JPH0360894A - Welded structure for steel frame building and welding procedure thereof - Google Patents

Welded structure for steel frame building and welding procedure thereof

Info

Publication number
JPH0360894A
JPH0360894A JP19880389A JP19880389A JPH0360894A JP H0360894 A JPH0360894 A JP H0360894A JP 19880389 A JP19880389 A JP 19880389A JP 19880389 A JP19880389 A JP 19880389A JP H0360894 A JPH0360894 A JP H0360894A
Authority
JP
Japan
Prior art keywords
less
welded
steel
strength
steel frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19880389A
Other languages
Japanese (ja)
Inventor
Yasuto Fukada
康人 深田
Yoshihiko Kamata
芳彦 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19880389A priority Critical patent/JPH0360894A/en
Publication of JPH0360894A publication Critical patent/JPH0360894A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably provide a welded structure with which the strength of the weld zone is less degraded at a low cost by constituting a deposited metal of specific weight % of C, Si, Mn, P, Cr, Mo, sol.Al, O, N, and Fe and forming the same of a chemical compsn. having specific PCM. CONSTITUTION:The deposited metal part of the welded structure for steel frame buildings is formed of the deposited metal which is high in high-temp. modulus of elasticity and high-temp. tensile strength. The deposited metal is constituted, by weight ratios, of 0.04 to 0.15% C, 0.01 to 0.90% Si, 0.30 to 2.00% Mn, <=0.05% P, 0.10 to 2.00% Cr, 0.03 to 1.00% Mo, <=0.10% sol.Al, <=0.08% O, <=0.05% N, and the balance Fe and unavoidable impurities. The deposited metal is constituted of the chemical compsn. with attains <=0.30% PCM expressed by formula I. The weld zone which is less degraded in strength and modulus of elasticity and has a high toughness value even when exposed to a high temp. at the time of a fire or the like is obtd. in this way.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、溶接部の靭性が高く、しかも例えば火災等
によって溶接部の温度上昇が起きたとしても該部分の弾
性率及び強度の低下が少ない鉄骨建築用溶接構造物、並
びにその溶接施工法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a welded part with high toughness, and even if the temperature of the welded part increases due to, for example, a fire, the elastic modulus and strength of the part will not decrease. This article relates to welded structures for steel frame buildings, which are rare, and their welding construction methods.

〈従来技術とその課題〉 近年、超高層ビル用として鉄骨建築物が増加しているが
、これは高強度で且つ柔軟性を有した鉄骨が大型構造物
の建造に適していることや、柱。
<Prior art and its challenges> In recent years, the number of steel-frame buildings used for skyscrapers has increased, but this is because steel frames with high strength and flexibility are suitable for building large structures, and .

梁の大きさを小さくすることができるため居住面積を大
きくできる等、数々の利点を有することによるものであ
る。
This is because it has many advantages, such as the ability to increase the living area because the size of the beam can be reduced.

ところで、このような鉄骨建築物用の鋼材構造物につい
ては、従来、建築基準法により耐火工法が一律に厳しく
定められていたが、昭和57年〜61年の建設省総合技
術プロジェクト“建築物の防災設計法の開発”の成果に
より、「“火災時の構造安定性“が数値シュミレーショ
ン及び実験で確認できること」を条件に「耐火被覆厚さ
を小さくすること」や更には「鉄骨を無被覆で使用する
こと」が可能となり、従来よりも鉄骨造りの耐火工法の
自由度が大幅に改善された。
By the way, with regard to steel structures for such steel-framed buildings, fireproof construction methods were previously uniformly and strictly stipulated by the Building Standards Law, but from 1981 to 1981 the Ministry of Construction's Comprehensive Technology Project "Buildings As a result of the results of the ``Development of Disaster Prevention Design Methods,'' it has become possible to ``reduce the thickness of fireproof coating'' and even ``to make steel frames uncoated,'' provided that ``structural stability in the event of a fire'' can be confirmed through numerical simulations and experiments.'' This greatly improves the flexibility of fireproof construction methods for steel structures compared to conventional methods.

しかしながら、現在使用されている鋼材では、例えば6
00℃を超える高温域での強度の低下が著しくて火災時
に高温に曝された際の構造安定性を保証することができ
ないため、実際には主としてロックウールを吹きつける
耐火工法を採用せざるを得ないのが実情である。ただ、
このロソクウルを吹付ける耐火工法は低価格で行えると
されてはいるものの、建築現場で養生シートを巡らした
吹付は作業を施す必要があるため工期の延長につながる
ばかりでなく、劣悪環境を醸し出すと言う不都合をもた
らすため、その改善の必要性が強く認識されつつあった
However, with the steel materials currently used, for example, 6
As the strength decreases significantly in the high temperature range exceeding 00℃, and structural stability cannot be guaranteed when exposed to high temperatures in the event of a fire, in reality we have no choice but to adopt a fireproof construction method that mainly involves spraying rock wool. The reality is that you can't get it. just,
Although this fireproof construction method of spraying Rosokuul is said to be low-cost, spraying around a curing sheet at the construction site not only prolongs the construction period as it requires additional work, but it also creates a poor environment. There was a strong recognition that there was a need for improvement.

なお、このロックウールの吹付は作業を回避する手段と
しては、 a) ロックウール吹付けに代えて耐火ボードを貼着す
る方法。
In addition, methods to avoid this rock wool spraying work are as follows: a) A method of pasting a fireproof board instead of rock wool spraying.

b)高温に曝されても強度が低下しない構造用鋼材を使
用する方法。
b) A method of using structural steel that does not lose its strength even when exposed to high temperatures.

が考えられる。しかし、前者では、鋼材端面が露出する
のを手当てしなければならないため何らかの部分被覆を
施す付加作業が必要となる上、耐火ボードそのものの価
格が高いので施工上の便益が少ないと言う問題がある。
is possible. However, the former method requires additional work to apply some kind of partial covering to protect the exposed edges of the steel material, and the fireproof board itself is expensive, so there is a problem that there are few benefits in terms of construction. .

これに対して、後者の“火災時に高温に曝されても高温
強度の低下しない鋼材の適用”がなされるならば、前記
耐火工法を採用することなく “火災時の構造安定性”
を保証することができるため、その検討が急がれていた
On the other hand, if the latter method is used, which is ``application of steel materials that do not lose their high temperature strength even when exposed to high temperatures in the event of a fire,'' the above-mentioned fireproofing method will not be adopted and the ``structural stability in the event of a fire'' will be improved.
Since it is possible to guarantee the

高温強度が要求される用途に供される鋼としては、これ
までにも例えば特公昭57−19731号公報或いは特
公昭59−42745号公報等に示される如きMoを含
有した圧力容器用低合金鋼が開発されている。しかし、
圧力容器用鋼として使用される鋼材は、高温における強
度保証といっても高々500°C未満の温度域であるの
が常識であり、500℃を超える温度域、更には600
 ’C程度での高温強度を保証しようとする試みはこれ
まで皆無と言っても良かった。
As steels used for applications requiring high-temperature strength, low alloy steels for pressure vessels containing Mo, such as those disclosed in Japanese Patent Publication No. 57-19731 or Japanese Patent Publication No. 59-42745, have so far been used. is being developed. but,
It is common knowledge that the strength of steel used as pressure vessel steel is guaranteed at temperatures below 500°C, and even at temperatures above 500°C, even at temperatures above 600°C.
It can be said that there has been no attempt to guarantee high-temperature strength at temperatures around 'C.

しかも、高温での強度低下を抑制できる調材が開発され
たとしても、それだけでは鉄骨建築物の構造部材として
十分であるとは言えない面も考慮しなければならない。
Moreover, even if a prepared material that can suppress the decrease in strength at high temperatures is developed, consideration must be given to the fact that it cannot be said to be sufficient as a structural member for steel-framed buildings.

即ち、建築構造用鋼材は柱や梁に使用されることが前提
となるため、“座屈”を生じないことも極めて重要な要
求特性となっている。そのため火災時のような高温に加
熱された際の強度低下が抑えられることの他に、高温域
での弾性率低下が少ないことも極めて重要な要件となる
。従って、このような用途の鋼材は、単に上述した如き
圧力容器用鋼での知識だけでは開発が困難で、観点を異
にした数多くの実験・検討を踏まえた上での研究開発が
是非とも必要であった。
That is, since steel materials for building structures are intended to be used for columns and beams, the absence of "buckling" is also an extremely important required characteristic. Therefore, in addition to suppressing a decrease in strength when heated to high temperatures such as during a fire, it is also an extremely important requirement that the decrease in elastic modulus be small in a high temperature range. Therefore, it is difficult to develop steel materials for such applications based solely on the knowledge of pressure vessel steels as mentioned above, and research and development based on numerous experiments and studies from different viewpoints are absolutely necessary. Met.

更に、鉄骨建築物は一般に溶接構造を採っており、従っ
て構造物全体の安全性を考慮した場合には、火災時のよ
うな高温に曝された際にも強度低下や弾性率の低下が抑
えられる“溶接部”を実現することが最大のポイントと
なってくる。それにもかかわらず、溶接部に上述の所要
性能を維持できるようにするための材質的な検討は殊更
になされていないのが実情であった。
Furthermore, steel buildings generally have a welded structure, so when considering the safety of the entire structure, it is important to minimize the decline in strength and elastic modulus even when exposed to high temperatures such as during a fire. The most important point is to realize a "welded part" that can be used. Despite this, the actual situation is that no particular study has been made of the materials in order to maintain the above-mentioned required performance in the welded part.

もっとも、鋼材(母材〉自体については、化学組成を調
整する手段以外にも、圧延条件を工夫したり熱処理を施
したりして特性改善に寄与する微細析出物を確保し所望
性能を達成することが比較的容易に行える場合が多いが
、溶接部の場合には、通常、溶接後に圧延等の加工を施
すことがないので凝固のままの組織となっており、その
ため高性能を得ることは一般的に困難である。また、溶
接後熱処理については、コストアップにつながるばかり
か、鉄骨建築用溶接構造物における溶接個所は非常に複
雑な形状であるのが普通であるため実質的には実施する
ことが不可能であった。
However, regarding the steel material (base material) itself, in addition to adjusting the chemical composition, it is also necessary to devise rolling conditions or perform heat treatment to ensure fine precipitates that contribute to property improvement and achieve the desired performance. However, in the case of welded parts, there is usually no processing such as rolling performed after welding, so the structure remains solidified, so it is generally difficult to achieve high performance. In addition, post-weld heat treatment not only increases costs, but it is practically not carried out because the welded parts of welded steel structures usually have very complex shapes. That was impossible.

このような事情から、鉄骨建築用溶接構造物においては
、火災時の如き高温に曝された場合にも強度低下や弾性
率低下が少なく、しかも靭性値の高い溶接部を実現する
ことが急務であった。
For these reasons, it is urgent that welded steel structures for steel buildings have welded parts that have high toughness and less decrease in strength and elastic modulus even when exposed to high temperatures such as during a fire. there were.

そこで、本発明者等は、鉄骨建築用溶接構造物において
特に性能確保が困難な溶接部の所要特性を種々の実験を
通じて検討し、「室温での機械的性質がJIS G31
0 Iニ規定される5S41或いはJISC;3106
に規定される3M50の性能を満足する鋼材の溶接部に
おいて、600℃における引張強さが室温における目標
値の6割を確保でき、かつ弾性率が15000kgf/
−以上であって、しかも十分な靭性が備わっておれば、
耐火被覆の軽減或いは省略下であっても火災時の昇温に
耐え得る優れた構造安定性を有した鉄骨建築用溶接構造
物が実現できる」ことを確認した。
Therefore, the present inventors conducted various experiments to examine the required characteristics of welded parts, which are particularly difficult to ensure performance in welded steel structures, and determined that the mechanical properties at room temperature meet JIS G31.
0 I-specified 5S41 or JISC; 3106
In a welded part of steel that satisfies the performance of 3M50 specified in
-If the above is true and it has sufficient toughness,
It was confirmed that it is possible to realize a welded steel structure with excellent structural stability that can withstand temperature rise during a fire even when the fireproof coating is reduced or omitted.

従って、本発明の目的は、室温における機械的性質がJ
ISに規定される上記5S41或いは5M50の性能を
満足すると共に、600℃における機械的性質(引張強
度)が室温における目標値の6割を確保し、かつ弾性率
が15000kgf/−以上の性能を有する溶接部を備
えた鉄骨建築用溶接構造物の実現手段を見出すことに置
がれた。
Therefore, the object of the present invention is to provide mechanical properties at room temperature of J
It satisfies the performance of 5S41 or 5M50 specified by IS, has mechanical properties (tensile strength) at 600°C that are 60% of the target value at room temperature, and has an elastic modulus of 15,000 kgf/- or more. The aim was to find a means of realizing welded structures for steel construction with welded parts.

く課題を解決するための手段〉 そして、本発明者等は、上記目的を達成すべく行われた
数多くの実験・研究の結果から次に示す如き知見を得る
に至ったのである。
Means for Solving the Problems The present inventors have obtained the following knowledge from the results of numerous experiments and studies conducted to achieve the above object.

<8+  高温における溶接部の強度2弾性率上昇のた
めには溶着金属中にCr+ Mo、  v、 Nb等を
添加することが有効である。しかし、多量の添加は不経
済である上、室温での強度を著しく上昇させるので鋼材
(母材)とのバランスの崩れを招き、しかも溶着金属の
靭性劣化にもつながるため、上記元素の添加は細心の制
御の下で実施する必要がある。
<8+ It is effective to add Cr+ Mo, V, Nb, etc. to the weld metal in order to increase the strength 2 elastic modulus of the welded part at high temperatures. However, addition of large amounts is not only uneconomical, but also significantly increases the strength at room temperature, leading to an imbalance with the steel material (base material), and also leading to deterioration of the toughness of the weld metal. It needs to be carried out under careful control.

(b)  室温での要求機械的性質を満足し、かつ高温
における所望特性を獲得するためには、溶着金属中にフ
ェライトが生成するのを抑え、かつ溶着金属の組織を、
室温における強度上昇につながるマルテンサイトの導入
を抑えたベイナイト組織とすることが重要である。
(b) In order to satisfy the required mechanical properties at room temperature and obtain the desired properties at high temperatures, it is necessary to suppress the formation of ferrite in the weld metal and to improve the structure of the weld metal.
It is important to create a bainite structure that suppresses the introduction of martensite, which leads to an increase in strength at room temperature.

(C)また、通常、鉄骨建築用溶接構造物の溶着金属部
は凝固のままの組織であることを余儀無くされがちであ
るため、特性の改善には化学組成を工夫する手段を導入
するのが最も実際的であるが、鉄骨建築物が火災に逼っ
た際の昇温温度域での強度2弾性率の低下防止には、こ
の昇温を逆に利用してCr、 Moの微細析出が起きる
ように成分調整を行うことが極めて有効である。
(C) Additionally, since the welded metal parts of welded steel structures for steel construction tend to have a solidified structure, it is necessary to introduce means to improve the chemical composition in order to improve the properties. is the most practical method, but in order to prevent the strength 2 modulus of elasticity from decreasing in the temperature range when a steel frame building is exposed to a fire, this temperature increase can be used to prevent the fine precipitation of Cr and Mo. It is extremely effective to adjust the ingredients so that this occurs.

本発明は、上記知見等に基づいてなされたものであり、 「鉄骨建築用溶接構造物を、 C: 0.04〜0.15%(以降、成分割合を表わす
%は重量%とする)。
The present invention was made based on the above-mentioned findings, etc., and provides a welded structure for steel-framed buildings.

St : 0.01〜0.90%、  Mn : 0.
30〜0.90%。
St: 0.01-0.90%, Mn: 0.
30-0.90%.

Si:0.05%以下、   Cr : 0.10〜0
.90%。
Si: 0.05% or less, Cr: 0.10-0
.. 90%.

Mo : 0.03〜1.00%、  sol、 Ai
’ : 0.10%以下。
Mo: 0.03-1.00%, sol, Ai
': 0.10% or less.

0:0.08%以下、   N ? 0.05%以下、
或いは、更に Nb : 0.08%以下、   V:0.10%以下
0: 0.08% or less, N? 0.05% or less,
Alternatively, Nb: 0.08% or less, V: 0.10% or less.

Cu : 0.50%以下、   Ni : 0.10
%以下。
Cu: 0.50% or less, Ni: 0.10
%below.

Ti : 050%以下、   Ni:1.5%以下の
1種以上をも含み、残部がFe及び不可避不純物から戒
ると共に、式 で表わされるPoが0.30%以下なる化学組成を有す
るところの高靭性溶着金属部を有して成る構成とするこ
とにより、600℃に加熱された際の溶着金属部の弾性
率が15000kgf/−以上、引張強さが常温強度の
6割以上を示す良好な“火災時の構造安定性”を備えし
めた点」 に特徴を有し、更には 「鉄骨建築用鋼材の溶接を、 入熱量: 8〜50kJ/cm で実施して所定化学組成並びにPC,4の溶着金属を生
成させることにより、前記良好な“火災時の構造安定性
”を備えた鉄骨建築用溶接構造物を安定して実現し得る
ようにした点」 をも特徴とするものである。
It also contains one or more of Ti: 0.5% or less, Ni: 1.5% or less, the balance is free from Fe and unavoidable impurities, and has a chemical composition in which Po expressed by the formula is 0.30% or less. By having a structure with a high-toughness welded metal part, the welded metal part has an elastic modulus of 15,000 kgf/- or more when heated to 600°C, and a tensile strength that is 60% or more of the room temperature strength. It is characterized by ``structural stability in the event of a fire,'' and furthermore, ``steel construction steel materials are welded at a heat input of 8 to 50 kJ/cm to achieve a specified chemical composition and PC, 4. The present invention is also characterized by the fact that the welded structure for steel frame buildings having the above-mentioned good "structural stability in the event of fire" can be stably realized by producing a welded metal of .

以下、本発明において、鉄骨建築用溶接構造物の溶着金
属部組成並びに溶接施工時の入熱量を前記の如くに数値
限定した理由を、その作用と共に詳述する。
Hereinafter, in the present invention, the reason why the composition of the welded metal part of the welded structure for steel frame construction and the amount of heat input during welding are numerically limited as described above will be explained in detail together with the effect thereof.

く作用〉 A)溶着金属部組成 Cには所望強度を確保する作用があるが、その含有量が
0.04%未満では前記作用による所望の効果が得られ
ず、一方、0.15%を超えて含有させると割れ発生等
が懸念されるようになることから、C含有量は0.04
〜0.15%と限定した。
A) Weld metal composition C has the effect of ensuring the desired strength, but if its content is less than 0.04%, the desired effect cannot be obtained by the above effect; If the C content exceeds 0.04, there is a concern that cracking may occur.
It was limited to ~0.15%.

Si Siは脱酸剤として有用な成分であるが、その含有量が
0.01%未満では十分な脱酸が行えず、一方、0.9
0%を超えて含有させると著しい靭性劣化を招くことか
らSi含有量は0.01〜0.90%と定めたが、より
優れた靭性を確保するためには0.50%以下に抑える
のが好ましい。
Si Si is a useful component as a deoxidizing agent, but if its content is less than 0.01%, sufficient deoxidation cannot be performed;
The Si content was set at 0.01 to 0.90% because Si content exceeding 0% would cause a significant deterioration of toughness, but in order to ensure better toughness, it should be kept below 0.50%. is preferred.

Mn Mnには強度及び靭性を向上する作用があるが、その含
有量が0.30%未満では前記作用による所望の効果が
得られず、一方、0.90%を超えて含有させても該効
果が飽和するばかりか、逆に靭性は劣化傾向を見せるこ
とから、Mn含有量は0.30〜0.90%と定めた。
Mn Mn has the effect of improving strength and toughness, but if its content is less than 0.30%, the desired effect due to the above effect cannot be obtained, while on the other hand, if it is contained more than 0.90%, the The Mn content was set at 0.30 to 0.90% because not only the effect was saturated, but also the toughness showed a tendency to deteriorate.

Pは不可避不純物として溶着金属中に随伴される元素で
あるが、その含有量が0.05%を超えると割れ感受性
が顕著に高まることから、P含有量の上限を0.05%
と定めた。
P is an element that accompanies weld metal as an unavoidable impurity, but if its content exceeds 0.05%, cracking susceptibility increases significantly, so the upper limit of the P content is set at 0.05%.
It was determined that

Cr Crには凝固・冷却Mi織のベイナイト化を促進して室
温時及び高温加熱時の所要特性(強度1弾性率)を改善
する作用があるが、その含有量が0.10%未満では前
記作用による所望の効果が得られず、−方、0.90%
を超えて含有させても該効果が飽和してしまうことから
、Cr含有量は0.10〜0.90%と限定した。
Cr Cr has the effect of promoting bainiticization of the solidified and cooled Mi weave and improving the required properties (strength 1 elastic modulus) at room temperature and at high temperature heating, but if its content is less than 0.10%, the above-mentioned The desired effect was not obtained by the action, - 0.90%
Cr content was limited to 0.10 to 0.90% since the effect would be saturated even if the content exceeded Cr content.

O Moにも、Crと同様に凝固・冷却m織のベイナイト化
を促進して室温時及び高温加熱時の所要特性(強度9弾
性率)を改善する作用があるが、その含有量が0.03
%未満では前記作用による所望の効果が得られず、一方
、1.00%を超えて含有させると必要以上の強度上昇
がもたらされて経済性を欠くこととなるため、阿0含有
量は0.03〜1.00%と定めた。
Like Cr, Mo also has the effect of promoting bainite formation of the solidified and cooled m weave and improving the required properties (strength 9 elastic modulus) at room temperature and when heated at high temperatures. 03
If the content is less than 1.00%, the desired effect cannot be obtained, while if the content exceeds 1.00%, the strength will increase more than necessary and it will be uneconomical. It was set at 0.03 to 1.00%.

sol、 Al 5o1.Allも脱酸剤として不可欠な成分であるが、
0.10%を超えて含有させると靭性劣化を招くことか
ら、sol、AI含有量は0.10%以下と定めた。
sol, Al 5o1. All is also an essential component as a deoxidizing agent,
Since containing more than 0.10% causes deterioration of toughness, the sol and AI contents were determined to be 0.10% or less.

旦工盈0旦 O及びNは、両者とも溶接により形成される溶着金属中
に多量に混入する不純物元素であって焼入れ性の低下や
靭性劣化を招くが、0を0.08%以下に、モしてNを
0.05%以下にそれぞれ抑えることによって前記不都
合を容認できる程度に軽減できることから、0含有量は
0.08%以下、N含有量は0.05%以下と限定した
Both O and N are impurity elements that are mixed in large amounts into the deposited metal formed by welding, causing a decrease in hardenability and toughness. Furthermore, by suppressing N to 0.05% or less, the above-mentioned disadvantages can be alleviated to an acceptable extent, so the 0 content was limited to 0.08% or less, and the N content was limited to 0.05% or less.

ヱ■ なる式で表わされるPe、(溶接割れ(低温割れ)感受
性指数)は、硬さ1強度、靭性等をも示す一般に有用な
指数であるが、その値が0.30%を超えると溶着金属
の硬さ9強度が著しく上昇して母材とのバランスを欠く
ようになる上、靭性劣化を招いて建築用構造物として不
適となることから、PCMは0.30%以下と定めた。
ヱ■ Pe (welding cracking (cold cracking) susceptibility index) is a generally useful index that also indicates hardness, strength, toughness, etc., but if its value exceeds 0.30%, welding will occur. The PCM content was determined to be 0.30% or less because the hardness 9 strength of the metal increases significantly, causing a lack of balance with the base metal, and also leads to deterioration of toughness, making it unsuitable for use as architectural structures.

Nb、  V、 Cu、 Ni、 Ti、及びB一般に
、鋼材の靭性及び強度を高めるためこれら成分の1種又
は2種以上を含有させることが行われているが、本発明
に係る建築用溶接構造物の溶着金属部においても同様の
効果が得られることから、必要に応じてNb、 V、 
Cu、 Ni+ Ti及びBの1種以上を含有させて良
い。なお、これらの成分は溶接の際に故意に添加される
場合もあるが、母材希釈を通して含有させても構わない
。ただ、これらの成分は、過剰に含有量されると溶着金
属の割れ感受性を高めたり靭性劣化や強度の著しい上昇
を招く等の問題を引き起こす懸念があることから、それ
ぞれの含有量の上限を、Nbは0.08%、■は0.1
0%、 Cuは0.50%、 Niは0.10%、 T
jは050%。
Nb, V, Cu, Ni, Ti, and B Generally, one or more of these components are included in order to improve the toughness and strength of steel materials, but the architectural welded structure according to the present invention Since the same effect can be obtained in the welded metal parts of objects, Nb, V,
One or more of Cu, Ni+Ti and B may be contained. Note that these components may be intentionally added during welding, but they may also be included through dilution of the base material. However, if these components are contained in excess, there is a concern that they may cause problems such as increasing the cracking susceptibility of the welded metal, deteriorating toughness, and significantly increasing strength, so the upper limit of each content has been set. Nb is 0.08%, ■ is 0.1
0%, Cu 0.50%, Ni 0.10%, T
j is 050%.

Bは0.003%と定めた。B was set at 0.003%.

なお、上記溶着金属の化学m戒の実現には、鉄骨建築用
鋼材を溶接する際に必要に応じて追加的な成分元素の添
加を行っても良いし、また母材希釈を利用しても良いこ
とは言うまでもない。
In addition, in order to realize the chemical precepts of the weld metal mentioned above, additional component elements may be added as necessary when welding steel materials for steel structures, or base metal dilution may be used. Needless to say, it's a good thing.

B)溶接施工時の入熱量 前述したように、通常、鉄骨建築用溶接構造物の溶着金
属部は凝固のままの組織であることが殆んどであるため
、組成の調整のみでは性能の確保が安定せず、施工条件
によってマルテンサイト或いはフェライトの生成が促進
される場合がある。
B) Heat input during welding work As mentioned above, the deposited metal part of welded steel structures for steel buildings usually has a solidified structure, so it is difficult to ensure performance by adjusting the composition alone. is not stable, and the formation of martensite or ferrite may be promoted depending on the construction conditions.

しかしながら、鉄骨建築用鋼材の溶接に際して溶着金属
の化学組成を前記の如くに調整すると共に溶接入熱量を
8〜50kJ/cmに調整すると、ベイナイト化が円滑
に起こり、建築用溶接構造物としての所要性能が安定し
て達成されるようになる。
However, when welding steel materials for building construction, if the chemical composition of the weld metal is adjusted as described above and the welding heat input is adjusted to 8 to 50 kJ/cm, bainite formation occurs smoothly, which is necessary for welded structures for construction. Performance becomes stable and achieved.

なお、溶接入熱量が8 kJ/cm未満では冷却速度が
速くてマルテンサイトが生成し硬度が高くなり過ぎ、一
方50kJ/amを超える大人熱の場合にはフェライト
の生成が促進されて高温性能が得られるなくなる。
Note that if the welding heat input is less than 8 kJ/cm, the cooling rate will be fast and martensite will be produced, resulting in too high hardness. On the other hand, if the welding heat is more than 50 kJ/am, the production of ferrite will be promoted and high-temperature performance will be impaired. You won't get it.

次に、本発明を実施例によって更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

〈実施例〉 まず、JISG3106に規定される5M50相当鋼板
(板厚:20mm)を準備すると共に、これを第1図に
示す開先に仕上げた。
<Example> First, a steel plate equivalent to 5M50 (plate thickness: 20 mm) specified in JIS G3106 was prepared, and this was finished into the groove shown in FIG.

次いで、心線がJISG3523に規定される5WY1
1相当材(4,0φ)で被覆剤中の成分を種々変更した
溶接棒を用い、前記鋼板を第1表に示す入熱量で溶接し
て、同じく第1表に示す如き目標の溶着金属組成を有す
る溶接構造材を得た。
Next, the core wire is 5WY1 specified in JIS G3523.
Using a welding rod equivalent to No. 1 (4.0φ) with various coating compositions, the steel plates were welded at the heat input shown in Table 1 to obtain the target weld metal composition as shown in Table 1. A welded structural material having the following properties was obtained.

このようにして得られた溶接構造材の溶着金属について
、“室温及び600℃での溶着金属の強度並びに弾性率
”、“室温における側曲げ特性”及び“0℃における靭
性”を調査し、その結果を第2表に示した。
The weld metal of the welded structural material thus obtained was investigated for its "strength and elastic modulus at room temperature and 600°C,""side bending properties at room temperature," and "toughness at 0°C." The results are shown in Table 2.

ここで、「弾性率」は熱間共振型弾性率測定装置を用い
て測定したが、これは試験片を振動させて固有振動数を
求め、次式から弾性率を測定する手法である。
Here, the "elastic modulus" was measured using a hot resonance type elastic modulus measuring device, which is a method of vibrating a test piece to determine the natural frequency and measuring the elastic modulus from the following equation.

11r百 f  =−−X−X− 2a   ρ 第2表に示される結果からも、本発明に従えば、常温並
びに600℃の高温での特性とも建築用構造物として十
分満足できる溶着金属部を有した溶接構造材が実現され
ることが明らかである。
11r100f = - - It is clear that a welded structural material having the following characteristics can be realized.

なお、この実施例では本発明に係る溶着金属を得る方法
として被覆アーク溶接を適用した例のみを示したが、そ
の他、CO2溶接、MIG溶接。
Although this example shows only an example in which coated arc welding was applied as a method for obtaining the deposited metal according to the present invention, other methods include CO2 welding and MIG welding.

サブマージアーク溶接或いはTIG溶接等、アクを利用
する溶接方法であれば特にその種類が限定されるもので
ないことは言うまでもない。
Needless to say, the type of welding method is not particularly limited as long as it is a welding method that uses lye, such as submerged arc welding or TIG welding.

く効果の総括) 上述のように、この発明によると、例え火災時において
構造物の温度が上昇したとしても溶接部の弾性率や強度
の低下が極めて少ない鉄骨建築用溶接構造物を、コスト
安く安定して提供することが可能となるなど、 産業上極めて有用な効果かも たらされる。
(Summary of Effects) As described above, the present invention enables welded structures for steel frame buildings to be produced at low cost, with very little reduction in the elastic modulus or strength of the welded parts even if the temperature of the structure rises in the event of a fire. This will bring about extremely useful effects industrially, such as making it possible to provide stable supplies.

4、4,

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、 実施例で適用された開先形状を示す 概略図である。 Figure 1 shows Showing the groove shape applied in the example It is a schematic diagram.

Claims (3)

【特許請求の範囲】[Claims] (1)重量割合にて C:0.04〜0.15%、Si:0.01〜0.90
%、Mn:0.30〜2.00%、P:0.05%以下
、Cr:0.10〜2.00%、Mo:0.03〜1.
00%、sol.Al:0.10%以下、O:0.08
%以下、N:0.05%以下、 Fe及び不可避不純物:残り にて構成されると共に、下記式で表わされるP_C_M
が0.30%以下なる化学組成を有するところの、高温
弾性率及び高温引張強さの高い高靭性溶着金属部を有し
て成る、鉄骨建築用溶接構造物。 P_C_M=▲数式、化学式、表等があります▼
(1) C: 0.04-0.15%, Si: 0.01-0.90 in weight percentage
%, Mn: 0.30-2.00%, P: 0.05% or less, Cr: 0.10-2.00%, Mo: 0.03-1.
00%, sol. Al: 0.10% or less, O: 0.08
% or less, N: 0.05% or less, Fe and unavoidable impurities: the remainder, and P_C_M represented by the following formula
1. A welded structure for steel frame construction, comprising a high-toughness welded metal part with high high-temperature elastic modulus and high-temperature tensile strength, having a chemical composition of 0.30% or less. P_C_M=▲There are mathematical formulas, chemical formulas, tables, etc.▼
(2)重量割合にて C:0.04〜0.15%、Si:0.01〜0.90
%、Mn:0.30〜2.00%、P:0.05%以下
、Cr:0.10〜2.00%,Mo:0.03〜1.
00%、sol.Al:0.10%以下、O:0.08
%以下、N:0.05%以下 で、更に Nb:0.08%以下、V:0.10%以下、Cu:0
.50%以下、Ni:1.5%以下、Ti:0.09%
以下、B:0.003%以下の1種以上をも含み、残部
がFe及び不可避不純物にて構成されると共に、下記式
で表わされるP_C_Mが0.30%以下なる化学組成
を有するところの、高温弾性率及び高温引張強さの高い
高靭性溶着金属部を有して成る、鉄骨建築用溶接構造物
。 P_C_M=▲数式、化学式、表等があります▼
(2) C: 0.04-0.15%, Si: 0.01-0.90 in weight percentage
%, Mn: 0.30-2.00%, P: 0.05% or less, Cr: 0.10-2.00%, Mo: 0.03-1.
00%, sol. Al: 0.10% or less, O: 0.08
% or less, N: 0.05% or less, further Nb: 0.08% or less, V: 0.10% or less, Cu: 0
.. 50% or less, Ni: 1.5% or less, Ti: 0.09%
Hereinafter, a chemical composition containing one or more types of B: 0.003% or less, the balance being composed of Fe and unavoidable impurities, and having a P_C_M represented by the following formula of 0.30% or less, A welded structure for steel construction, comprising a high-toughness welded metal part with high high-temperature elastic modulus and high-temperature tensile strength. P_C_M=▲There are mathematical formulas, chemical formulas, tables, etc.▼
(3)鉄骨建築用鋼材の溶接を、 入熱量:8〜50kJ/cm で実施して所定化学組成並びにP_C_Mの溶着金属を
生成させることを特徴とする、請求項1又は2記載の鉄
骨建築用溶接構造物を得るための溶接施工法。
(3) For steel frame construction according to claim 1 or 2, wherein the welding of steel materials for steel frame construction is performed at a heat input of 8 to 50 kJ/cm to produce a deposited metal having a predetermined chemical composition and P_C_M. Welding construction method for obtaining welded structures.
JP19880389A 1989-07-31 1989-07-31 Welded structure for steel frame building and welding procedure thereof Pending JPH0360894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19880389A JPH0360894A (en) 1989-07-31 1989-07-31 Welded structure for steel frame building and welding procedure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19880389A JPH0360894A (en) 1989-07-31 1989-07-31 Welded structure for steel frame building and welding procedure thereof

Publications (1)

Publication Number Publication Date
JPH0360894A true JPH0360894A (en) 1991-03-15

Family

ID=16397175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19880389A Pending JPH0360894A (en) 1989-07-31 1989-07-31 Welded structure for steel frame building and welding procedure thereof

Country Status (1)

Country Link
JP (1) JPH0360894A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867520A2 (en) * 1997-03-26 1998-09-30 Sumitomo Metal Industries, Ltd. Welded high-strength steel structures and methods of manufacturing the same
WO2011148859A1 (en) * 2010-05-25 2011-12-01 株式会社神戸製鋼所 High strength welded metal having excellent ctod characteristics
WO2015159806A1 (en) * 2014-04-17 2015-10-22 株式会社神戸製鋼所 Welded metal having excellent strength, toughness and sr cracking resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867520A2 (en) * 1997-03-26 1998-09-30 Sumitomo Metal Industries, Ltd. Welded high-strength steel structures and methods of manufacturing the same
EP0867520A3 (en) * 1997-03-26 1999-03-03 Sumitomo Metal Industries, Ltd. Welded high-strength steel structures and methods of manufacturing the same
WO2011148859A1 (en) * 2010-05-25 2011-12-01 株式会社神戸製鋼所 High strength welded metal having excellent ctod characteristics
JP2012006073A (en) * 2010-05-25 2012-01-12 Kobe Steel Ltd High strength welded metal excellent in ctod characteristic
WO2015159806A1 (en) * 2014-04-17 2015-10-22 株式会社神戸製鋼所 Welded metal having excellent strength, toughness and sr cracking resistance
JP2015205288A (en) * 2014-04-17 2015-11-19 株式会社神戸製鋼所 Weld metal excellent in strength, toughness and sr crack resistance
CN106170575A (en) * 2014-04-17 2016-11-30 株式会社神户制钢所 Intensity, toughness and the welding metal of the anti-thread breakage excellence of resistance to SR

Similar Documents

Publication Publication Date Title
JPS61130462A (en) High-touchness extra high tension steel having superior stress corrosion cracking resistance as well as yield stress of 110kgf/mm2 and above
JPH0450362B2 (en)
JPH0360894A (en) Welded structure for steel frame building and welding procedure thereof
JP3214281B2 (en) Low-temperature building steel
JPH0339418A (en) Production of steel stock for steel-frame structure minimal in reduction in elastic modulus at high temperature
JP2008144216A (en) Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
JPH04193907A (en) Production of 50kgf/mm2 class refractory steel plate for construction use
JPH02254133A (en) Steel material for steel-frame construction having little lowering of elastic modulus at high temperature and its manufacture
JPH0813083A (en) Refractory steel plate for architectural use, reduced in yield ratio and excellent in weldability, and production thereof
JPH0252196A (en) Welding wire for fire resistant steel
JPH0756044B2 (en) Method for producing low yield ratio H-section steel with excellent fire resistance
JP3728240B2 (en) Non-fireproof coated steel member
JP3289594B2 (en) Earthquake-resistant building steel with excellent fire resistance, low yield ratio even at high strain rate deformation, and high toughness even after repeated plastic deformation
JPH046245A (en) Steel for building structure excellent in weatherability and fire resistance
JP2008121081A (en) Fire-resistant steel material with excellent toughness of welded joint, and its manufacturing method
JP3371678B2 (en) Manufacturing method of low yield ratio refractory steel for structural use
JPH04350120A (en) Production of high strength refractory steel plate for construction use
JPH0737649B2 (en) Manufacturing method of fireproof steel plate for building with low yield ratio
JPH0499817A (en) Production of high-tensile steel having low-yield ratio
JPS62137196A (en) Covered electrode for cr-mo low alloy steel
JPH0450363B2 (en)
JPH0570681B2 (en)
GB2388845A (en) Fire resistant steel
JPH03173715A (en) Production of 50kgf/mm2 class refractory steel for construction use excellent in weldability
JPH04180518A (en) Production of 50kgf/mm2 class refractory steel for building having excellent toughness of large heat input welded joint