet to the surface of the device to suppress secondary electron emission
JP2003201562A (en) * 2002-01-11 2003-07-18 Nippon Telegr & Teleph Corp <Ntt> Method for monitoring film deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041177A3 (en) * 1999-12-03 2001-12-13 Com Dev Ltd Production of a microwave device by applying a coating of yttrium-iron-garnet to the surface of the device to suppress secondary electron emission
JP2003201562A (en) * 2002-01-11 2003-07-18 Nippon Telegr & Teleph Corp <Ntt> Method for monitoring film deposition

Similar Documents

Publication Publication Date Title
Akashi et al. Preparation of ferrite single crystals by new floating zone technique
JP3774353B2 (en) Method and apparatus for forming metal compound thin film
Takahashi et al. An electron cyclotron resonance plasma deposition technique employing magnetron mode sputtering
JPH0361355A (en) Formation of thin garnet film
Iriarte Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering
JP4055939B2 (en) LiNbO3 thin film forming method
EP0349341A2 (en) Method of improving and/or producing oxide superconductor
JPS63297203A (en) Production of superconductive material
JPH06291375A (en) Manufacture of thin film superconductor and its manufacture
JPH0238302A (en) Formation of superconducting thin film
JPH035306A (en) Production and heat treatment of superconducting thin film
JPH02296724A (en) Manufacture of thin film superconductor
JPH01286914A (en) Production of superconductor of thin film
JPH0196015A (en) Formation of superconducting thin film
JP2525852B2 (en) Preparation method of superconducting thin film
JPH01112614A (en) Manufacture of super conductive film
JP2501615B2 (en) Preparation method of superconducting thin film
JPS63210006A (en) Formation of thin amorphous carbon film
JPS63299019A (en) Manufacture of thin film superconductive material
JPH0243357A (en) Production of thin superconducting film
JPH0214801A (en) Method for improving oxide superconductor
JPH04311565A (en) Formation of multiple oxide superconducting thin film
JPH01201009A (en) Production of oxide superconductor
JPH02228469A (en) Ion plating method
JPH02248302A (en) Method and device for producing oxide superconductor