JPH0360014A - Conductive base substance for picturing device - Google Patents
Conductive base substance for picturing deviceInfo
- Publication number
- JPH0360014A JPH0360014A JP1196313A JP19631389A JPH0360014A JP H0360014 A JPH0360014 A JP H0360014A JP 1196313 A JP1196313 A JP 1196313A JP 19631389 A JP19631389 A JP 19631389A JP H0360014 A JPH0360014 A JP H0360014A
- Authority
- JP
- Japan
- Prior art keywords
- less
- sintered body
- content
- weight
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000126 substance Substances 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims description 35
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 11
- -1 Aluminum compound Chemical class 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 239000000843 powder Substances 0.000 abstract description 18
- 230000005484 gravity Effects 0.000 abstract description 10
- 239000011812 mixed powder Substances 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 5
- 230000003247 decreasing effect Effects 0.000 abstract description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 14
- 230000004907 flux Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000010894 electron beam technology Methods 0.000 description 9
- 238000010304 firing Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007088 Archimedes method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910005091 Si3N Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Electron Beam Exposure (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、マスク・レティクル基板上に電子ビーム等に
よって微細回路を作成するための描画装置用材料、例え
ば、マスク・レティクル基板を保持するマスクホルダー
やこのホルダーを縦横方向に移動操作するX−Yテーブ
ル等の非磁性、かつ導電性を有する基体に関するもので
ある。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a material for a drawing device for creating fine circuits on a mask/reticle substrate using an electron beam or the like, such as a mask that holds a mask/reticle substrate. The present invention relates to a non-magnetic and conductive substrate such as a holder and an X-Y table for moving the holder in the vertical and horizontal directions.
第1図は従来から使用されている描画装置の概略説明図
であり、X−Yテーブル1上に固定したマスクホルダー
2にマスク・レティクル基板3を弾性的に保持する。そ
して、前記X−Yテーブル1をXまたはY方向に移動操
作しながら、上方の電子ビーム発射装置4から発射され
た電子線により、このマスク・レティクル基板3上に回
路を形成するようにしている。FIG. 1 is a schematic explanatory diagram of a conventional drawing apparatus, in which a mask/reticle substrate 3 is elastically held on a mask holder 2 fixed on an X-Y table 1. While moving the X-Y table 1 in the X or Y direction, a circuit is formed on the mask/reticle substrate 3 by an electron beam emitted from an electron beam emitting device 4 above. .
このような前記X−Yテーブル1やマスクホルダー2等
の材料は、磁性を帯びていると、電子ビームの直進性に
悪影響を及ぼし、描画精度を著しく低下させるため非磁
性であることが要求される一方、電子ビームによる描画
によってマスクレティクル基板に生ずる静電気を逃がす
ため、体積固有抵抗が10’Ω・cn+オーダ以下の導
電性を有することが要求されている。このような特性を
満足する基体材料として、従来よりベリリウム力・ソバ
−(BeCu)やリン酸鋼等の金属が使用されていた。The materials of the X-Y table 1, mask holder 2, etc. are required to be non-magnetic because if they are magnetic, they will have a negative effect on the straightness of the electron beam and will significantly reduce the writing accuracy. On the other hand, in order to release static electricity generated on the mask reticle substrate due to electron beam writing, it is required that the mask reticle has conductivity with a volume resistivity of 10'Ω·cn+ order or less. Conventionally, metals such as beryllium copper (BeCu) and phosphate steel have been used as base materials satisfying such characteristics.
しかしながら、このような金属は熱膨張係数が12xl
O−’ /”c以上と大きく、回路を形成する場合に回
路投射位置が周囲温度によりずれ易く、微細回路の形成
に限界がある。また、ヤング率が2xlO&kg/cm
”以下と低いため剛性が小さく基体が変形しやすい。さ
らに、比重が8以上と大きいため、例えばX−Yステー
ジの軽快な作動を図るために軽量化できない等の問題が
ある。However, such metals have a coefficient of thermal expansion of 12xl
It is large, more than O-'/"c, and when forming a circuit, the circuit projection position is likely to shift due to the ambient temperature, and there is a limit to the formation of fine circuits. Also, the Young's modulus is 2xlO&kg/cm
Since the specific gravity is as low as 8 or more, the rigidity is low and the base body is easily deformed.Furthermore, since the specific gravity is as high as 8 or more, there is a problem that it is not possible to reduce the weight so that, for example, the X-Y stage can operate easily.
また、上記マスク上の回路パターン幅は、近時回路の高
密度化にともない0.5μm以下とする極めて厳しい要
求がなされおり、上記基体材料においてはその達成は困
難である。Further, with the recent trend toward higher circuit densities, there has been an extremely strict requirement that the width of the circuit pattern on the mask be 0.5 μm or less, and this is difficult to achieve with the base material.
そこで、本願発明者は上記問題を解消するため、上記特
性を満足する基体材料として導電性セラミックスを使用
することを試みた。Si、N4やSiC等の導電性セラ
ミックスの中には、熱膨張係数が6xlO−’/’C以
下、ヤング率が3xlO’ kg/cm”以上、比重が
4.0以下と、上記問題を解消できる特性を有するもの
があるからである。Therefore, in order to solve the above problem, the inventor of the present application attempted to use conductive ceramics as a base material that satisfies the above characteristics. Some conductive ceramics such as Si, N4, and SiC have a thermal expansion coefficient of 6xlO'/'C or less, a Young's modulus of 3xlO'kg/cm' or more, and a specific gravity of 4.0 or less, which solves the above problems. This is because there are some properties that allow it.
しかしながら、このようなセラミックの原料粉末中には
、通常不可避的にFe等の磁性金属が含まれており、こ
の磁性金属の含有量が多いと焼結体中の磁束密度を充分
に小さくできず、描画装置用導電性基体材料に使用した
場合、電子ビームの直進性に悪影響を及ぼす。また、セ
ラミックスの焼結体表面の平面度は通常10IJl11
以上と粗いため、マスクを保持して回路を形成する場合
にマスク上の投射位置の誤差が0.5μmを越え、微細
幅の回路形成には限界がある。However, raw material powder for such ceramics usually inevitably contains magnetic metals such as Fe, and if the content of this magnetic metal is high, the magnetic flux density in the sintered body cannot be sufficiently reduced. When used as a conductive substrate material for a writing device, it has a negative effect on the straightness of the electron beam. In addition, the flatness of the surface of the ceramic sintered body is usually 10IJl11
Due to the above roughness, when forming a circuit by holding the mask, the error in the projection position on the mask exceeds 0.5 μm, and there is a limit to the formation of a circuit with a fine width.
本発明においては、周囲温度による熱膨張の影響が少な
く、基体の変形が生じ難く、さらに比重の小さい導電性
基体であって、体積固有抵抗が10’Ω・craオーダ
以下の導電性を有し、かつ磁束密度を0.05 mG
(ミリガウス)以下とし、さらに焼結体表面の平面度
を5μm以下とした描画装置用導電性基体を提供するこ
とを目的とする。In the present invention, the conductive base is less affected by thermal expansion due to ambient temperature, hardly deforms the base, and has a low specific gravity, and has conductivity with a volume resistivity of 10' Ω·cra order or less. , and the magnetic flux density is 0.05 mG
An object of the present invention is to provide a conductive substrate for a drawing device in which the flatness of the surface of the sintered body is 5 μm or less.
そこで、本願発明者は導電性セラミックスの組成比率を
一定範囲内とすると共に、この焼結体中の磁性金属であ
るFe含有量を所定量以下に減らし、磁束密度を0.0
5 mG以下と充分に小さくする一方、この焼結体表面
の平面度を5μm以下とすることにより前記問題点を解
消することができた。Therefore, the inventor of the present application set the composition ratio of the conductive ceramic within a certain range, and reduced the content of Fe, which is a magnetic metal, in this sintered body to a predetermined amount or less, and reduced the magnetic flux density to 0.0.
The above-mentioned problems could be solved by making the flatness of the surface of this sintered body 5 μm or less while making it sufficiently small to 5 mG or less.
本発明によれば、アルミニウム化合物が0.1〜10重
量%、Ua族元素とIIIa族元素の化合物の1種以上
が0.1〜10重Iz、導電性付与剤が0.5〜10重
量%、残部が炭化けい素(SiC)からなる導電性Si
C質焼結体であって、該焼結体中に含まれる不可避不純
物のうちFeの含有量が300ppm以下であり、且つ
該焼結体表面の平面度が5μm以下であることを特徴と
する描画装置用導電性基体が提供される。According to the present invention, the aluminum compound is 0.1 to 10% by weight, one or more compounds of Ua group elements and IIIa group elements are 0.1 to 10% by weight, and the conductivity imparting agent is 0.5 to 10% by weight. %, the balance is conductive Si consisting of silicon carbide (SiC)
A C-based sintered body, characterized in that the content of Fe among the inevitable impurities contained in the sintered body is 300 ppm or less, and the flatness of the surface of the sintered body is 5 μm or less. A conductive substrate for a drawing device is provided.
アルミニウム化合物が0.1重量%未満では焼結が進行
せず、緻密な焼結体が得られず、10重itχを越える
と緻密化し難くなり、ヤング率が低下する。好ましくは
、1.0〜3.0重量%である。If the aluminum compound content is less than 0.1% by weight, sintering will not proceed and a dense sintered body will not be obtained, and if it exceeds 10 weight itx, densification will be difficult and the Young's modulus will decrease. Preferably it is 1.0 to 3.0% by weight.
Ua族元素及び■a族元素の化合物が0.1重量%以下
では焼結が進行せず、10重Nzを越えるとヤング率が
低下する。好ましくは、0.1〜1.0重量2である。If the amount of the compound of the Ua group element and the group (II) a group element is less than 0.1% by weight, sintering will not proceed, and if it exceeds 10 times Nz, the Young's modulus will decrease. Preferably, it is 0.1 to 1.0 weight2.
導電性付与剤が0.5重tz未満であると描画装置用導
電性基体として必要な導電性が付与されず、1帽1χを
越えると緻密化し難くなり、ヤング率が低下する。好ま
しくは、3.0〜6.0重量%である。If the conductivity imparting agent is less than 0.5 weight tz, the conductivity necessary for a conductive substrate for a drawing device will not be imparted, and if it exceeds 1 x 1 x, it will be difficult to densify and the Young's modulus will decrease. Preferably it is 3.0 to 6.0% by weight.
SiCが90重Nz未満であると、焼結性が悪く、ヤン
グ率が低下する。When SiC is less than 90 Nz, sinterability is poor and Young's modulus is reduced.
焼結体中のFeの含有量が300ppmを越えると、磁
束密度が0.05 mGを越え、描画装置用導電性基体
として使用できない。好ましくは250ppm以下、よ
り好ましくは150ppm以下である。When the content of Fe in the sintered body exceeds 300 ppm, the magnetic flux density exceeds 0.05 mG, and the sintered body cannot be used as a conductive substrate for a drawing device. Preferably it is 250 ppm or less, more preferably 150 ppm or less.
焼結体表面の平面度が5μm以上であると、マスクを保
持して回路を形成する場合にマスク上の投射位置誤差が
大きくなり、微細回路の形成に限界が生じる。好ましく
は2μm以下、より好ましくは1μm以下である。If the flatness of the surface of the sintered body is 5 μm or more, when holding the mask to form a circuit, the error in the projection position on the mask becomes large, and there is a limit to the formation of fine circuits. Preferably it is 2 μm or less, more preferably 1 μm or less.
導電性付与剤としては、Tiの他IVa族元素、Va族
元素、VIa族元素の単味またはそれらの炭化物、窒化
物、炭窒化物の一種若しくは二種以上を選択することが
できる。As the conductivity imparting agent, in addition to Ti, one or more of IVa group elements, Va group elements, and VIa group elements, or their carbides, nitrides, and carbonitrides can be selected.
前記Ua族元素及びIIIa族元素の化合物の他、焼結
助剤として、B 、 B4.C、C等も使用できる。In addition to the compounds of the Ua group elements and IIIa group elements, B, B4. C, C, etc. can also be used.
体積固有抵抗は描画装置用導電性基体として、103Ω
・cmオーダ以下であることが必要である。The volume resistivity is 103Ω as a conductive substrate for a drawing device.
- It is necessary to be on the order of cm or less.
好ましくは5 xlO”Ω・cm以下、より好ましくは
1〜3 X10”Ω・cmである。Preferably it is 5×10”Ω·cm or less, more preferably 1 to 3×10”Ω·cm.
磁束密度は描画装置用導電性基体として使用する場合、
0.05 mG以下、好ましくは0.02 mG以下、
より好ましくは0.01 mG以下である。When used as a conductive substrate for a drawing device, the magnetic flux density is
0.05 mG or less, preferably 0.02 mG or less,
More preferably it is 0.01 mG or less.
熱膨張係数は描画装置用導電性基体として、好ましくは
5xlO−h/’c以下である。The coefficient of thermal expansion is preferably 5xlO-h/'c or less as a conductive substrate for a drawing device.
ヤング率は描画装置用導電性基体として、3xlO6k
g/c−以上、好ましくは4xlO6kg/cm”以上
である。Young's modulus is 3xlO6k as a conductive substrate for drawing equipment.
g/c- or more, preferably 4xlO6 kg/cm'' or more.
比重は、ヤング率の値と対比すると、描画装置用導電性
基体として、4.0以下であることが望まれる。When compared with the value of Young's modulus, the specific gravity is desired to be 4.0 or less as a conductive substrate for a drawing device.
本発明の導電性炭化けい素質焼結体の製造にあたっては
、炭化けい素粉束、アルミニウム化合物の粉末、na族
元素と■a族元素の化合物の粉末及び、導電性付与剤を
前記組成範囲で調製した混合粉末を、この混合粉末のF
e含有量が300ppm以下である原料粉末を選択する
か、またはこの混合粉末が300ppm以下となるよう
に脱鉄処理した後成形し、非酸化性雰囲気中で焼成する
。雰囲気としては、Arz He、、 Coガス等によ
って制御されるが、その際雰囲気を1800℃以上に加
熱された炭素と平衡状態に保ち、酸素濃度を10−”a
tm以下にする。即ち、酸素濃度が10− ” atI
llを越えると、導電性が不充分となり103Ω・cm
以下の体固有抵抗が得られない。In manufacturing the conductive silicon carbide sintered body of the present invention, a silicon carbide powder bundle, an aluminum compound powder, a compound powder of an Na group element and an A group element, and a conductivity imparting agent are mixed in the above composition range. The prepared mixed powder is
A raw material powder having an e content of 300 ppm or less is selected, or the mixed powder is subjected to iron removal treatment so that the e content is 300 ppm or less, and then molded and fired in a non-oxidizing atmosphere. The atmosphere is controlled by Arz He, Co gas, etc., and at this time, the atmosphere is kept in equilibrium with carbon heated to 1800°C or higher, and the oxygen concentration is adjusted to 10-"a.
Make it below tm. That is, when the oxygen concentration is 10-"atI
If it exceeds ll, the conductivity will be insufficient and the resistance will be 103Ω・cm.
The following body specific resistance cannot be obtained.
また、焼成温度は1800〜2100℃に設定すること
が望ましい。Further, the firing temperature is desirably set at 1800 to 2100°C.
さらに、用いられる炭化けい素粉束はα型、β型の何れ
であってもよく、経済性の面からはα型が好ましい。焼
成方法としては、雰囲気を上記条件に設定する以外は、
公知の方法が可能であって、例えば、非加圧焼成法、ホ
ットプレス法、ガス圧焼成法や熱間静水圧プレス法等の
何れであってもよい。Furthermore, the silicon carbide powder bundle used may be either α-type or β-type, with α-type being preferred from the economic point of view. As for the firing method, except for setting the atmosphere to the above conditions,
Any known method may be used, such as a non-pressure firing method, a hot press method, a gas pressure firing method, or a hot isostatic pressing method.
また、本発明によれば、アルミニウム化合物、Ua族元
素とIIIa族元素の化合物の1種若しくは2種以上が
0.1〜15重量2.導電性付与剤が15〜60重量%
、残部が窒化けい素(SLN4)からなる導電性Si3
N4質焼結体であって、この該焼結体中に含まれる不可
避不純物のうちFeの含有量が300ppm以下であり
、且つこの基体表面の平面度が5μm以下であることを
特徴とする描画装置用導電性基体が提供される。Further, according to the present invention, one or more of the aluminum compound and the compound of the Ua group element and the IIIa group element is 0.1 to 15% by weight2. 15-60% by weight of conductivity imparting agent
, conductive Si3 with the remainder made of silicon nitride (SLN4)
A drawing characterized in that the N4-based sintered body has an Fe content of 300 ppm or less among the inevitable impurities contained in the sintered body, and the flatness of the base surface is 5 μm or less. A conductive substrate for a device is provided.
アルミニウム化合物、IIa族元素及びI[la族元素
の化合物の合量が0.1重量2未満又は15重量2を越
えると、充分焼結せずヤング率が低下する。If the total amount of the aluminum compound, the IIa group element, and the I[la group element compound is less than 0.1 weight 2 or more than 15 weight 2, sufficient sintering will not occur and the Young's modulus will decrease.
好ましくは、1〜10重量2である。Preferably, it is 1 to 10 weight2.
導電性付与剤が15重量X未満であると体積固有抵抗1
04Ω・側オーダ以上と高くなり過ぎ、描画装置用導電
性基体として使用できず、60重量2を越えると窒化け
い素の量が減少するので、焼結が不充分となりヤング率
が低下する。好ましくは18〜55重量%1より好まし
くは20〜30重量2である。When the conductivity imparting agent is less than 15 weight X, the volume resistivity is 1
If the weight exceeds 60 Ω, the amount of silicon nitride decreases, resulting in insufficient sintering and a decrease in Young's modulus. Preferably it is 18 to 55% by weight1, more preferably 20 to 30% by weight2.
Si3N4が40重!χ未満であると、焼結性が悪くヤ
ング率が低下する。40 layers of Si3N4! If it is less than χ, sinterability will be poor and Young's modulus will decrease.
焼結体中のFeの含有量が300ppmを越えると、時
速密度がQ、05 raGを越え、描画装置用導電性基
体として使用できない。好ましくは250ppm以下、
より好ましくは150ppm以下である。If the content of Fe in the sintered body exceeds 300 ppm, the hourly density exceeds Q,05 raG, and the sintered body cannot be used as a conductive substrate for a drawing device. Preferably 250 ppm or less,
More preferably it is 150 ppm or less.
基体表面の平面度が5μm以上であると、マスクを保持
して回路を形成する場合、マスク上の投射位置誤差が大
きくなり、微細回路の形成に限界が生じる。好ましくは
2μm以下、より好ましくは1μm以下である。If the flatness of the substrate surface is 5 μm or more, when a circuit is formed by holding a mask, the projection position error on the mask becomes large, and there is a limit to the formation of fine circuits. Preferably it is 2 μm or less, more preferably 1 μm or less.
導電性付与剤としては、Tiの他IVa族元素、Va族
元素、VIa族元素の単味またはそれらの炭化物、窒化
物、炭窒化物等の化合物の一種若しくは二種以上を選択
することができる。As the conductivity imparting agent, in addition to Ti, one or more of IVa group elements, Va group elements, and VIa group elements alone or compounds thereof such as carbides, nitrides, carbonitrides, etc. can be selected. .
体積固有抵抗は描画装置用導電性基体として、103Ω
・cmオーダ以下であることが必要である。The volume resistivity is 103Ω as a conductive substrate for a drawing device.
- It is necessary to be on the order of cm or less.
好ましくは5 xlO”Ω・cm以下、より好ましくは
1〜3 xlO”Ω・cmである。Preferably it is 5 xlO"Ω·cm or less, more preferably 1 to 3 xlO"Ω·cm.
磁束密度は描画装置用導電性基体として、0.05mG
以下、好ましくは0.02 mGG以下より好ましくは
0.01 mGG以下ある。The magnetic flux density is 0.05 mG as a conductive substrate for drawing equipment.
It is preferably 0.02 mGG or less, more preferably 0.01 mGG or less.
熱膨張係数は描画装置用導電性基体として、5xLO−
’ /″CC以下る。The thermal expansion coefficient is 5xLO- as a conductive substrate for a drawing device.
'/''CC is below.
ヤング率は描画装置用導電性基体として、2.8xlo
’kg/c−以上、好ましくは3.Oxlo6kg/c
−以上である。The Young's modulus is 2.8xlo as a conductive substrate for a drawing device.
'kg/c- or more, preferably 3. Oxlo6kg/c
- That's all.
比重は、ヤング率の値と対比すると、描画装置用導電性
基体として、3.3以下であることが望まれる。When compared with the value of Young's modulus, the specific gravity is desired to be 3.3 or less as a conductive substrate for a drawing device.
本発明の導電性窒化けい素質焼結体の製造にあたっては
窒化けい素粉末、アルミニウム化合物の粉末、Ua族元
素、IIIa族元素の化合物の粉末及び、導電性付与剤
を前記組成範囲で調製した混合粉末を、この混合粉末の
Pe含有量が300ppm以下である原料粉末を選択す
るか、またはこの混合粉末中のFe含有量が300pp
m以下となるように脱鉄処理した後成形し、非酸化性雰
囲気中で焼成する。雰囲気としては、Ars He、、
Coガス等によって制御される。In producing the conductive silicon nitride sintered body of the present invention, a mixture of silicon nitride powder, aluminum compound powder, Ua group element, IIIa group element compound powder, and conductivity imparting agent prepared within the above composition range is used. For the powder, select a raw powder whose mixed powder has a Pe content of 300 ppm or less, or select a raw material powder whose mixed powder has a Fe content of 300 ppm or less.
After de-iron treatment is performed so that the particle size is less than m, it is molded and fired in a non-oxidizing atmosphere. As for the atmosphere, Ars He...
Controlled by Co gas or the like.
なお、焼成温度は1800〜2000℃に設定すること
が望ましい。Note that the firing temperature is desirably set at 1800 to 2000°C.
また、焼成方法としては、雰囲気を上記条件に設定する
以外は、公知の方法が可能であって、例えば、非加圧焼
成法、ホットプレス法、ガス圧焼成法や熱間静水圧プレ
ス法等の何れであってもよい。In addition, as the firing method, other than setting the atmosphere to the above conditions, known methods are possible, such as non-pressure firing method, hot press method, gas pressure firing method, hot isostatic pressing method, etc. It may be any of the following.
〔実施例1〕
比表面積15n+”/gのα型SiCに、アルミニウム
化合物の粉末、Ua族元素とl1la族元素の化合物の
粉末及び導電性付与剤を、第1表に示す割合に調製した
混合粉末を、この混合粉末のFe含有量が300ppm
以下のものを底形するか、もしくは300pp−以下と
なるように脱鉄処理した後成形し、底型後非酸化性雰囲
気中1800〜2100℃で焼成した。[Example 1] A mixture of α-type SiC with a specific surface area of 15 n+”/g, powder of an aluminum compound, powder of a compound of a Ua group element and an I1la group element, and a conductivity imparting agent in the proportions shown in Table 1. powder, the Fe content of this mixed powder is 300 ppm
The following materials were molded into bottom shapes, or after being deironated to 300 pp- or less, and fired at 1800 to 2100 DEG C. in a non-oxidizing atmosphere after the bottom molding.
得られた焼結体の特性について、以下の測定を行った。The following measurements were performed regarding the characteristics of the obtained sintered body.
焼結体中の磁性金属の含有量の測定は、各試料に炭酸ナ
トリウムとホウ酸を混ぜて、白金ルツボで融解し、塩酸
と純水とで溶解した後、この溶液中の磁性金属をICP
発光分光分析装置で測定して定量した。To measure the content of magnetic metal in a sintered body, mix sodium carbonate and boric acid with each sample, melt it in a platinum crucible, dissolve it in hydrochloric acid and pure water, and then remove the magnetic metal in this solution by ICP.
It was quantified by measurement using an emission spectrometer.
磁束密度はアナログ磁界測定器により測定した。The magnetic flux density was measured using an analog magnetic field measuring device.
但し、測定性能は0.1mG (ミリガウス)以上であ
るが、O,1m G以下を拡大し目盛を付して測定した
。However, although the measurement performance is 0.1 mG (milliGauss) or more, measurements were made with a magnification of 0.1 mG or less and a scale.
体積固有抵抗の測定は、直径10mm、厚み5IIII
11の円盤の両面に恨ペーストを焼付けた後、室温にて
デジタルマルチメータにて測定した。Measurement of volume resistivity was performed with a diameter of 10 mm and a thickness of 5III.
After baking the paste on both sides of the disk No. 11, measurements were taken using a digital multimeter at room temperature.
基体表面の平面度は接触式表面粗さ計により基体使用必
要表面全体の複数直線を走査した後の平均表面粗さRa
を求めた。The flatness of the substrate surface is determined by the average surface roughness Ra after scanning multiple straight lines on the entire surface of the substrate using a contact type surface roughness meter.
I asked for
熱膨張係数はTMA熱膨張測定器により、ヤング率は超
音波速度測定法により、比重はアルキメデス法により測
定した。The thermal expansion coefficient was measured using a TMA thermal dilatometer, the Young's modulus was measured using an ultrasonic velocity measuring method, and the specific gravity was measured using an Archimedes method.
これらの結果を第1表に示した。These results are shown in Table 1.
第1表から理解されるように、アルごニウム化合物が0
.1〜10重量%、IIIa族元素とIIIa族元素の
化合物の1種以上が0.1〜10重量%の範囲外の試料
No1.6.7.12.15.21は何れも緻密化が不
充分であり、ヤング率が低下している。As understood from Table 1, the argonium compound is 0
.. Sample No. 1.6.7.12.15.21 in which one or more of the group IIIa element and the compound of the group IIIa element was outside the range of 1 to 10% by weight and 0.1 to 10% by weight was not densified. is sufficient, and the Young's modulus is reduced.
また、導電性付与剤が0.5重量%未満である試料No
、22は体積固有抵抗が2.7xlO’ Ω’mmと高
く、本発明の目的に合わず、10重量%を越える試料N
0129は緻密化が促進されず、ヤング率が低下してい
る。In addition, sample No. in which the conductivity imparting agent is less than 0.5% by weight
, 22 has a high volume resistivity of 2.7xlO'Ω'mm, which is not suitable for the purpose of the present invention, and sample N exceeding 10% by weight.
In No. 0129, densification was not promoted and the Young's modulus was decreased.
さらに、SiC焼結体中のFe含有量が300ppmを
越える試料No、30では磁束密度が0.08IIGと
高く本発明の目的に適さない。Furthermore, sample No. 30, in which the Fe content in the SiC sintered body exceeds 300 ppm, has a high magnetic flux density of 0.08 IIG and is not suitable for the purpose of the present invention.
これに対し、本発明の範囲内である試料NO12〜5.
8〜11.13.14.16〜20.23〜28及び3
1〜36については、本発明の描画装置用導電性基体と
して必要な特性、即ち、磁束密度が0.05 mGC以
下熱膨張係数が5xlO−’/ ”C以下、ヤング率が
3xlO6kg/c−以上、体積固有抵抗が103Ω’
cmオーダ以下を満足していることが判る。In contrast, samples Nos. 12 to 5, which are within the scope of the present invention.
8-11.13.14.16-20.23-28 and 3
Regarding Nos. 1 to 36, the characteristics necessary for the conductive substrate for the drawing device of the present invention are as follows: magnetic flux density is 0.05 mGC or less, thermal expansion coefficient is 5xlO-'/''C or less, and Young's modulus is 3xlO6kg/c- or more. , volume resistivity is 103Ω'
It can be seen that it satisfies the cm order or less.
次に第1表に示す試料No9と同一の材料を使用して、
第1図に示すマスクホルダである描画装置用導電性基体
を作成した。このマスクホルダーの使用必要表面を第2
表に示す平面度となる様に研磨し、実際の描画装置に組
み込み、マスクをこれにより保持して、電子線を40m
m/sの速度で移動させた時の投射位置誤差を光学顕微
鏡により観察し、この誤差の値を評価し、第2表に示し
た。Next, using the same material as sample No. 9 shown in Table 1,
A conductive substrate for a drawing device, which is a mask holder shown in FIG. 1, was prepared. The second surface of this mask holder that needs to be used
Polish it to the flatness shown in the table, install it in the actual lithography equipment, hold the mask, and beam the electron beam for 40m.
The projection position error when moving at a speed of m/s was observed using an optical microscope, and the value of this error was evaluated and shown in Table 2.
第2表
第2表から理解されるように、平面度が10μ曙である
試料No37のものは投射位置誤差が0.6μmと大き
く、要求されている回路パターン間隔(0゜5μl11
)を越えるため使用できない。Table 2 As can be seen from Table 2, sample No. 37 with a flatness of 10 μm has a large projection position error of 0.6 μm, and the required circuit pattern spacing (0°5 μl 11
) and cannot be used.
これに対し、平面度が5μm以下の試料No、3839
.40のものは0.3 μm以下であり問題がないこと
が判った。In contrast, sample No. 3839 with a flatness of 5 μm or less
.. No. 40 had a diameter of 0.3 μm or less, and it was found that there was no problem.
〔実施例2〕
比表面積6 m”7gのSi、N、に、アルミニウム化
合物の粉末、IIa族元素、■a族元素の化合物の粉末
及び導電性付与剤を、第3表に示す割合に調製した混合
粉末を、こ5の混合粉末のFe含有量が300ppm以
下のものを底形するか、もしくはこれら混合粉末中のF
eを脱鉄処理した後戒型し、非酸化性雰囲気中1800
〜2000℃で焼成した。[Example 2] Si, N, with a specific surface area of 6 m"7 g, powder of an aluminum compound, powder of a compound of a group IIa element, a compound of a group IIa element, and a conductivity imparting agent were prepared in the proportions shown in Table 3. The mixed powder obtained in the above step 5 is molded into a powder having a Fe content of 300 ppm or less, or the F in these mixed powders is
After iron removal treatment, molding was carried out in a non-oxidizing atmosphere at 1800 °C.
Calcined at ~2000°C.
得られた焼結体について、以下の特性測定を行った。The following characteristic measurements were performed on the obtained sintered body.
焼結体中の磁性金属の含有量は、試料に炭酸ナトリウム
とホウ酸を混ぜて、白金ルツボで融解し、塩酸と純水と
で溶解した後、この溶液中の磁性金属であるFe含有量
をICP発光分光分析装置で測定して定量した。The content of magnetic metal in the sintered body is determined by mixing a sample with sodium carbonate and boric acid, melting it in a platinum crucible, dissolving it in hydrochloric acid and pure water, and then calculating the Fe content, which is a magnetic metal, in this solution. was measured and quantified using an ICP emission spectrometer.
磁束密度はアナログ磁界測定器により測定した。The magnetic flux density was measured using an analog magnetic field measuring device.
但し、測定性能は0.1mG以上であったが、0.1m
G以下は拡大し目盛を付して測定した。 体積固有抵抗
は、直径10m5+、厚み5叩の円盤の両面に銀ペース
トを焼付けた後、室温にてデジタルマルチメータにて測
定した。However, the measurement performance was over 0.1 mG, but at 0.1 m
Measurements below G were enlarged and marked with a scale. The volume resistivity was measured using a digital multimeter at room temperature after baking silver paste on both sides of a disk with a diameter of 10 m5+ and a thickness of 5 mm.
基体表面の平面度は接触式表面粗さ計により基体の使用
必要表面の複数直線を走査した後の平均表面粗さRaを
求めた。The flatness of the surface of the substrate was determined by scanning a plurality of straight lines on the surface of the substrate to be used using a contact type surface roughness meter, and then determining the average surface roughness Ra.
熱膨張係数はTMA熱膨張測定器により、ヤング率は超
音波速度測定法により、比重はアルキメデス法により測
定した。The thermal expansion coefficient was measured using a TMA thermal dilatometer, the Young's modulus was measured using an ultrasonic velocity measuring method, and the specific gravity was measured using an Archimedes method.
これらの結果を第3表に示した。These results are shown in Table 3.
第3表から理解されるように、アルミニウム化合物、U
a族元素、IIIa族元素の化合物の1種若しくは2種
以上の合量が0.1〜15重Iχの範囲外の試料Nol
及び11は焼結が不充分であり、上記の測定は行えなっ
かた。また、導電性付与剤が15〜60重量2の範囲外
の試料No、12.13.14.20.21及び22は
体積固有抵抗が10’Ω・cmオーダ以上となるか、焼
結不充分またはヤング率が低下して使用できないもので
あることが判った。さらに、焼結体中に含まれる不可避
不純物のうちFeの含有量が300ppm以上である試
料No、28のものは、磁束密度が0.09 IIIG
と高く描画装置用導電性基体として使用できないことが
判る。As understood from Table 3, aluminum compounds, U
Sample No. 1 in which the total amount of one or more compounds of group a elements and group IIIa elements is outside the range of 0.1 to 15 times Iχ
and No. 11 were insufficiently sintered, and the above measurements could not be performed. In addition, samples No. 12, 13, 14, 20, 21 and 22 in which the conductivity imparting agent was outside the range of 15 to 60 weight 2 had a volume resistivity of 10'Ω・cm or more or were not sintered properly. Otherwise, it was found that the Young's modulus decreased and it could not be used. Furthermore, sample No. 28, in which the content of Fe among the inevitable impurities contained in the sintered body is 300 ppm or more, has a magnetic flux density of 0.09 IIIG.
It can be seen that this is so high that it cannot be used as a conductive substrate for a drawing device.
これに対し、本発明の範囲内の試料No2〜10.15
〜19.23〜27及び29〜36については、本発明
の閘画装置用導電性基体として必要な特性、即ち、磁束
密度が0.05 mG以下、熱膨張係数が6.0xlO
−’/℃以下、ヤング率が2.8xlO’ kg/c−
以上、体積固有抵抗が10′J、Ω・amオーダ以下を
満足していることが判る。In contrast, samples No. 2 to 10.15 within the scope of the present invention
〜19. Regarding 23 to 27 and 29 to 36, the characteristics necessary for the conductive substrate for the gate drawing device of the present invention, that is, the magnetic flux density is 0.05 mG or less, and the thermal expansion coefficient is 6.0xlO
-'/℃ or less, Young's modulus is 2.8xlO' kg/c-
From the above, it can be seen that the volume resistivity satisfies the order of 10'J, Ω·am or less.
次に第3表に示す試料No、 8と同一の材料を使用
して、第1図に示すマスクホルダーの表面を第4表に示
す平面度となるように研磨し、実際の描画装置に組み込
み、マスクをこれにより保持して電子線を4On+m/
sの速度で移動させた時の投射位置誤差を測定し、この
誤差の値を第4表に示した。Next, using the same material as Sample No. 8 shown in Table 3, the surface of the mask holder shown in Fig. 1 was polished to the flatness shown in Table 4, and incorporated into the actual lithography equipment. , hold the mask and apply the electron beam to 4On+m/
The projection position error when moving at a speed of s was measured, and the error values are shown in Table 4.
第4表
第4表から理解されるように、平面度が10μmである
試料No、37のものは投射位置誤差が0.7μmと大
きく、要求される回路パターン間隔(0,5μmをこえ
るため使用できない。これに対し、平面度が5μm以下
の試料No、38.39.40のものは0.3μm以下
であり問題ないことが判る。Table 4 As can be understood from Table 4, sample No. 37 with a flatness of 10 μm had a large projection position error of 0.7 μm, and was not used because the required circuit pattern spacing (exceeding 0.5 μm) On the other hand, it can be seen that the flatness of sample No. 38, 39, 40 whose flatness is 5 μm or less is 0.3 μm or less and there is no problem.
上述の如く、本発明においては、SiCまたはSi3N
4の組成を所定範囲に設定し、その焼結体中の不可避不
純物である磁性金属のFe含有量を300ppm以下、
体積固有抵抗が103Ω・cmオーダ以下、且つこの焼
結体の平面度が5μm以下とすることにより、周囲温度
による熱膨張の影響が少なく、また基体の変形が生じ難
く、さらに比重の小さい描画装置用導電性基体であって
、磁性密度を0.05 mガウス以下、投射位置誤差が
0.5μm以下となる描画装置用として優れた導電性基
体を提供できる。As mentioned above, in the present invention, SiC or Si3N
The composition of step 4 is set within a predetermined range, and the Fe content of the magnetic metal, which is an inevitable impurity in the sintered body, is set to 300 ppm or less.
By setting the volume resistivity to 103Ω・cm or less and the flatness of this sintered body to 5 μm or less, the effect of thermal expansion due to ambient temperature is small, the base body is hard to deform, and the drawing device has a small specific gravity. It is possible to provide an excellent conductive substrate for use in drawing devices, which has a magnetic density of 0.05 m Gauss or less and a projection position error of 0.5 μm or less.
第1図は本発明の材料が使用される描画装置の概略説明
図である。
l・・・ X−Yテーブル
2・・・ マスクホルダー
3・・・ マスク・レティクル基板
4・・・ 電子ビーム発射装置FIG. 1 is a schematic explanatory diagram of a drawing apparatus in which the material of the present invention is used. l... X-Y table 2... Mask holder 3... Mask/reticle board 4... Electron beam emitting device
Claims (2)
族元素とIIIa族元素の化合物の1種以上が0.1〜1
0重量%、導電性付与剤が0.5〜10重量%、残部が
炭化けい素(SiC)からなる導電性SiC質焼結体で
あって、この焼結体中に含まれる不可避不純物のうちF
eの含有量が300ppm以下であり、且つ該焼結体表
面の平面度が5μm以下であることを特徴とする描画装
置用導電性基体。(1) Aluminum compound is 0.1 to 10% by weight, IIa
One or more compounds of group elements and group IIIa elements are 0.1 to 1
A conductive SiC sintered body consisting of 0% by weight, 0.5 to 10% by weight of a conductivity-imparting agent, and the balance being silicon carbide (SiC), and of the inevitable impurities contained in this sintered body. F
A conductive substrate for a drawing device, characterized in that the content of e is 300 ppm or less, and the flatness of the surface of the sintered body is 5 μm or less.
化合物の1種若しくは2種以上の合量が0.1〜15重
量%、導電性付与剤が15〜60重量%、残部が窒化け
い素(Si_3N_4)からなる導電性Si_3N_4
質焼結体であって、この焼結体中に含まれる不可避不純
物のうちFeの含有量が300ppm以下であり、且つ
該焼結体表面の平面度が5μm以下であることを特徴と
する描画装置用導電性基体。(2) The total amount of one or more compounds of aluminum element, group IIa element, and group IIIa element is 0.1 to 15% by weight, the conductivity imparting agent is 15 to 60% by weight, and the balance is silicon nitride. Conductive Si_3N_4 consisting of (Si_3N_4)
A drawing characterized in that the sintered body is a quality sintered body, the content of Fe among the inevitable impurities contained in the sintered body is 300 ppm or less, and the flatness of the surface of the sintered body is 5 μm or less. Conductive substrate for devices.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1196313A JP2753865B2 (en) | 1989-07-27 | 1989-07-27 | Conductive substrate for drawing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1196313A JP2753865B2 (en) | 1989-07-27 | 1989-07-27 | Conductive substrate for drawing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0360014A true JPH0360014A (en) | 1991-03-15 |
JP2753865B2 JP2753865B2 (en) | 1998-05-20 |
Family
ID=16355735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1196313A Expired - Fee Related JP2753865B2 (en) | 1989-07-27 | 1989-07-27 | Conductive substrate for drawing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2753865B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05275513A (en) * | 1992-03-27 | 1993-10-22 | Kyocera Corp | Semiconductor wafer retaining device |
JP2014216407A (en) * | 2013-04-24 | 2014-11-17 | 株式会社ニューフレアテクノロジー | Earth mechanism for mask cover, mask cover, charged particle beam lithography system and charged particle beam lithography method |
-
1989
- 1989-07-27 JP JP1196313A patent/JP2753865B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05275513A (en) * | 1992-03-27 | 1993-10-22 | Kyocera Corp | Semiconductor wafer retaining device |
JP2014216407A (en) * | 2013-04-24 | 2014-11-17 | 株式会社ニューフレアテクノロジー | Earth mechanism for mask cover, mask cover, charged particle beam lithography system and charged particle beam lithography method |
Also Published As
Publication number | Publication date |
---|---|
JP2753865B2 (en) | 1998-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04243978A (en) | Method for decrease in shrinkage during calcining of ceramic body | |
TWI276618B (en) | Machinable ceramic | |
JPS6294953A (en) | Manufacture of electrostatic chucking substrate | |
JPH11343168A (en) | Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus | |
JPH0360014A (en) | Conductive base substance for picturing device | |
JP4970712B2 (en) | Aluminum nitride sintered body, aluminum nitride production method, and aluminum nitride evaluation method | |
JPH11209171A (en) | Dense low thermal expansion ceramics, its production and member for semiconductor producing device | |
JP2002220277A (en) | Black low thermal expansion ceramic and member for aligner | |
JP2007076949A (en) | Black low resistance ceramic and member for semiconductor manufacturing device | |
Trostbl | Absorption of magnesia by chromite spinel | |
JP2003286076A (en) | Free-cutting ceramic, production method thereof and probe guiding parts | |
JP2010098049A (en) | Multilayer ceramic substrate and method for manufacturing the same | |
JP2007063124A (en) | Ceramic substrate | |
KR100502815B1 (en) | Porous Ceramic Material with Double Pore Structures and Manufacturing Process therefor | |
JP5354901B2 (en) | Ceramic substrate materials for thin film magnetic heads | |
JP2001302338A (en) | Composite ceramic and manufacturing method thereof | |
JP2001302340A (en) | High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device | |
JP4568979B2 (en) | Cordierite dense sintered body and manufacturing method thereof | |
JP3260340B2 (en) | Composite ceramic and method for producing the same | |
JPH0361304A (en) | Manufacture of complex material | |
JP2001302339A (en) | Member for precise measuring instrument and manufacturing method thereof | |
Loscutova et al. | Application of alumoxane nanoparticles as precursors for 3D alumina features | |
JPS6385056A (en) | Manufacture of aluminum nitride base substrate | |
JP2801610B2 (en) | Lithography mask structure | |
JP2008038228A (en) | Tray for sintering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |