JPH0360456A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPH0360456A
JPH0360456A JP1192398A JP19239889A JPH0360456A JP H0360456 A JPH0360456 A JP H0360456A JP 1192398 A JP1192398 A JP 1192398A JP 19239889 A JP19239889 A JP 19239889A JP H0360456 A JPH0360456 A JP H0360456A
Authority
JP
Japan
Prior art keywords
superconductor
pipe
stainless steel
oxidation
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1192398A
Other languages
Japanese (ja)
Inventor
Keisuke Yamamoto
啓介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP1192398A priority Critical patent/JPH0360456A/en
Publication of JPH0360456A publication Critical patent/JPH0360456A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To prevent the deformation, bulging and oxidation of a metallic pipe and to avoid a decrease in superconductivity at the time of sintering an oxide superconductor powder packed in the pipe to produce a superconductor by specifying the pipe. CONSTITUTION:A stainless steel pipe 1 with the inner and outer periperies coated with an oxidation-resistant metal 12 such as silver, gold and platinum is prepared. The powder 2 of an oxide superconductor is packed in the pipe 1, and the packed body is sintered to produce a superconductor. By this method, even if the unreacted component is decomposed in sintering to liberate the gas, the pipe 1 is not deformed or bulged, and a superconductor excellent in adhesion to the pipe 1 is obtained. The oxidation of the pipe 1 and the deterioration in superconductivity are prevented. In addition, the plural packed bodies are placed in a stainless steel pipe coated in the same way as the pipe 1, and the charged body is sintered to obtain a multicore superconductor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、焼結時に未反応成分の分解ガスの膨脹で金属
パイプが膨大化することを防止した超電導体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a superconductor that prevents a metal pipe from becoming bulky due to expansion of decomposed gas of unreacted components during sintering.

従来の技術及び課題 第1図に例示した如く、金属パイプ1に酸化物超電導体
の粉末2を充填し、この充填体を所望の形状に塑性加工
したのち焼結処理して超電導体を製造する方法が提案さ
れている。
BACKGROUND ART AND PROBLEMS As illustrated in FIG. 1, a metal pipe 1 is filled with oxide superconductor powder 2, and the filled body is plastically worked into a desired shape and then sintered to produce a superconductor. A method is proposed.

従来、その金属パイプとしては銀パイプが用いられて来
た。しかしながら、第4図に示した如く焼結時に金属パ
イプ1が膨大し、得られる超電導体が凹凸化する問題点
があった。
Conventionally, silver pipes have been used as the metal pipes. However, as shown in FIG. 4, there is a problem in that the metal pipe 1 expands during sintering and the obtained superconductor becomes uneven.

課題を解決するための手段 本発明者は、前記問題点を克服すべく鋭意研究を重ねて
かかる金属パイプの膨大化は、焼結時に酸化物超電導体
の粉末中に残存する原料としての未反応成分が分解し、
その分解ガスが焼結時の温度で膨脹して金属パイプを膨
らませるためであることを究明し、この知見に基づいて
更に研究を重ねた結果、耐酸化性処理したステンレスパ
イプを用いることにより超電導特性を低下させることな
く上記課題を克服できることを見出し、本発明をなすに
至った。
Means for Solving the Problems The inventor of the present invention has conducted extensive research to overcome the above-mentioned problems. The ingredients decompose,
It was determined that the decomposition gas expands at the temperature during sintering, causing the metal pipe to swell. Based on this knowledge, further research revealed that superconductivity can be achieved by using stainless steel pipes treated to resist oxidation. It has been discovered that the above problems can be overcome without deteriorating the characteristics, and the present invention has been completed.

すなわち本発明は、金属パイプに充填した酸化物超電導
体の粉末を焼結処理して超電導体を製造するにあたり、
金属パイプとして内外面を耐酸化性金属で被覆処理した
ステンレスパイプを用いることを特徴とする超電導体の
製造方法、及び酸化物超電導体の粉末を充填した金属バ
イブの複数本を、内外面を耐酸化性金属で被覆処理した
ステンレスパイプ内に装填して加熱処理し、金属パイプ
内の酸化物超電導体の粉末を焼結処理することを特徴と
する超電導体の製造方法を提供するものである。
That is, the present invention provides a method for producing a superconductor by sintering oxide superconductor powder filled in a metal pipe.
A method for manufacturing a superconductor characterized by using a stainless steel pipe whose inner and outer surfaces are coated with an oxidation-resistant metal, and a plurality of metal vibrators filled with oxide superconductor powder, whose inner and outer surfaces are coated with an acid-resistant metal. The present invention provides a method for manufacturing a superconductor, characterized in that the oxide superconductor powder is loaded into a stainless steel pipe coated with a oxidizing metal, heat-treated, and the oxide superconductor powder in the metal pipe is sintered.

作用 内外面を耐酸化性金属で被覆処理したステンレスパイプ
を用いることにより、焼結時に未反応成分の分解ガスが
生じた場合にも、金属バイブの凹凸化、ないし膨大化を
防止することができると共に、焼結時におけるステンレ
スパイプの酸化を防止できて超電導特性の低下を回避す
ることができる。
By using a stainless steel pipe whose inner and outer surfaces are coated with oxidation-resistant metal, the metal vibrator can be prevented from becoming uneven or bulky even when decomposed gas from unreacted components is generated during sintering. At the same time, oxidation of the stainless steel pipe during sintering can be prevented, and deterioration of superconducting properties can be avoided.

発明の構成要素の例示 本発明において用いる酸化物超電導体については特に限
定はない、YBa2Cu30aやYi、−bBabCu
 Ocの如きY系酸化物超電導体、Bat−dKciB
 i O3の如きBa系酸化物超電導体、Nd2−e 
Ce。
Examples of Constituent Elements of the Invention The oxide superconductor used in the present invention is not particularly limited, and may include YBa2Cu30a, Yi, -bBabCu
Y-based oxide superconductor such as Oc, Bat-dKciB
i Ba-based oxide superconductor such as O3, Nd2-e
Ce.

Cu04−fの如きNd系酸化物超電導体、Bi2−z
Pbr Sr2 Ca2Cu30ゎやBi25r2Ca
t−iYICIJ208−1の如きBi系酸化物超電導
体、その化Ta系酸化物超電導体、La系酸化物超電導
体、TI系酸化物超電導体、pb系酸化物超電導体など
、また前記のY等の成分を他の希土類元素で置換したも
の、ないしBa等の成分を他のアルカリ土類金属で置換
したもの、あるいは0成分をFなどで置換したものなど
、公知物のいずれも用いることができる。就中、Bi系
酸化物超電導体やTa系酸化物超電導体の如く、焼結処
理時おける酸素の出入が少ない酸化物超電導体が好まし
く用いられる。
Nd-based oxide superconductors such as Cu04-f, Bi2-z
Pbr Sr2 Ca2Cu30ゎ and Bi25r2Ca
Bi-based oxide superconductors such as t-iYICIJ208-1, Ta-based oxide superconductors, La-based oxide superconductors, TI-based oxide superconductors, pb-based oxide superconductors, etc., as well as the above-mentioned Y, etc. Any of the known products can be used, such as those in which the component is replaced with other rare earth elements, those in which components such as Ba are replaced with other alkaline earth metals, or those in which the zero component is replaced with F, etc. . Among these, oxide superconductors such as Bi-based oxide superconductors and Ta-based oxide superconductors, which allow little oxygen to enter and exit during the sintering process, are preferably used.

なお酸化物超電導体は例えば、所定の組成となる配合割
合で原料を共沈法やゾルゲル法等の湿式混合法、ないし
その他の適宜な混合法で混合し、その混合物を仮焼処理
ないし焼結処理して超電導体とすることにより得ること
ができる。
Note that oxide superconductors are produced by, for example, mixing raw materials at a predetermined composition ratio using a wet mixing method such as a coprecipitation method or a sol-gel method, or any other suitable mixing method, and then calcining or sintering the mixture. It can be obtained by processing to make a superconductor.

用いる酸化物超電導体の粉末は例えば、前記の焼結処理
体等を粉砕することにより得ることができる。ステンレ
スバイブ、ないし金属バイブへの緻密充填性、就中70
〜90%の高密度充填性(空隙率30〜lO%)などの
点より、その粒径は小さいほど好ましい。一般には10
0μ圃以下、就中50印以下の粒径が好ましい。
The powder of the oxide superconductor used can be obtained, for example, by pulverizing the sintered body or the like described above. Dense filling ability for stainless steel vibes or metal vibes, especially 70
From the point of view of high density packing of ~90% (porosity 30~10%), the smaller the particle size, the more preferable. Generally 10
A grain size of 0 μm or less, especially 50 marks or less is preferred.

本発明において用いるステンレスパイプは、第2図や第
3図に例示した如く、外周面及び内周面を銀、金、白金
の如き耐酸化性金属で被覆処理したものである。これに
より、焼結処理時にステンレスバイブが酸化することを
防止でき、超電導特性の低下を防止することができる。
As illustrated in FIGS. 2 and 3, the stainless steel pipe used in the present invention has its outer and inner surfaces coated with an oxidation-resistant metal such as silver, gold, or platinum. Thereby, the stainless steel vibrator can be prevented from being oxidized during the sintering process, and the deterioration of superconducting properties can be prevented.

図中、11がステンレス層、12が耐酸化性金属層であ
る。
In the figure, 11 is a stainless steel layer, and 12 is an oxidation-resistant metal layer.

本発明において耐酸化性金属で被覆処理したステンレス
パイプは、酸化物超電導体の粉末の充填に用いる(第2
図)。また、酸化物超電導体の粉末を充填した金属バイ
ブ1の複数本を用いて多芯系超電導体を得る場合におけ
る当該金属パイプ1の装填パイプとして用いる(第3図
)。なお、多芯系超電導体を得る場合においては、酸化
物超電導体の粉末を充填するための金属バイブとして、
耐酸化性金属で被覆処理したステンレスバイブのほか、
銀、銅、チタン、アルミニウムなどの適宜な金属からな
るパイプを用いてよい。
In the present invention, a stainless steel pipe coated with an oxidation-resistant metal is used for filling oxide superconductor powder (second
figure). Further, it is used as a loading pipe for a metal pipe 1 when a multicore superconductor is obtained using a plurality of metal vibrators 1 filled with oxide superconductor powder (FIG. 3). In addition, when obtaining a multicore superconductor, a metal vibrator for filling the oxide superconductor powder is used.
In addition to stainless steel vibrators coated with oxidation-resistant metal,
A pipe made of a suitable metal such as silver, copper, titanium, aluminum, etc. may be used.

当該ステンレスパイプ、ないし金属バイブに酸化物超電
導体の粉末を充填してなる充填体、あるいは当該ステン
レスパイプ内に複数本の該充填体を納めた装填体は、必
要に応じ伸線処理や偏平化処理等により所望の形状、例
えば丸形やテープ形等に塑性加工したのち、焼結処理に
供される。
The stainless steel pipe or metal vibrator is filled with oxide superconductor powder, or the stainless steel pipe is filled with a plurality of the filled bodies, which may be wire-drawn or flattened as necessary. After being plastically worked into a desired shape, such as a round shape or tape shape, by processing, etc., it is subjected to a sintering treatment.

焼結処理における焼結温度は、酸化物超電導体の種類等
に応じ適宜に決定される。一般には700〜1200℃
であり、その加熱手段は任意である。また、焼結雰囲気
は酸化物超電導体に応し決定される。焼結時間は通例、
200時間以下、就中2〜150時間であるがこれに限
定されない。
The sintering temperature in the sintering process is appropriately determined depending on the type of oxide superconductor, etc. Generally 700-1200℃
The heating means is arbitrary. Further, the sintering atmosphere is determined depending on the oxide superconductor. The sintering time is typically
The duration is 200 hours or less, particularly 2 to 150 hours, but is not limited thereto.

前記により通例、酸化物超電導体の直径ないし層厚lO
μlIl〜5 mm 、金属層の厚さ1μI11〜21
Il11の超電導体、あるいはかかる超電導体の複数本
を有する多芯体が得られるが、その寸法等、超電導体の
形態は任意である。
According to the above, the diameter or layer thickness of the oxide superconductor lO
μlIl~5 mm, metal layer thickness 1μI11~21
A superconductor of Il11 or a multicore body having a plurality of such superconductors can be obtained, but the shape of the superconductor, such as its size, is arbitrary.

発明の効果 本発明によれば耐酸化性金属で被覆処理したステンレス
パイプを用いたので、焼結処理時に未反応成分が分解し
てガスが生じても、パイプが凹凸化、ないし膨大化する
ことを防止でき、寸法精度、パイプとの密着性に優れる
単芯系ないし多芯系の超電導体を得ることができる。
Effects of the Invention According to the present invention, since a stainless steel pipe coated with an oxidation-resistant metal is used, even if unreacted components decompose during the sintering process and gas is generated, the pipe will not become uneven or bulky. It is possible to obtain a single-core or multi-core superconductor that has excellent dimensional accuracy and adhesion to pipes.

実施例l B12−t Pbt Sr2 Ca2Cu30h (g
 =0.2)からなる平均粒径30mの酸化物超電導体
の粉末を内外面を銀で被覆した外径6順、肉厚2鴫のス
テンレスパイプに充填(空隙率約12%)シ、これを伸
線処理して直径1.0−の線材とした。次に、前記線材
を約り0℃/時間の昇温速度で840℃に加熱し、この
温度を約100時間維持したのち10時間かけて室温ま
で徐冷することにより焼結処理した。
Example l B12-t Pbt Sr2 Ca2Cu30h (g
Powder of oxide superconductor with an average particle diameter of 30 m consisting of 0.2) was filled into a stainless steel pipe with an outer diameter of 6 and a wall thickness of 2, whose inner and outer surfaces were coated with silver (porosity of about 12%). was wire-drawn to obtain a wire rod with a diameter of 1.0-. Next, the wire rod was heated to 840° C. at a temperature increase rate of about 0° C./hour, maintained at this temperature for about 100 hours, and then slowly cooled to room temperature over 10 hours to undergo a sintering treatment.

得られた超電導体に膨大部は認められず、寸法精度ない
し形態の均一性に優れていた。また、その臨界温度は1
05にで、臨界電流密度は2 X 10’ A/ cJ
 (77、3K )であった。なお、臨界温度は0.1
A / ctの電流密度下、液体ヘリウムで冷却しなか
ら4端子法(こより電気抵抗の温度による変化を測定し
、電圧端子間の発生電圧がOとなったときの温度である
。また、臨界電流密度はパワーリードと共に液体窒素で
冷却しながら徐々に電流値をあげて4′IA子法により
電圧端子間の電圧の印加電流による変化を測定し、X−
Yレコーダーにおいて1μV / cmの電圧が出現し
たときの電流値を超電導体の断面積で除した値である。
The obtained superconductor did not have any bulges and was excellent in dimensional accuracy and uniformity of shape. Also, its critical temperature is 1
At 05, the critical current density is 2 X 10' A/cJ
(77,3K). Note that the critical temperature is 0.1
Under a current density of A/ct, the change in electrical resistance due to temperature is measured using the four-terminal method (without cooling with liquid helium), and this is the temperature when the voltage generated between the voltage terminals becomes O. The current density was determined by gradually increasing the current value while cooling the power lead with liquid nitrogen and measuring the change in voltage between the voltage terminals due to the applied current using the 4'IA method.
This is the value obtained by dividing the current value when a voltage of 1 μV/cm appears in the Y recorder by the cross-sectional area of the superconductor.

比較例 ステンレスパイプに代えて銀パイプを用いたほかは実施
例1に準して超電導体を得た。この超電導体は厚さ方向
及び幅方向において、目視観察によってもわかる程度に
凹凸の大きいものであり、厚さが約ll1II11にも
及ぶ膨大部を有するものであった。
Comparative Example A superconductor was obtained in accordance with Example 1, except that a silver pipe was used in place of the stainless steel pipe. This superconductor had large irregularities in the thickness direction and the width direction, as could be seen by visual observation, and had an enormous portion with a thickness of about 111111.

実施例2 比較例に準じて酸化物超電導体の粉末を充填した銀バイ
ブを形成し、その4本を内外面を銀で被覆した外径13
m+、肉厚3mのステンレスパイプに装填し、これを伸
線処理して直径約3Mの線材としたのち、実施例1に準
じて焼結処理した。
Example 2 Silver vibes filled with oxide superconductor powder were formed according to the comparative example, and four of them were coated with silver on the inner and outer surfaces and had an outer diameter of 13 mm.
m+, a stainless steel pipe with a wall thickness of 3 m was loaded, and this was wire-drawn to make a wire rod with a diameter of about 3 M, and then sintered according to Example 1.

得られた多芯系超電導体に膨大部は認められず、寸法精
度ないし形態の均一性に優れていた。またその臨界温度
は105にで、臨界電流密度は2 X 103A / 
c+j (77,3K )であった。
No bulge was observed in the obtained multicore superconductor, and it had excellent dimensional accuracy and uniformity of form. Its critical temperature is 105, and its critical current density is 2 x 103A/
c+j (77,3K).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は充填体の断面図、第2図、第3図はステンレス
パイプの適用例の説明断面図、第4図は従来の超電導体
の説明図である。 1:金属パイプ 2二酸化物超電導体の粉末 11;ステンレス層 12:耐酸化性金属層
FIG. 1 is a sectional view of a filling body, FIGS. 2 and 3 are sectional views illustrating an example of application of a stainless steel pipe, and FIG. 4 is an illustrative diagram of a conventional superconductor. 1: Metal pipe 2 Dioxide superconductor powder 11; Stainless steel layer 12: Oxidation-resistant metal layer

Claims (2)

【特許請求の範囲】[Claims] 1.金属パイプに充填した酸化物超電導体の粉末を焼結
処理して超電導体を製造するにあたり、金属パイプとし
て内外面を耐酸化性金属で被覆処理したステンレスパイ
プを用いることを特徴とする超電導体の製造方法。
1. A superconductor characterized in that a stainless steel pipe whose inner and outer surfaces are coated with an oxidation-resistant metal is used as the metal pipe in manufacturing the superconductor by sintering oxide superconductor powder filled in a metal pipe. Production method.
2.酸化物超電導体の粉末を充填した金属パイプの複数
本を、内外面を耐酸化性金属で被覆処理したステンレス
パイプ内に装填して加熱処理し、金属パイプ内の酸化物
超電導体の粉末を焼結処理することを特徴とする超電導
体の製造方法。
2. Multiple metal pipes filled with oxide superconductor powder are placed inside a stainless steel pipe whose inner and outer surfaces are coated with oxidation-resistant metal, and heat treated to sinter the oxide superconductor powder inside the metal pipe. 1. A method for producing a superconductor, which comprises performing a crystallization treatment.
JP1192398A 1989-07-25 1989-07-25 Production of superconductor Pending JPH0360456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192398A JPH0360456A (en) 1989-07-25 1989-07-25 Production of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192398A JPH0360456A (en) 1989-07-25 1989-07-25 Production of superconductor

Publications (1)

Publication Number Publication Date
JPH0360456A true JPH0360456A (en) 1991-03-15

Family

ID=16290646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192398A Pending JPH0360456A (en) 1989-07-25 1989-07-25 Production of superconductor

Country Status (1)

Country Link
JP (1) JPH0360456A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161421A (en) * 1974-06-21 1975-12-27
JPS63307618A (en) * 1987-06-06 1988-12-15 Sumitomo Electric Ind Ltd Manufacture of superconductive wire
JPS63307622A (en) * 1987-06-08 1988-12-15 Sumitomo Electric Ind Ltd Manufacture of superconductive wire
JPS6448650A (en) * 1987-08-19 1989-02-23 Nittetsu Hard Kk Roll for continuous casting having breakage resistance and wear resistance
JPS6471007A (en) * 1987-05-13 1989-03-16 Sumitomo Electric Industries Superconductive wire and superconductive coil and their manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161421A (en) * 1974-06-21 1975-12-27
JPS6471007A (en) * 1987-05-13 1989-03-16 Sumitomo Electric Industries Superconductive wire and superconductive coil and their manufacture
JPS63307618A (en) * 1987-06-06 1988-12-15 Sumitomo Electric Ind Ltd Manufacture of superconductive wire
JPS63307622A (en) * 1987-06-08 1988-12-15 Sumitomo Electric Ind Ltd Manufacture of superconductive wire
JPS6448650A (en) * 1987-08-19 1989-02-23 Nittetsu Hard Kk Roll for continuous casting having breakage resistance and wear resistance

Similar Documents

Publication Publication Date Title
JPH0360456A (en) Production of superconductor
EP0409150B1 (en) Superconducting wire
JPH06158212A (en) Nb3al superconductor, its production, nb3al superconducting precursor composition and high magnetic field generating superconducting magnet
JPS63285155A (en) Oxide type superconductive material and production thereof
JP2604379B2 (en) Manufacturing method of ceramic superconducting wire
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
WO1990008389A1 (en) Method of producing ceramic-type superconductive wire
JPH01251514A (en) Superconductive wire and manufacture thereof
JPH05266726A (en) Oxide superconducting wire
JP3053411B2 (en) Manufacturing method of oxide superconducting wire
JPH0340315A (en) Manufacture of superconductive wire
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JP2574161B2 (en) Manufacturing method of ceramic superconductor coil
JP3062557B2 (en) Method for producing bismuth-based oxide superconductor
JPH01176609A (en) Manufacture of oxide superconductive wire material
JPH07105765A (en) Manufacture of oxide superconducting wire raw material and oxide superconducting wire
JPH01251518A (en) Manufacture of oxide superconductive wire and oxide superconductive multi-core
JPH02192619A (en) Manufacture of oxide superconductor
JPS63294623A (en) Manufacture of oxide superconductive wire
JPH03102717A (en) Manufacture of conductor for current lead
JPH1059718A (en) Production of thallium-based superconductor
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JPH05101724A (en) Manufacture of oxide superconductive wire
JPH01163913A (en) Manufacture of oxide superconductive wire