JP2012006073A - High strength welded metal excellent in ctod characteristic - Google Patents

High strength welded metal excellent in ctod characteristic Download PDF

Info

Publication number
JP2012006073A
JP2012006073A JP2010160797A JP2010160797A JP2012006073A JP 2012006073 A JP2012006073 A JP 2012006073A JP 2010160797 A JP2010160797 A JP 2010160797A JP 2010160797 A JP2010160797 A JP 2010160797A JP 2012006073 A JP2012006073 A JP 2012006073A
Authority
JP
Japan
Prior art keywords
less
amount
weld metal
ctod
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010160797A
Other languages
Japanese (ja)
Other versions
JP5551990B2 (en
Inventor
Eiichi Tamura
栄一 田村
Ho Kan
鵬 韓
Shun Izumitani
瞬 泉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010160797A priority Critical patent/JP5551990B2/en
Priority to PCT/JP2011/061574 priority patent/WO2011148859A1/en
Publication of JP2012006073A publication Critical patent/JP2012006073A/en
Application granted granted Critical
Publication of JP5551990B2 publication Critical patent/JP5551990B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength welded metal obtained by submerged arc welding, excellent in a CTOD (crack tip opening displacement) characteristic.SOLUTION: This high strength welded metal is obtained by the submerged arc welding, contains, in terms of mass%, 0.02-0.12% of C, 0.1-0.70% of Si, 1.0-2.0% of Mn, 0.1-2.5% of Cu and/or 0.5-3.5% of Ni, 1.0% or less (excluding 0%) of Cr and/or 0.5-1.5% of Mo, 0.005% or less (including 0%) of Ca, 0.0050% or less (including 0%) of Ti, 0.005-0.050% of Al, and 0.010-0.050% of O, satisfies formula (1) and has an area ratio of an Al-containing oxide within a range of 0.5 or more to 2.0% or less. Formula (1): 0.45≤[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr] +[Mo]/5)≤0.75.

Description

本発明は高強度溶接金属に関するものであり、より詳細には靭性の評価基準の中でも特にCTOD(Crack Tip Opening Displacement、亀裂先端開口変位量)特性に優れた高強度溶接金属に関するものである。   The present invention relates to a high-strength weld metal, and more particularly to a high-strength weld metal excellent in CTOD (Crack Tip Opening Displacement) characteristics among the toughness evaluation criteria.

近年、海洋構造物は大型化および寒冷地化が進み、海洋構造物に用いられる鋼板および溶接部には更なる高強度および高靭性が求められている。海洋構造物に求められる靭性は、特にCTOD特性と呼ばれる特性であり、引張強度が780MPa以上でCTOD特性に優れた溶接金属が求められている。CTOD特性とは、欠陥が存在する構造物の破壊靭性を評価する指標の一つであり、亀裂が急速に進展する直前の亀裂先端開口変位量(CTOD値)をCTOD試験で測定することによって算出される。従来のVノッチシャルピー衝撃試験のような小型の試験では良好な結果を示しても、大型構造物の溶接継手のCTOD試験では必ずしも良好な破壊靭性値を示すとは限らない。一方、上記したような大型構造物の溶接方法としては、高効率施工が可能であり、溶接金属の品質が安定している等の観点からサブマージアーク溶接が多く用いられている。   In recent years, marine structures are becoming larger and colder, and steel sheets and welds used in marine structures are required to have higher strength and toughness. The toughness required for offshore structures is a characteristic called CTOD characteristics, and a weld metal having a tensile strength of 780 MPa or more and excellent CTOD characteristics is required. CTOD characteristics are an index for evaluating the fracture toughness of structures with defects, and are calculated by measuring the crack tip opening displacement (CTOD value) immediately before the crack progresses rapidly using a CTOD test. Is done. Even if a small test such as a conventional V-notch Charpy impact test shows a good result, a CTOD test of a welded joint of a large structure does not necessarily show a good fracture toughness value. On the other hand, as a welding method for a large structure as described above, submerged arc welding is often used from the viewpoint that high-efficiency construction is possible and the quality of the weld metal is stable.

亀裂等の欠陥が存在する場合、負荷中に発生するボイドが連結することにより破壊が進展することが知られており、従来はボイドの発生源である介在物(主に酸化物)を微細に分散させた上で、結晶粒を微細化させCTOD特性を向上させる試みがなされている。   When defects such as cracks exist, it is known that fractures progress by connecting voids generated during loading. Conventionally, inclusions (mainly oxides) that are the source of voids are finely divided. Attempts have been made to improve the CTOD characteristics by refining crystal grains after being dispersed.

例えば、特許文献1では、溶接継手中のO(酸素)の量とTi量を調整し、O量を20ppm以上として微細なTi酸化物を所定以上確保するとともに、O量は多くても70ppm程度として粗大な(粒径2.0μm以上)酸化物の量を抑制することによって電子ビーム溶接継手のCTOD特性を向上させている。特許文献1では粗大な酸化物を抑制するために溶接継手に含有される酸素は多くても70ppm程度であるが、サブマージアーク溶接は溶接金属に含有される酸素含有量が比較的多い方法であり、特許文献1の技術をサブマージアーク溶接に適用することは困難である。また、特許文献2では溶接継手のNi量を4%超にするとともに、溶接金属部の硬さを母材部の硬さの所定以上にすることによって破壊靭性値を向上させる技術が開示されている。しかし、Niの多量添加はコスト増加を招く。   For example, in Patent Document 1, the amount of O (oxygen) in the welded joint and the amount of Ti are adjusted, the amount of O is set to 20 ppm or more, and a predetermined amount of fine Ti oxide is secured, and the amount of O is about 70 ppm at most. The CTOD characteristics of the electron beam welded joint are improved by suppressing the amount of coarse oxide (particle size of 2.0 μm or more). In Patent Document 1, oxygen contained in the welded joint is about 70 ppm at most in order to suppress coarse oxides, but submerged arc welding is a method in which the oxygen content contained in the weld metal is relatively high. It is difficult to apply the technique of Patent Document 1 to submerged arc welding. Patent Document 2 discloses a technique for improving the fracture toughness value by making the amount of Ni in the welded joint more than 4% and making the hardness of the weld metal part equal to or greater than the hardness of the base metal part. Yes. However, the addition of a large amount of Ni causes an increase in cost.

特開2008−88504号公報JP 2008-88504 A 特開2008−87034号公報JP 2008-87034 A

本発明は、上記した課題に鑑みてなされたものであり、サブマージアーク溶接によって得られる溶接金属であって、CTOD特性に優れた高強度溶接金属を得ることを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to obtain a high-strength weld metal that is a weld metal obtained by submerged arc welding and excellent in CTOD characteristics.

上記課題を達成した本発明は、サブマージアーク溶接によって得られる溶接金属であって、C:0.02〜0.12%(質量%の意味。以下、化学組成について同じ。)、Si:0.1〜0.70%、Mn:1.0〜2.0%、Cu:0.1〜2.5%および/またはNi:0.5〜3.5%、Cr:1.0%以下(0%を含まない)および/またはMo:0.5〜1.5%、Ca:0.005%以下(0%を含む)、Ti:0.0050%以下(0%を含む)、Al:0.005〜0.050%、O:0.010〜0.050%を含有するとともに、下記(1)式を満足し、残部が鉄および不可避不純物であり、Al含有酸化物の面積率が0.5%以上、2.0%以下であることを特徴とする高強度溶接金属である。
0.45≦[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo])/5≦0.75 ・・・(1)
(但し、[ ]は各元素の含有量(質量%)を意味する。)
The present invention that has achieved the above object is a weld metal obtained by submerged arc welding, and C: 0.02 to 0.12% (meaning mass%; hereinafter the same for chemical composition), Si: 0.00. 1 to 0.70%, Mn: 1.0 to 2.0%, Cu: 0.1 to 2.5% and / or Ni: 0.5 to 3.5%, Cr: 1.0% or less ( And / or Mo: 0.5 to 1.5%, Ca: 0.005% or less (including 0%), Ti: 0.0050% or less (including 0%), Al: 0.005 to 0.050%, O: 0.010 to 0.050% and satisfy the following formula (1), the balance is iron and inevitable impurities, the area ratio of the Al-containing oxide is It is a high strength weld metal characterized by being 0.5% or more and 2.0% or less.
0.45 ≦ [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo]) / 5 ≦ 0.75 (1)
(However, [] means the content (mass%) of each element.)

本発明によれば、溶接金属の化学成分の中でも特にAl、Ti、およびO(酸素)の含有量を適切に制御するとともに、Al含有酸化物の面積率を所定範囲に制御しているため、亀裂の進展を抑制することができる結果、CTOD特性を向上させることができる。さらに溶接金属の化学成分の個別の含有量とともにC、Mn、Cu、Ni、Cr、Moの含有量を相互に制御しているため高強度を達成することができる。   According to the present invention, among the chemical components of the weld metal, in particular, the content of Al, Ti, and O (oxygen) is appropriately controlled, and the area ratio of the Al-containing oxide is controlled within a predetermined range. As a result of suppressing the progress of cracks, the CTOD characteristics can be improved. Further, since the contents of C, Mn, Cu, Ni, Cr, and Mo are controlled with each other as well as the individual contents of chemical components of the weld metal, high strength can be achieved.

図1は、Ti、Mg、CaおよびAlの各種元素の酸化物とマトリックス(溶接金属)との付着仕事の大きさを示すグラフである。FIG. 1 is a graph showing the magnitude of work of adhesion between oxides of various elements of Ti, Mg, Ca and Al and a matrix (welded metal). 図2(a)は実施例において用いた母材鋼板の開先形状を示す図であり、図2(b)は溶接の積層要領を示した図である。FIG. 2A is a diagram showing a groove shape of the base steel plate used in the examples, and FIG. 2B is a diagram showing a welding lamination procedure. 図3(a)は実施例における引張試験片の採取位置を示した図であり、図3(b)は実施例におけるシャルピー衝撃試験片の採取位置を示した図である。FIG. 3A is a diagram showing a sampling position of a tensile test piece in the example, and FIG. 3B is a diagram showing a sampling position of a Charpy impact test piece in the example.

本発明者らは、溶接金属のCTOD特性を向上させるため、CTOD試験における亀裂進展のメカニズムについて詳細に検討した。CTOD試験では、亀裂が成長し、ある限界に達すると一気に進展して破壊に至るが、亀裂の成長過程では亀裂先端に高い歪みが発生する。この亀裂先端での歪みが低いほど亀裂は成長しにくく、CTOD特性も高くなる。従来は、介在物に起因するボイドが連結することによって破壊が進展し、介在物の存在はCTOD特性を劣化させるものと考えられており、上記した特許文献1に開示されているように、粗大な(粒径2.0μm以上)介在物を抑制し、さらに微細な酸化物を所定以上確保して組織を微細化することによってCTOD特性を向上させていた。しかし、本発明者らが検討した結果、ある程度の大きさの介在物を適切に分散させてボイドを積極的に形成させれば、却ってCTOD特性を向上させることができること、このようなCTOD特性の向上に有効な酸化物はAlを含有する酸化物であることを見出し、本発明を完成した。   In order to improve the CTOD characteristics of the weld metal, the present inventors have examined in detail the mechanism of crack propagation in the CTOD test. In the CTOD test, a crack grows, and when it reaches a certain limit, it progresses at a stretch and leads to fracture. However, during the crack growth process, a high strain is generated at the crack tip. The lower the strain at the crack tip, the less likely the crack will grow and the higher the CTOD characteristic. Conventionally, it is considered that destruction progresses by connecting voids resulting from inclusions, and the presence of inclusions is thought to deteriorate the CTOD characteristics. As disclosed in Patent Document 1 described above, coarseness is considered. In other words, the inclusion of particles (with a particle size of 2.0 μm or more) is suppressed, and a fine oxide is secured at a predetermined level or more to refine the structure, thereby improving the CTOD characteristics. However, as a result of investigations by the present inventors, it is possible to improve the CTOD characteristics by appropriately dispersing inclusions of a certain size and actively forming voids. The inventors discovered that an oxide effective for improvement is an oxide containing Al, and completed the present invention.

すなわち溶接金属中に介在物が存在する場合、負荷がかかることによって介在物とマトリックス(溶接金属)との界面(以下、単に「介在物界面」と呼ぶ場合がある。)で剥離が起こり、ボイドが発生するが、亀裂先端付近にボイドを発生させると、ボイドにも歪みが発生することとなる。この亀裂先端付近のボイドに発生する歪みは、亀裂先端に発生していた歪みが分散したものであり、本発明者らはボイドの大きさと量(面積率)を適切に調整すれば亀裂先端の歪みを効率的に分散させることができ、亀裂先端の歪みを低減することが可能であると考えた。   That is, when inclusions are present in the weld metal, peeling occurs at the interface between the inclusions and the matrix (welded metal) (hereinafter sometimes simply referred to as “inclusion interface”) due to the load, resulting in voids. However, when a void is generated in the vicinity of the crack tip, the void is also distorted. The strain generated in the void near the crack tip is a dispersion of the strain generated in the crack tip, and the present inventors appropriately adjust the size and amount (area ratio) of the void to determine the crack tip. It was thought that the strain could be dispersed efficiently and the strain at the crack tip could be reduced.

上記のように、亀裂先端付近で発生した歪みをボイドに分散させることによって亀裂先端の歪みを低減するためには、CTOD試験における負荷の初期に介在物界面が剥離し、ボイドを形成させる必要がある。そこで本発明者らは介在物界面のボイドの発生について、特に介在物界面での付着仕事の観点から検討した。ここで、付着仕事とは、液相のマトリックス(溶接金属)中に固相の介在物が存在している状態において、マトリックスと介在物を付着させるのに必要なエネルギーのことであり、この付着仕事が小さいほど、マトリックスが固まった後に介在物界面の接着力が小さくなり剥離しやすくなるものと考えた。本発明者らは、介在物の中でも酸化物に着目し、酸化物の形成能の高いTi、Mg、CaおよびAlという元素についてこれらの酸化物の付着仕事について検討した。図1に、Ti、Mg、CaおよびAlの各種元素の酸化物とマトリックス(溶接金属)との付着仕事の大きさを示す。図1は、付着仕事γLV=(1+cosθ)の式に基づき、θ:濡れ性
(接触角)と付着仕事の関係をグラフ化したものである。なお、前記γLVは液相−気相の界面張力を示すものであり、「B.J.Keene, Reviews of data
for the surface tension of pure metals,
International Materials Reviews, vol.38,
No.4(1993), pp.157−192」に示される値を用いた。また、各種
元素の酸化物とマトリックスとの間の接触角θは、「サムソノフ監修、最新酸化物便覧、物理化学性質、日ソ通信社(1978)」に示される値を用いた。図1によれば、Ti、Mg、CaおよびAlの元素の中で、Al酸化物の付着仕事が最も小さいことが分かる。
As described above, in order to reduce the strain at the crack tip by dispersing the strain generated near the crack tip into the void, it is necessary to form the void at the initial stage of the load in the CTOD test by peeling the inclusion interface. is there. Therefore, the present inventors examined the generation of voids at the inclusion interface, particularly from the viewpoint of work of adhesion at the inclusion interface. Here, the work of adhesion is the energy required to adhere the matrix and inclusions in the state where solid phase inclusions are present in the liquid phase matrix (welded metal). It was considered that the smaller the work, the less the adhesive force at the inclusion interface after the matrix was hardened and the easier it was to peel off. The inventors paid attention to oxides among inclusions, and examined the work of adhesion of these oxides for elements such as Ti, Mg, Ca, and Al, which have high oxide forming ability. In FIG. 1, the magnitude | size of the adhesion work of the oxide of various elements of Ti, Mg, Ca, and Al and a matrix (welding metal) is shown. FIG. 1 is a graph showing the relationship between θ: wettability (contact angle) and adhesion work based on the equation of adhesion work γ LV = (1 + cos θ). The γ LV indicates the interfacial tension between the liquid phase and the gas phase, and “BJ Keene, Reviews of data”.
for the surface tension of pure metals,
International Materials Reviews, vol. 38,
No. 4 (1993), pp. The value shown in “157-192” was used. Further, the contact angle θ between the oxides of various elements and the matrix used was a value shown in “Supervision by Samsonov, latest oxide manual, physicochemical properties, Nisso News Agency (1978)”. According to FIG. 1, it can be understood that the adhesion work of Al oxide is the smallest among the elements of Ti, Mg, Ca and Al.

また、介在物界面での剥離は、介在物とマトリックスの強度差の影響も受けると考えられ、該強度差が大きいほど介在物界面の応力集中が大きくなるため、介在物界面が剥離しやすくボイドが発生しやすくなる。Al含有酸化物は通常、鋼の2倍程度の縦弾性係数を有しており、マトリックスとの強度差も極めて大きく、このような観点からも界面からのボイド発生が起こりやすい介在物であると言える。   In addition, the separation at the inclusion interface is considered to be affected by the difference in strength between the inclusion and the matrix, and the greater the strength difference, the greater the stress concentration at the inclusion interface. Is likely to occur. The Al-containing oxide usually has a longitudinal elastic modulus about twice that of steel, and the difference in strength from the matrix is extremely large. From this viewpoint, it is an inclusion that is likely to generate voids from the interface. I can say that.

さらに、上述したように亀裂先端の歪みを効率的に分散させるためには、適切なサイズのボイドを形成させることが必要である。なぜなら、ボイドのサイズが小さすぎると亀裂先端の歪みを効率的に分散させることができず、一方ボイドのサイズが大きすぎると、亀裂先端付近に発生する歪みの総量が大きくなり、亀裂先端の歪みも大きくなってしまうためである。本発明者らの検討によれば、Al含有酸化物は適切なサイズのボイド形成に有用であり、このようなボイドのサイズの観点からもAl含有酸化物は有効であることが分かった。   Furthermore, as described above, in order to efficiently disperse the distortion at the crack tip, it is necessary to form a void having an appropriate size. This is because if the void size is too small, the crack tip strain cannot be dispersed efficiently, whereas if the void size is too large, the total amount of strain generated near the crack tip becomes large and the crack tip strain increases. This is because it becomes larger. According to the study by the present inventors, it was found that the Al-containing oxide is useful for forming a void having an appropriate size, and that the Al-containing oxide is also effective from the viewpoint of the size of the void.

本発明においてAl含有酸化物とは、EPMA(電子線マイクロアナライザ)で元素分析を行った際に、AlとO(酸素)のピークが検出されるものを言い、Al以外の他の元素が含まれる複合酸化物であってもよい。但し、後述するように本発明では酸化物を形成する元素(Ti、Caなど)が少量に抑えられているため、本発明のAl含有酸化物はAlの単独酸化物であるか、またはAl以外の他の元素を少量含有する複合酸化物であり、このような本発明のAl含有酸化物は、粒径がおよそ0.5〜2μm程度のものとなる。このようなサイズのAl含有酸化物とマトリックスとの界面に形成されるボイドは、周辺のマクロな変形によってAl含有酸化物のサイズより大きくなり、そのサイズはAl含有酸化物の面積のおよそ4倍の値となることが本発明者らの検討により明らかとなっており、このようなサイズのボイドが亀裂先端の歪みを分散させて低減するのに有効である。   In the present invention, the Al-containing oxide means an element in which peaks of Al and O (oxygen) are detected when elemental analysis is performed by EPMA (electron beam microanalyzer), and includes elements other than Al. It may be a complex oxide. However, as described later, since the elements (Ti, Ca, etc.) forming the oxide are suppressed to a small amount in the present invention, the Al-containing oxide of the present invention is a single oxide of Al or other than Al. It is a complex oxide containing a small amount of other elements, and such an Al-containing oxide of the present invention has a particle size of about 0.5 to 2 μm. The void formed at the interface between the Al-containing oxide of this size and the matrix becomes larger than the size of the Al-containing oxide due to the macro deformation of the surroundings, and the size is approximately four times the area of the Al-containing oxide. It is clear from the study by the present inventors that this value is effective, and voids of such a size are effective in dispersing and reducing the distortion at the crack tip.

ボイドによって亀裂先端の歪みを低減するという効果を有効に発揮させるために、Al含有酸化物の面積率を0.5%以上、2.0%以下とする。Al含有酸化物の面積率が小さすぎると、歪みを分散させる効果が十分でなく、一方、該面積率が大きすぎると亀裂先端付近の歪みの総量が大きくなってしまうためである。このAl含有酸化物の面積率の範囲は、ボイドの面積率を2%以上、8.0%以下とすればボイドによる亀裂先端の歪み低減効果が有効に得られると判明したことから、Al含有酸化物の面積率(ボイドの面積率の1/4)に換算して得られたものである。Al含有酸化物の面積率は好ましくは1.0%以上、1.5%以下である。   In order to effectively exhibit the effect of reducing the distortion at the crack tip by the void, the area ratio of the Al-containing oxide is set to 0.5% or more and 2.0% or less. This is because if the area ratio of the Al-containing oxide is too small, the effect of dispersing the strain is not sufficient, while if the area ratio is too large, the total amount of strain near the crack tip increases. The range of the area ratio of the Al-containing oxide was found to be that if the void area ratio is 2% or more and 8.0% or less, the effect of reducing distortion at the crack tip due to the void can be effectively obtained. It is obtained in terms of the oxide area ratio (1/4 of the void area ratio). The area ratio of the Al-containing oxide is preferably 1.0% or more and 1.5% or less.

次に、本発明の溶接金属の化学成分について以下に説明する。本発明では、上述したAl含有酸化物を所定量形成させ、かつ引張強度が780MPa以上である溶接金属を得るため、特に溶接金属中の強脱酸元素量(Ti、Al)と酸素の含有量、および強度への影響の大きい元素の含有量(C、Mn、Cu、Ni、Cr、Mo)を相互に調整している点に特徴を有している。   Next, chemical components of the weld metal of the present invention will be described below. In the present invention, a predetermined amount of the above-mentioned Al-containing oxide is formed and a weld metal having a tensile strength of 780 MPa or more is obtained. In particular, the content of strong deoxidizing elements (Ti, Al) and oxygen in the weld metal , And the contents of elements having a large influence on strength (C, Mn, Cu, Ni, Cr, Mo) are mutually adjusted.

C:0.02〜0.12%
Cは、溶接金属の強度を確保するためには欠くことのできない元素である。そこでC量を0.02%以上と定めた。C量は、好ましくは0.03%以上である。一方、C量が過剰になると硬質組織が生成することによって靭性が劣化する。そこでC量は0.12%以下と定めた。C量は、好ましくは0.10%以下である。
C: 0.02-0.12%
C is an element indispensable for ensuring the strength of the weld metal. Therefore, the C amount is set to 0.02% or more. The amount of C is preferably 0.03% or more. On the other hand, if the amount of C is excessive, the toughness deteriorates due to the formation of a hard structure. Therefore, the C amount is set to 0.12% or less. The amount of C is preferably 0.10% or less.

Si:0.1〜0.70%
Siは、脱酸元素であり、溶接金属を清浄にする作用を有し、また溶接金属中に歩留まった場合は、固溶強化により溶接金属を強化する作用を有する。そこでSi量は0.1%以上と定めた。Si量は、好ましくは0.2%以上であり、より好ましくは0.3%以上である。一方、Si量が過剰になると、酸化物中にSiが含まれるようになり、Al含有酸化物のヤング率が低下して、該酸化物と溶接金属の界面が剥離しにくくなる。その結果、ボイドが発生しにくくなり、CTOD特性が低下する。また、溶接金属の強度が上昇しすぎたり、硬質組織が生成したりすることによって靭性が低下しやすくなる。そこでSi量は0.70%以下と定めた。Si量は、好ましくは0.6%以下であり、より好ましくは0.55%以下である。
Si: 0.1 to 0.70%
Si is a deoxidizing element, has an action of cleaning the weld metal, and has an action of strengthening the weld metal by solid solution strengthening when it remains in the weld metal. Therefore, the Si amount is determined to be 0.1% or more. The amount of Si is preferably 0.2% or more, and more preferably 0.3% or more. On the other hand, when the amount of Si is excessive, Si is contained in the oxide, the Young's modulus of the Al-containing oxide is lowered, and the interface between the oxide and the weld metal is difficult to peel off. As a result, voids are less likely to occur and the CTOD characteristics are degraded. In addition, the toughness is likely to be lowered by excessively increasing the strength of the weld metal or generating a hard structure. Therefore, the Si amount is determined to be 0.70% or less. The amount of Si is preferably 0.6% or less, and more preferably 0.55% or less.

Mn:1.0〜2.0%
Mnは、組織を微細化することによって溶接金属の強度および靭性を確保する作用を有する。そこでMn量は1.0%以上と定めた。Mn量は、好ましくは1.2%以上であり、より好ましくは1.3%以上である。一方、Mn量が過剰になると、焼入れ性が増大しすぎることによって靭性が劣化する。そこでMn量は2.0%以下と定めた。Mn量は、好ましくは1.9%以下であり、より好ましくは1.8%以下である。
Mn: 1.0-2.0%
Mn has the effect of ensuring the strength and toughness of the weld metal by refining the structure. Therefore, the amount of Mn is set to 1.0% or more. The amount of Mn is preferably 1.2% or more, more preferably 1.3% or more. On the other hand, when the amount of Mn becomes excessive, the toughness deteriorates due to the excessive increase in hardenability. Therefore, the amount of Mn is set to 2.0% or less. The amount of Mn is preferably 1.9% or less, more preferably 1.8% or less.

Cu:0.1〜2.5%および/またはNi:0.5〜3.5%
CuおよびNiは、いずれも強度および靭性を確保するのに有効な元素である。そこでCu量は0.1%以上、Ni量は0.5%以上と定めた。Cu量は、好ましくは0.3%以上であり、より好ましくは0.5%以上である。Ni量は、好ましくは1.0%以上であり、より好ましくは1.3%以上である。一方、CuおよびNiはいずれも、過剰になると焼入れ性が増大しすぎることによって靭性が劣化する。そこで、Cu量は2.5%以下、Ni量は3.5%以下と定めた。Cu量は、好ましくは2.2%以下であり、より好ましくは2.0%以下である。Ni量は、好ましくは2.5%以下であり、より好ましくは2.2%以下である。CuおよびNiは、それぞれ単独で含有されていても良いし、両方同時に含有されていても良い。
Cu: 0.1-2.5% and / or Ni: 0.5-3.5%
Cu and Ni are both effective elements for ensuring strength and toughness. Therefore, the Cu amount is set to 0.1% or more, and the Ni amount is set to 0.5% or more. The amount of Cu is preferably 0.3% or more, and more preferably 0.5% or more. The amount of Ni is preferably 1.0% or more, and more preferably 1.3% or more. On the other hand, if both Cu and Ni are excessive, the toughness deteriorates due to the excessive increase in hardenability. Therefore, the Cu content is set to 2.5% or less, and the Ni content is set to 3.5% or less. The amount of Cu is preferably 2.2% or less, more preferably 2.0% or less. The amount of Ni is preferably 2.5% or less, more preferably 2.2% or less. Cu and Ni may be contained singly or both may be contained at the same time.

Cr:1.0%以下(0%を含まない)および/またはMo:0.5〜1.5%
CrおよびMoは、いずれも強度を確保するのに有効な元素である。このような作用を有効に発揮させるため、Cr量は0.15%以上とすることが好ましく、より好ましくは0.2%以上である。Mo量は0.5%以上であり、好ましくは0.6%以上である。一方、CrおよびMoは、いずれも過剰になると焼入れ性が増大しすぎることによって靭性が劣化する。そこで、Cr量は1.0%以下とし、Mo量は1.5%以下とする。Cr量は、好ましくは0.8%以下であり、より好ましくは0.6%以下である。Mo量は、好ましくは1.3%以下であり、より好ましくは1.0%以下である。CrおよびMoは、それぞれ単独で含有されていても良いし、両方同時に含有されていても良い。
Cr: 1.0% or less (not including 0%) and / or Mo: 0.5 to 1.5%
Cr and Mo are both effective elements for ensuring strength. In order to effectively exhibit such an action, the Cr content is preferably 0.15% or more, and more preferably 0.2% or more. The amount of Mo is 0.5% or more, preferably 0.6% or more. On the other hand, if both Cr and Mo are excessive, the toughness deteriorates due to the excessive increase in hardenability. Therefore, the Cr content is 1.0% or less, and the Mo content is 1.5% or less. The amount of Cr is preferably 0.8% or less, and more preferably 0.6% or less. The Mo amount is preferably 1.3% or less, more preferably 1.0% or less. Cr and Mo may be contained singly or both may be contained at the same time.

Ca:0.005%以下(0%を含む)
Caは、強脱酸元素であり、脱酸作用により溶接金属を清浄にする作用を有する。このような作用を有効に発揮させるためには0.002%以上とすることが好ましく、より好ましくは0.003%以上である。また、Caは溶接金属との界面の付着仕事が小さい酸化物を形成させるが、Ca量が過剰になってCa系酸化物が多くなると、上記したAl含有酸化物を確保することができない。そこで、Ca量は0.005%以下と定めた。Ca量は、より好ましくは0.004%以下である。
Ca: 0.005% or less (including 0%)
Ca is a strong deoxidizing element and has a function of cleaning the weld metal by a deoxidizing action. In order to effectively exhibit such an action, the content is preferably 0.002% or more, more preferably 0.003% or more. Further, Ca forms an oxide with a small work of adhesion at the interface with the weld metal. However, if the amount of Ca becomes excessive and the amount of Ca-based oxide increases, the above-described Al-containing oxide cannot be secured. Therefore, the Ca content is determined to be 0.005% or less. The amount of Ca is more preferably 0.004% or less.

Ti:0.0050%以下(0%を含む)
Tiは、脱酸作用により溶接金属を清浄にする作用を有する。このような作用を有効に発揮させるためには、Ti量は0.0005%以上が好ましく、より好ましくは0.0010%以上である。一方、Tiの酸化物はマトリックスとの付着仕事が大きく、界面で剥離しにくいため、上記したような亀裂先端の歪みを低減させる効果が少なく、Ti量が多くなると所望のAl含有酸化物を確保することができない。従って、Ti量は0.0050%以下と定めた。Ti量は、好ましくは0.0040%以下であり、より好ましくは0.0030%以下である。
Ti: 0.0050% or less (including 0%)
Ti has the effect of cleaning the weld metal by deoxidation. In order to effectively exhibit such an action, the Ti content is preferably 0.0005% or more, more preferably 0.0010% or more. On the other hand, since Ti oxide has a large adhesion work with the matrix and is difficult to peel off at the interface, there is little effect of reducing the distortion at the crack tip as described above, and a desired Al-containing oxide is secured when the amount of Ti increases. Can not do it. Therefore, the Ti amount is determined to be 0.0050% or less. The amount of Ti is preferably 0.0040% or less, and more preferably 0.0030% or less.

Al:0.005〜0.050%
Alは、強脱酸元素であり脱酸作用により溶接金属を清浄にする作用を有する。また、上述した通り、界面剥離しやすい優れた酸化物系介在物を生成するため、CTOD試験時にボイドが発生しやすく、亀裂先端の歪みを該ボイドに分散させることができ、CTOD特性を向上させることができる。そこでAl量は0.005%以上と定めた。Al量は、好ましくは0.010%以上であり、より好ましくは0.020%以上である。一方、Al量が過剰になると、Al含有酸化物の面積率が増加しすぎて却ってCTOD特性が劣化する。そこでAl量は0.050%以下と定めた。Al量は、好ましくは0.040%以下であり、より好ましくは0.030%以下である。
Al: 0.005 to 0.050%
Al is a strong deoxidizing element and has a function of cleaning the weld metal by a deoxidizing action. In addition, as described above, excellent oxide inclusions that easily peel off at the interface are generated, so that voids are likely to occur during the CTOD test, and distortion at the crack tip can be dispersed in the voids, improving CTOD characteristics. be able to. Therefore, the Al content is determined to be 0.005% or more. The amount of Al is preferably 0.010% or more, more preferably 0.020% or more. On the other hand, when the amount of Al becomes excessive, the area ratio of the Al-containing oxide increases so much that the CTOD characteristics deteriorate. Therefore, the Al content is determined to be 0.050% or less. The amount of Al is preferably 0.040% or less, and more preferably 0.030% or less.

O :0.010〜0.050%
Oは、Al含有酸化物を適量形成させるために必要な元素である。そこでO量は0.010%以上と定めた。O量は、好ましくは0.015%以上であり、より好ましくは0.020%以上である。一方、O量が過剰になると酸化物の量が過剰となってCTOD特性が劣化する。そこで、O量は0.050%以下と定めた。O量は、好ましくは0.045%以下であり、より好ましくは0.040%以下である。
O: 0.010 to 0.050%
O is an element necessary for forming an appropriate amount of an Al-containing oxide. Therefore, the O amount is determined to be 0.010% or more. The amount of O is preferably 0.015% or more, and more preferably 0.020% or more. On the other hand, when the amount of O becomes excessive, the amount of oxide becomes excessive and the CTOD characteristics deteriorate. Therefore, the amount of O is set to 0.050% or less. The amount of O is preferably 0.045% or less, and more preferably 0.040% or less.

本発明の溶接金属の化学成分は上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物が溶接金属中に持ち込まれることは当然に許容される。   The chemical components of the weld metal of the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought into the weld metal are brought into the weld metal depending on the situation of the raw materials, materials, manufacturing equipment, and the like.

さらに、上記した化学成分のうち、C、Mn、Cu、Ni、Cr、Moは下記(1)式を満たすことが重要である。   Furthermore, among the chemical components described above, it is important that C, Mn, Cu, Ni, Cr, and Mo satisfy the following formula (1).

0.45≦[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]/5)≦0.75 ・・・(1)
上記(1)式は、各元素の含有量と強度の関係から、実験的に算出された式である。上記(1)式に含有される各元素は、溶接金属の強度に影響する元素であり、[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo])/5の値(以下、X値と呼ぶ。)を0.45以上とすることによって溶接金属の強度を向上(780MPa以上)させることができる。X値は、好ましくは0.50以上であり、より好ましくは0.52以上である。一方、X値が0.75を超えると溶接金属の強度が高くなりすぎることによって靭性が劣化する。X値は、好ましくは0.70以下であり、より好ましくは0.68以下である。なお、上記(1)式を計算するに際して、含有されない元素がある場合は、その含有量を0として計算すれば良い。
0.45 ≦ [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] / 5) ≦ 0.75 (1)
The above equation (1) is an equation calculated experimentally from the relationship between the content and strength of each element. Each element contained in the formula (1) is an element that affects the strength of the weld metal, and [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [ The strength of the weld metal can be improved (780 MPa or more) by setting the value of Mo]) / 5 (hereinafter referred to as the X value) to 0.45 or more. The X value is preferably 0.50 or more, and more preferably 0.52 or more. On the other hand, if the X value exceeds 0.75, the strength of the weld metal becomes too high and the toughness deteriorates. The X value is preferably 0.70 or less, and more preferably 0.68 or less. When calculating the above equation (1), if there is an element that is not contained, the content may be set to 0.

本発明の溶接金属は、サブマージアーク溶接によって得られる。本発明のようにCTOD特性向上のために酸化物を積極的に利用する技術では、溶接金属へある程度の酸素の供給が必要だからである。本発明の溶接金属を得るための、サブマージアーク溶接に使用するワイヤやフラックス、また母材鋼板は特に限定されないが、例えば以下のものを用いることができる。   The weld metal of the present invention is obtained by submerged arc welding. This is because, in the technique of actively using oxides for improving CTOD characteristics as in the present invention, it is necessary to supply oxygen to the weld metal to some extent. The wire and flux used for submerged arc welding for obtaining the weld metal of the present invention, and the base steel plate are not particularly limited. For example, the following can be used.

ワイヤとしては、C:0.02〜0.12%(好ましくは0.05〜0.12%)、Si:0.05〜0.5%(好ましくは0.1〜0.4%)、Mn:1.0〜2.5%(好ましくは1.5〜2.2%)、Cu:0.10〜2.5%(好ましくは0.10〜2.0%)および/またはNi:0.5〜3.5%(好ましくは1.5〜3.0%)、Cr:1.0%以下(0%を含まない)(好ましくは0.8%以下)および/またはMo:0.5〜1.5%(好ましくは0.6〜1.0%)、Ca:0.005%以下(0%を含む)(好ましくは0.003%以下)、Ti:0.01%以下(0%を含む)(好ましくは0.008%以下)、Al:0.01%以下(0%を含まない)(好ましくは0.008%以下)を含有し、残部は鉄および不可避不純物であり、下記(2)式を満たすワイヤであることが好ましい。
0.45≦[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo])/5≦0.75 ・・・(2)
なお、酸素量について、溶接金属中の酸素量は、サブマージアーク溶接する際のフラックスや大気中からの酸素の影響を大きく受ける。ワイヤ中の酸素量は通常の不可避不純物レベルであれば特に問題ない。
As the wire, C: 0.02 to 0.12% (preferably 0.05 to 0.12%), Si: 0.05 to 0.5% (preferably 0.1 to 0.4%), Mn: 1.0 to 2.5% (preferably 1.5 to 2.2%), Cu: 0.10 to 2.5% (preferably 0.10 to 2.0%) and / or Ni: 0.5 to 3.5% (preferably 1.5 to 3.0%), Cr: 1.0% or less (excluding 0%) (preferably 0.8% or less) and / or Mo: 0 0.5 to 1.5% (preferably 0.6 to 1.0%), Ca: 0.005% or less (including 0%) (preferably 0.003% or less), Ti: 0.01% or less (Including 0%) (preferably 0.008% or less), Al: 0.01% or less (not including 0%) (preferably 0.008% or less), with the balance being iron and A variable avoid impurities, is preferably a wire which satisfies the following equation (2).
0.45 ≦ [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo]) / 5 ≦ 0.75 (2)
As for the amount of oxygen, the amount of oxygen in the weld metal is greatly affected by the flux at the time of submerged arc welding and the oxygen from the atmosphere. The amount of oxygen in the wire is not particularly problematic as long as it is a normal inevitable impurity level.

フラックスとしては、塩基度が2.0〜4.0であり、フラックスの全質量に対するAl23の質量割合が10〜16%であるものを用いることが好ましい。ここで、塩基度とは、{CaO+MgO+CaF2+BaO+SrO+Na2O+K2O+Li2O+0.5(MnO+FeO)}/{SiO2+0.5(Al23+TiO2+ZrO2)}である。塩基度が2.0未満であると、溶接金属中の酸素量が過剰となり、一方、塩基度が4.0を超えると溶接金属中の酸素量が低くなりすぎ、いずれの場合も本発明のAl含有酸化物を適切に確保することができなくなる。また、フラックス中のAl23は、溶接金属中のAl量に大きく影響を与え、Al含有酸化物の面積率にも影響を与える。Al含有酸化物を適切に確保するためには、フラックス中のAl23の質量割合は10〜16%とすることが好ましい。 As the flux, it is preferable to use a flux having a basicity of 2.0 to 4.0 and a mass ratio of Al 2 O 3 to 10 to 16% with respect to the total mass of the flux. Here, the basicity is {CaO + MgO + CaF 2 + BaO + SrO + Na 2 O + K 2 O + Li 2 O + 0.5 (MnO + FeO)} / {SiO 2 +0.5 (Al 2 O 3 + TiO 2 + ZrO 2 )}. If the basicity is less than 2.0, the amount of oxygen in the weld metal becomes excessive. On the other hand, if the basicity exceeds 4.0, the amount of oxygen in the weld metal becomes too low. The Al-containing oxide cannot be properly secured. Further, Al 2 O 3 in the flux greatly affects the amount of Al in the weld metal and also affects the area ratio of the Al-containing oxide. In order to appropriately secure the Al-containing oxide, the mass ratio of Al 2 O 3 in the flux is preferably 10 to 16%.

母材鋼板としては、例えばASTM規格 A517鋼板などを用いることができる。   As the base material steel plate, for example, ASTM standard A517 steel plate can be used.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

表1、2に示すワイヤおよびフラックス、図2(a)に示す(単位はmm)開先形状の母材鋼板を用い、以下の溶接条件によって溶接を行った。溶接は、図2(b)に示す積層要領で行った。なお、母材鋼板には、C:0.12%、Si:0.24%、Mn:0.79%、P:0.005%、S:0.003%、Cu:0.21%、Ni:0.79%、C
r:0.49%、Mo:0.45%、V:0.040%、B:0.0007%を含有し、残部が鉄および不可避不純物である鋼板を用いた。
Welding was performed under the following welding conditions using the wires and fluxes shown in Tables 1 and 2 and the grooved base steel plate shown in FIG. 2A (unit: mm). Welding was performed according to the lamination procedure shown in FIG. In the base steel plate, C: 0.12%, Si: 0.24%, Mn: 0.79%, P: 0.005%, S: 0.003%, Cu: 0.21%, Ni: 0.79%, C
A steel plate containing r: 0.49%, Mo: 0.45%, V: 0.040%, B: 0.0007%, the balance being iron and inevitable impurities was used.

溶接条件
電流 :500〜550A
電圧 :26〜32V
速度 :30cm/min
入熱量 :26〜36kJ/cm
予熱温度およびパス間温度:140〜160℃
パス数 :15
Welding condition current: 500-550A
Voltage: 26-32V
Speed: 30cm / min
Heat input: 26-36 kJ / cm
Preheating temperature and interpass temperature: 140-160 ° C
Number of passes: 15

得られた溶接金属を、以下の要領で評価した。   The obtained weld metal was evaluated in the following manner.

(1)引張強度、シャルピー吸収エネルギー、CTOD値の測定
図3(a)に示す位置から、JIS Z2201号のA1号試験片を採取し、JIS Z2241に従って溶接金属の引張試験を行った。また、図3(b)に示す位置から、JIS Z2242に準じてシャルピー衝撃試験片を採取し、−60℃でのシャルピー吸収エネルギー(vE-60)を測定した。さらに図3(b)に示す位置からWES1108号(日本溶接協会規格)に準拠してCTOD試験片を採取し、−40℃でCTOD値を測定した。本発明では、引張強度(TS)、シャルピー吸収エネルギー(vE-60)、およびCTOD値について、それぞれ780MPa以上、47J以上、0.30mm以上を合格とした。
(1) Measurement of tensile strength, Charpy absorbed energy, and CTOD value From the position shown in FIG. 3A, a No. A1 test piece of JIS Z2201 was sampled, and a tensile test of the weld metal was performed according to JIS Z2241. Further, Charpy impact test pieces were collected from the position shown in FIG. 3B in accordance with JIS Z2242, and Charpy absorbed energy (vE- 60 ) at -60 ° C. was measured. Further, CTOD specimens were collected from the position shown in FIG. 3B in accordance with WES1108 (Japan Welding Association standard), and the CTOD value was measured at −40 ° C. In the present invention, the tensile strength (TS), the Charpy absorbed energy (vE- 60 ), and the CTOD value were determined to be 780 MPa or more, 47 J or more, and 0.30 mm or more, respectively.

(2)Al含有酸化物の測定
上記引張試験片の採取位置と同一部位の、100μm×100μmの領域を、SEM(走査型電子顕微鏡)を用いて倍率1000倍で観察し、得られたSEM写真を画像解析してAl含有酸化物の面積率を測定した。この際、Al含有酸化物であるか否かは、前記領域にて観察された介在物を、EPMAで分析し、アルミと酸素のピークを有する(すなわちアルミと酸素を含有する)ことが確認されたものをAl含有酸化物と判断した。なお、SEM観察にあたって、長径が0.1μm未満のサイズの介在物はEPMAでの分析が困難であるため測定対象から除外した。
(2) Measurement of Al-containing oxide SEM photograph obtained by observing a region of 100 μm × 100 μm at the same site as the sampling position of the tensile test piece using a scanning electron microscope (SEM) at a magnification of 1000 times. The area ratio of the Al-containing oxide was measured by image analysis. At this time, whether the oxide is an Al-containing oxide or not is confirmed by EPMA analysis of the inclusions observed in the region, and it is confirmed that it has aluminum and oxygen peaks (that is, contains aluminum and oxygen). Were determined to be Al-containing oxides. In addition, in the SEM observation, inclusions having a major axis of less than 0.1 μm were excluded from the measurement target because it was difficult to analyze with EPMA.

結果を表3に示す。   The results are shown in Table 3.

試験No.1〜7は、溶接金属の化学成分およびAl含有酸化物の面積率が本発明の要件を満たしているため、引張強度、シャルピー吸収エネルギー、およびCTOD値に優れる結果となった。   Test No. In Nos. 1 to 7, since the chemical ratio of the weld metal and the area ratio of the Al-containing oxide satisfied the requirements of the present invention, the results were excellent in tensile strength, Charpy absorbed energy, and CTOD value.

一方、試験No.8〜19は、化学成分およびAl含有酸化物の面積率の少なくともいずれかが本発明要件を外れたため、引張強度、シャルピー吸収エネルギー、およびCTOD値の少なくともいずれかが劣る結果となった。   On the other hand, test no. In Nos. 8 to 19, since at least one of the chemical components and the area ratio of the Al-containing oxide deviated from the requirements of the present invention, at least one of tensile strength, Charpy absorbed energy, and CTOD value was inferior.

試験No.8は、Al量が多かったためにAl含有酸化物の面積率が大きくなりCTOD値が劣化した。試験No.9は、Ti量が多かったためにAl含有酸化物の面積率を確保することができず、CTOD値が劣化した。試験No.10、11、12は、それぞれMo量、Cr量、Ni量が多く式(1)の値が大きくなったために、強度が向上しすぎて靭性(シャルピー吸収エネルギー)が劣化した。試験No.13は式(1)の値が小さくなったため、溶接金属の引張強度を確保することができなかった。試験No.14、15は、それぞれMn量、C量が少なく式(1)の値が小さくなったため、溶接金属の引張強度を確保することができなかった。試験No.16、17は、それぞれAl量、O量が少なかったため、Al含有酸化物の面積率を確保することができず、CTOD値が劣化した。試験No.18は、Al量およびO量が多かったため、Al含有酸化物の面積率が大きくなりCTOD値が劣化した。試験No.19は、Si量が多かったため、CTOD値が劣化した。   Test No. In No. 8, since the Al amount was large, the area ratio of the Al-containing oxide was increased and the CTOD value was deteriorated. Test No. In No. 9, since the amount of Ti was large, the area ratio of the Al-containing oxide could not be ensured, and the CTOD value deteriorated. Test No. Since 10, 11 and 12 had a large amount of Mo, Cr and Ni, respectively, and the value of the formula (1) was large, the strength was excessively improved and the toughness (Charpy absorbed energy) was deteriorated. Test No. No. 13 could not secure the tensile strength of the weld metal because the value of the formula (1) was small. Test No. In Nos. 14 and 15, since the amount of Mn and the amount of C were small and the value of formula (1) was small, the tensile strength of the weld metal could not be ensured. Test No. Since 16 and 17 had little amounts of Al and O, respectively, the area ratio of the Al-containing oxide could not be secured, and the CTOD value was deteriorated. Test No. Since No. 18 had a large amount of Al and O, the area ratio of the Al-containing oxide increased and the CTOD value deteriorated. Test No. 19 had a large amount of Si, so the CTOD value deteriorated.

Claims (1)

サブマージアーク溶接によって得られる溶接金属であって、
C :0.02〜0.12%(質量%の意味。以下、化学組成について同じ。)、
Si:0.1〜0.70%、
Mn:1.0〜2.0%、
Cu:0.1〜2.5%および/またはNi:0.5〜3.5%、
Cr:1.0%以下(0%を含まない)および/またはMo:0.5〜1.5%、
Ca:0.005%以下(0%を含む)、
Ti:0.0050%以下(0%を含む)、
Al:0.005〜0.050%、
O :0.010〜0.050%を含有するとともに、下記(1)式を満足し、残部が鉄および不可避不純物であり、
Al含有酸化物の面積率が0.5%以上、2.0%以下であることを特徴とする高強度溶接金属。
0.45≦[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo])/5≦0.75 ・・・(1)
(但し、[ ]は各元素の含有量(質量%)を意味する。)
A weld metal obtained by submerged arc welding,
C: 0.02 to 0.12% (meaning mass%, hereinafter the same for chemical composition),
Si: 0.1 to 0.70%,
Mn: 1.0-2.0%,
Cu: 0.1-2.5% and / or Ni: 0.5-3.5%,
Cr: 1.0% or less (excluding 0%) and / or Mo: 0.5-1.5%
Ca: 0.005% or less (including 0%),
Ti: 0.0050% or less (including 0%),
Al: 0.005 to 0.050%,
O: It contains 0.010 to 0.050%, satisfies the following formula (1), the balance is iron and inevitable impurities,
A high-strength weld metal, wherein the area ratio of the Al-containing oxide is 0.5% or more and 2.0% or less.
0.45 ≦ [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo]) / 5 ≦ 0.75 (1)
(However, [] means the content (mass%) of each element.)
JP2010160797A 2010-05-25 2010-07-15 High strength weld metal with excellent CTOD characteristics Expired - Fee Related JP5551990B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010160797A JP5551990B2 (en) 2010-05-25 2010-07-15 High strength weld metal with excellent CTOD characteristics
PCT/JP2011/061574 WO2011148859A1 (en) 2010-05-25 2011-05-19 High strength welded metal having excellent ctod characteristics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010119304 2010-05-25
JP2010119304 2010-05-25
JP2010160797A JP5551990B2 (en) 2010-05-25 2010-07-15 High strength weld metal with excellent CTOD characteristics

Publications (2)

Publication Number Publication Date
JP2012006073A true JP2012006073A (en) 2012-01-12
JP5551990B2 JP5551990B2 (en) 2014-07-16

Family

ID=45003849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010160797A Expired - Fee Related JP5551990B2 (en) 2010-05-25 2010-07-15 High strength weld metal with excellent CTOD characteristics

Country Status (2)

Country Link
JP (1) JP5551990B2 (en)
WO (1) WO2011148859A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043455A1 (en) * 2016-08-30 2018-03-08 株式会社神戸製鋼所 High strength welded metal
CN113502440A (en) * 2021-02-26 2021-10-15 上海交通大学 Nickel-saving type ultra-low temperature high-strength steel and heat treatment process thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104955608B (en) * 2013-01-11 2018-04-27 株式会社神户制钢所 The excellent welding metal of resistant to hydrogen embrittlement-sensitive and solid core welding wire used for submerged arc welding
CN104964863A (en) * 2015-06-30 2015-10-07 招商局重工(江苏)有限公司 CTOD process test method of welding repair joint of large thick plate
CN105115802B (en) * 2015-09-21 2018-09-28 蓬莱巨涛海洋工程重工有限公司 CTOD experimental methods are reprocessed in a kind of welding
CN105296875B (en) * 2015-11-17 2017-12-08 浙江盛达铁塔有限公司 A kind of SAW welding methods of weathering steel weld seam alloy and weathering steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266126A (en) * 1985-05-22 1986-11-25 Sumitomo Metal Ind Ltd Production of high-strength high-toughness bent steel pipe
JPH0360894A (en) * 1989-07-31 1991-03-15 Sumitomo Metal Ind Ltd Welded structure for steel frame building and welding procedure thereof
JP2007083292A (en) * 2005-09-22 2007-04-05 Nippon Steel Corp Two-electrode one-side one-pass high heat input submerged-arc welding method for obtaining weld metal with excellent toughness
JP2007119811A (en) * 2005-10-26 2007-05-17 Sumitomo Metal Ind Ltd Welded joint and its manufacturing method
JP2008163456A (en) * 2006-12-04 2008-07-17 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266126A (en) * 1985-05-22 1986-11-25 Sumitomo Metal Ind Ltd Production of high-strength high-toughness bent steel pipe
JPH0360894A (en) * 1989-07-31 1991-03-15 Sumitomo Metal Ind Ltd Welded structure for steel frame building and welding procedure thereof
JP2007083292A (en) * 2005-09-22 2007-04-05 Nippon Steel Corp Two-electrode one-side one-pass high heat input submerged-arc welding method for obtaining weld metal with excellent toughness
JP2007119811A (en) * 2005-10-26 2007-05-17 Sumitomo Metal Ind Ltd Welded joint and its manufacturing method
JP2008163456A (en) * 2006-12-04 2008-07-17 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043455A1 (en) * 2016-08-30 2018-03-08 株式会社神戸製鋼所 High strength welded metal
CN113502440A (en) * 2021-02-26 2021-10-15 上海交通大学 Nickel-saving type ultra-low temperature high-strength steel and heat treatment process thereof

Also Published As

Publication number Publication date
WO2011148859A1 (en) 2011-12-01
JP5551990B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
KR100922095B1 (en) Flux-cored wire for gas-shielded arc welding
KR101937553B1 (en) Flux-cored wire for arc welding of duplex stainless steel and weld metal
JP5551990B2 (en) High strength weld metal with excellent CTOD characteristics
JP4825057B2 (en) Steel with excellent toughness of weld heat affected zone and its manufacturing method
US8574381B2 (en) Weld metal and welded structure having weld joints using the same
JP6226542B2 (en) Steel with excellent toughness in weld heat affected zone
JP5671364B2 (en) Weld metal with excellent creep properties
KR101697845B1 (en) Steel material having enhanced toughness in weld-heat-affected zone
JP4209913B2 (en) Flux-cored wire for gas shielded arc welding
WO2012099119A1 (en) Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
JP4841400B2 (en) Gas shielded arc welding flux cored wire for high strength steel
JP2006257481A (en) High-strength weld metal superior in low-temperature toughness
JP2010115701A (en) High strength weld metal with excellent low-temperature toughness
KR101422353B1 (en) Steel plate with excellent toughness in heat-affected zone
JP6235402B2 (en) Weld metal with excellent strength, toughness and SR cracking resistance
JP5394849B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP2011127220A (en) Method for manufacturing steel member excellent in toughness at weld heat-affected zone
WO2018047881A1 (en) Flux cored wire for gas shield arc welding and welding metal
KR102133172B1 (en) Flux cored wire and weld metal for gas shield arc welding
KR20180002791A (en) Weld metal and welded structure
JP2004315962A (en) High strength weld metal having excellent low temperature toughness
WO2018043455A1 (en) High strength welded metal
JP2017001048A (en) Weld metal, welding structure and flux-cored wire
JPH08174275A (en) Gas shield arc welding flux cored wire for high tension steel
JP2019089131A (en) Flux-containing wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140523

R150 Certificate of patent or registration of utility model

Ref document number: 5551990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees