JPH0359327B2 - - Google Patents

Info

Publication number
JPH0359327B2
JPH0359327B2 JP59141454A JP14145484A JPH0359327B2 JP H0359327 B2 JPH0359327 B2 JP H0359327B2 JP 59141454 A JP59141454 A JP 59141454A JP 14145484 A JP14145484 A JP 14145484A JP H0359327 B2 JPH0359327 B2 JP H0359327B2
Authority
JP
Japan
Prior art keywords
fluidized bed
combustion
section
air
freeboard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59141454A
Other languages
Japanese (ja)
Other versions
JPS6122114A (en
Inventor
Tsutomu Higo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP14145484A priority Critical patent/JPS6122114A/en
Publication of JPS6122114A publication Critical patent/JPS6122114A/en
Publication of JPH0359327B2 publication Critical patent/JPH0359327B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/002Fluidised bed combustion apparatus for pulverulent solid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、流動床を用いて燃焼物を焼却せしめ
る流動床焼却炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a fluidized bed incinerator that uses a fluidized bed to incinerate combustion materials.

[従来技術] 流動床燃焼炉においては、燃焼空気は、主とし
て、流動床を形成する流動砂の流動化のために流
動床面の吹出部から押込むように供給される押込
空気により兼用されることが多い。その場合押込
圧力は、下記の式により近似的に表わすことがで
きる。
[Prior Art] In a fluidized bed combustion furnace, combustion air is mainly used as forced air that is supplied from a blow-off section on the surface of the fluidized bed to fluidize the fluidized sand that forms the fluidized bed. many. In that case, the pushing pressure can be approximately expressed by the following formula.

[押込圧力]≒[炉内圧力]+[流動床の層の高さ]×
[流動床のかさ密度]+[吹出部の圧力損失] この押込圧力は通常1000mmAgを超え、それに
更にダクト圧損や空気予熱器、コントロールダン
パ等の圧損も見込むため押込空気の送風動力は、
単純な焼却処理設備の場合、全所要動力の3割前
後に達することも珍らしくなかつた。
[Indentation pressure] ≒ [Furnace pressure] + [Fluidized bed layer height] ×
[Bulk density of fluidized bed] + [Pressure loss at blowout section] This pushing pressure usually exceeds 1000 mmAg, and in addition, the pressure loss of the duct, air preheater, control damper, etc. is also considered, so the blowing power of the forced air is:
In the case of simple incineration processing equipment, it was not uncommon for this to reach around 30% of the total power required.

また、、押込空気による流動砂の流動は、吹上
げる空気に対する抵抗に基づく流動砂の浮遊化に
よるものであつて、押込風量が増加する程空気の
吹上速度も高まり、流動砂の運動も急速に激しく
なる。それに伴つて流動砂自体、流動床部分の壁
および流動床底面の吹上部等における摩耗が急速
に増大する。従つて、流動床の面積は押込風量か
ら決まつてしまう。
In addition, the flow of fluidized sand by forced air is due to the suspension of the fluidized sand based on the resistance to the blown up air. It gets intense. As a result, wear on the fluidized sand itself, the walls of the fluidized bed portion, the blowing portion of the bottom of the fluidized bed, etc. increases rapidly. Therefore, the area of the fluidized bed is determined by the forced air volume.

そこで、或る程度以上の規模の燃焼炉において
は、燃焼用空気の全量を押込送風機による押込空
気として供給することはせず、その一部を別の風
圧も100〜300mmAg程度の送風機で炉のフリーボ
ード部に二次空気として供給することによつて、
所要の動力と炉床面積とを減少することを図つて
いる。その際、フリーボード部にどのように二次
空気を吹込むかによつてフリーボード部における
燃焼状態が変化し、排ガス中の窒素酸化物の濃度
や流動床の温度に大きく影響することが知られて
いる。
Therefore, in combustion furnaces of a certain size or more, the entire amount of combustion air is not supplied as forced air by a forced air blower, but a part of it is supplied to the furnace with another blower with a wind pressure of about 100 to 300 mmAg. By supplying secondary air to the freeboard section,
The aim is to reduce the required power and hearth area. At that time, it is known that the combustion state in the freeboard section changes depending on how the secondary air is blown into the freeboard section, which greatly affects the concentration of nitrogen oxides in the exhaust gas and the temperature of the fluidized bed. It is being

燃焼物が窒素分を多く含む場合や、高発熱量の
ものであるときには、いわゆる低空気比運転を行
なうのが普通である。これは二次空気の比率を特
に高めて押込空気の風量を抑え、流動床部におけ
る空気量を燃焼物の必要とする理論空気量の1.2
倍前後より少なくするもので、この場合には、二
次空気の吹込方法の影響は一層大きくなる。
When the combustion material contains a large amount of nitrogen or has a high calorific value, so-called low air ratio operation is usually performed. This is achieved by particularly increasing the ratio of secondary air and suppressing the amount of forced air, increasing the amount of air in the fluidized bed to 1.2 of the theoretical air amount required for combustibles.
In this case, the influence of the secondary air blowing method becomes even greater.

二次空気の吹込位置の影響をみるに、二次空気
を吹込む場合の吹込位置があまり流動床部に近い
と、流動砂が舞上ることによつてフリーボード部
から熱を回収していたのが、逆に吹込空気によつ
て熱を奪われることになり、そのため流動床部の
熱のバランスが悪化する。流動床燃焼炉において
は流動床の温度は即ち、流動床部における燃焼温
度であつて、燃焼状態に影響する重要なフアクタ
ーであり、それが低すぎるときは燃焼反応速度が
低下して熱のバランスをさらに悪化し、流動床温
度が下がり続けて遂には燃焼を維持できないこと
になる。従つて、流動床の温度は燃焼物によつて
も異なるが500℃以上、一般には600℃以上に保つ
必要があり、600℃以下になると、この熱バラン
スの悪化は、流動床温度を維持するための助燃の
必要性を生ずるに至る。
Looking at the effect of the blowing position of secondary air, it was found that if the blowing position when blowing secondary air was too close to the fluidized bed section, heat would be recovered from the freeboard section due to fluidized sand flying up. However, heat is taken away by the blown air, which deteriorates the heat balance in the fluidized bed. In a fluidized bed combustion furnace, the temperature of the fluidized bed is the combustion temperature in the fluidized bed section, and is an important factor that affects the combustion state.If it is too low, the combustion reaction rate will decrease and the heat balance will be affected. This worsens and the temperature of the fluidized bed continues to drop, eventually making it impossible to maintain combustion. Therefore, although the temperature of the fluidized bed varies depending on the combustion material, it is necessary to maintain it at 500°C or higher, generally 600°C or higher.If the temperature falls below 600°C, this deterioration of the heat balance will cause the temperature of the fluidized bed to be maintained. This results in the need for auxiliary combustion.

なお、流動床の温度が高すぎると、流動砂の強
度の低下による消耗や、燃焼物の種類によつては
流動砂の融着といつた事態を招くため、流動砂の
種類や焼却物に含まれる塩類などによつて異なる
が900℃、一般には800℃を超えることは避けなけ
ればならず、流動砂の温度は例えば都市ごみ焼却
炉は一般に600〜800℃の範囲に維持することが必
要である。
Note that if the temperature of the fluidized bed is too high, the strength of the fluidized sand decreases, leading to consumption, and depending on the type of combustible material, the fusion of the fluidized sand may occur. Although it varies depending on the salts contained, etc., it is generally necessary to avoid exceeding 800°C, and the temperature of fluidized sand, for example, in municipal waste incinerators, generally needs to be maintained in the range of 600 to 800°C. It is.

上記とは逆に、二次空気が、フリーボード部の
あまり上方の位置から水平に近い方向で吹込まれ
ると、十分燃焼空気として利用されないうちに排
ガスとして炉から排出されてしまう。
Contrary to the above, if secondary air is blown in from a position too high above the freeboard section in a nearly horizontal direction, it will be discharged from the furnace as exhaust gas before being sufficiently utilized as combustion air.

さらに、フリーボード部に形成される火炎近傍
の壁から直接火炎に向けて二次空気が吹込まれる
と、二次空気が高温に予熱されていない限り、二
次空気との直接の混合により燃焼ガスの温度が低
下してしまい、燃焼の促進とは逆の結果になつて
しまう。
Additionally, if secondary air is blown directly into the flame from the wall near the flame formed in the freeboard area, combustion will occur due to direct mixing with the secondary air, unless the secondary air is preheated to a high temperature. The temperature of the gas decreases, which results in the opposite of promoting combustion.

また、燃焼物に窒素分が多く含まれる場合、流
動床燃焼炉は低空気比運転を行なうことによつ
て、燃焼反応中に還元反応である脱硝反応を進行
させて排ガス中の窒素酸化物濃度を低下させるこ
とができる。しかしながら、流動床を出たガスに
直ぐ二次空気を供給すると、ガスの温度が低下し
て脱硝反応が中途で停止してしまつたり、逆に火
炎温度が上昇しすぎて、二次空気の酸素により窒
素酸化物が生成する恐れもあつた。
In addition, when the combustion material contains a large amount of nitrogen, the fluidized bed combustion furnace operates at a low air ratio to promote the denitrification reaction, which is a reduction reaction, during the combustion reaction, reducing the concentration of nitrogen oxides in the exhaust gas. can be lowered. However, if secondary air is supplied immediately to the gas leaving the fluidized bed, the gas temperature may drop and the denitrification reaction may stop midway, or conversely, the flame temperature may rise too much and the secondary air There was also a risk that nitrogen oxides would be generated due to oxygen.

さらに、低空気比運転においては、どうしても
多くの未燃焼分がフリーボード部に供給されるた
め、フリーボード部での燃焼が効果的に行なわれ
ないと、未燃焼分がそのまま排出されることにな
り、公害防止上でも問題であり、また熱交換器や
ボイラ等により燃焼熱を回収するようにした設備
の場合には、排出した未燃焼分だけエネルギの利
用ができないことになり、効率の低下は避けられ
なかつた。そのため、低空気比運転とはいいなが
ら、実際には理論空気量程度の空気量を押込空気
として供給せざるを得ず、このため折角の流動床
焼却炉の燃焼速度が大きいという特徴を生かしき
れずに、流動床面積は大となる欠点があつた。
Furthermore, in low air ratio operation, a large amount of unburned matter is inevitably supplied to the freeboard section, so if combustion in the freeboard section is not carried out effectively, the unburned matter will be exhausted as is. This is also a problem in terms of pollution prevention, and in the case of equipment that uses heat exchangers or boilers to recover combustion heat, the energy that is emitted and unburned cannot be used, resulting in a decrease in efficiency. was unavoidable. Therefore, although it is said to be a low air ratio operation, in reality, it is necessary to supply an air amount equivalent to the theoretical air amount as forced air, which means that the fluidized bed incinerator's characteristic of high combustion speed cannot be fully utilized. However, the disadvantage was that the area of the fluidized bed was large.

[発明が解決しようとする問題点] 本発明は、従来のものにおける上記の如き問題
点、即ち、二次空気の吹込位置や方向の影響によ
り焼却炉内の熱バランスの悪化を招き燃焼が阻害
されたり、二次空気が無駄に素通りしたり、窒素
酸化物濃度の低下が阻止されたりすること、或い
は、流動床形成用の押込空気量が過大となつて流
動床面積が燃焼負荷に対して過大となること、な
どの問題点を解決する流動床焼却を提供すること
を目的とするものである。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems in conventional systems, namely, the influence of the blowing position and direction of secondary air causes deterioration of the heat balance in the incinerator and inhibits combustion. secondary air may pass through unnecessarily, or the reduction in nitrogen oxide concentration may be prevented, or the amount of forced air for fluidized bed formation may be too large, causing the fluidized bed area to exceed the combustion load. The purpose of the present invention is to provide fluidized bed incineration that solves problems such as excessive waste.

[問題点を解決するための手段] 本発明は、下から通ガス面積の狭い流動床部2
と通ガス面積が徐々に拡大するスロート部3及び
通ガス面積が広いフリーボード部4とを順次持つ
た焼却炉1であつて、前記流動床部2の底面5を
流動床形成用空気の吹出部とし、流動床に対向す
るフリーボード部4の炉頂壁6の中央に燃焼物投
入口7を備えた流動床焼却炉において、前記燃焼
物投入口7の周囲に二次空気吹込ノズル8を鉛直
下方に向けて設置して、かつ炉頂壁面に開口した
状態に設けて、前記フリーボード部4に中央部が
下降流で炉壁周辺部が上昇流となる鉛直方向回流
を前記空気吹出部の空気と二次空気吹込ノズルか
らの空気とで形成したことを特徴とする流動床焼
却炉である。
[Means for solving the problems] The present invention provides a fluidized bed section 2 with a narrow gas passage area from below.
The incinerator 1 has a throat part 3 whose gas passage area gradually increases and a freeboard part 4 whose gas passage area is wide. In a fluidized bed incinerator equipped with a combustible material inlet 7 at the center of the furnace top wall 6 of the freeboard section 4 facing the fluidized bed, a secondary air blowing nozzle 8 is provided around the combustible material inlet 7. The air blowing section is installed facing vertically downward and is open to the top wall of the furnace, so that the freeboard section 4 is provided with a vertical recirculation flow in which the central part is a downward flow and the peripheral part of the furnace wall is an upward flow. This is a fluidized bed incinerator, characterized in that it is formed by air from a secondary air blowing nozzle and air from a secondary air blowing nozzle.

[実施例] 以下図面に示す実施例に基づいて本発明を説明
する。
[Example] The present invention will be described below based on an example shown in the drawings.

第1図はボイラ化壁を備えたフリーボード部を
有する単純な型式の流動床燃焼炉である第1の実
施例を示す。
FIG. 1 shows a first embodiment of a simple type fluidized bed combustion furnace with a freeboard section with boiler walls.

燃焼炉1は下から通ガス面積の狭い流動床部
2、通ガス面積が徐々に拡大するスロート部3お
よび通ガス面積が広いフリーボード部4の三部分
に大別することができる。流動床部2の底面5は
下方から押込まれる流動床形成用空気の吹出部と
なつており、その上方の浮遊化した流動砂が流動
床部2を形成している。スロート部3はフリーボ
ード部4と流動床部2の中間域であつて、流動砂
は安定した浮動状態でなく流動床部から上昇する
流動砂とフリーボード部4から落下する流動砂と
が激しく交錯し、流動砂がちゆう密に存在する区
域である。フリーボード部4は、流動床部2から
スロート部3を通つて上昇した流動砂が稀薄な区
域である。フリーボード部4の炉頂部の頂壁6
の、流動床中央部の鉛直上方に当る部分には燃焼
物投入口7が設けられ、その付近の周囲に二次空
気吹込ノズル8が鉛直下方に向けて設置されてい
る。また頂壁6の隅に形成された突出部には、燃
焼排ガスノズル9が設けられている。フリーボー
ド部4の下部から燃焼物投入口7、吹込ノズル8
および排ガスノズル9を除く頂壁6に至るまでの
炉の内壁は、水管の設置などにより、いわゆるボ
イラ化壁10として構成されている。
The combustion furnace 1 can be roughly divided into three parts, from the bottom: a fluidized bed part 2 with a narrow gas passing area, a throat part 3 with a gradually increasing gas passing area, and a freeboard part 4 with a wide gas passing area. The bottom surface 5 of the fluidized bed section 2 serves as a blowout section for the air for forming the fluidized bed pushed in from below, and the suspended fluidized sand above the bottom surface 5 forms the fluidized bed section 2. The throat part 3 is an intermediate area between the freeboard part 4 and the fluidized bed part 2, and the fluidized sand is not in a stable floating state, but the fluidized sand rising from the fluidized bed part and the fluidized sand falling from the freeboard part 4 are violently mixed. This is an area where fluid sand is densely distributed. The freeboard section 4 is an area where the fluidized sand that has risen from the fluidized bed section 2 through the throat section 3 is thin. Top wall 6 of the furnace top of the freeboard section 4
A combustion material inlet 7 is provided in a portion corresponding to the vertically upper portion of the central portion of the fluidized bed, and a secondary air blowing nozzle 8 is installed around the inlet 7 facing vertically downward. Furthermore, a combustion exhaust gas nozzle 9 is provided in a protrusion formed at a corner of the top wall 6. From the bottom of the freeboard part 4, there is a combustion material inlet 7 and a blowing nozzle 8.
The inner wall of the furnace up to the top wall 6 excluding the exhaust gas nozzle 9 is configured as a so-called boiler wall 10 by installing water pipes and the like.

次に第1実施例の作用を説明する。 Next, the operation of the first embodiment will be explained.

流動床部2においては、底面5から流動床用空
気が吹込まれ、それにより流動砂は浮遊状態とな
つている。燃焼物投入口7から投入された燃焼物
は、流動床の中央部に落下する。そこで燃焼物は
流動砂や流動床内のガスによつて加熱され、水分
の蒸発による水蒸気や、燃焼または熱分解による
ガスを発生し、燃焼物自体ガスや流動砂との衝突
により、流動床内に分散する。また、流動床部を
上昇するガスは、それら燃焼物や燃焼物から発生
するガスなどの作用により側方に偏向されて炉壁
に沿う上昇流となり、この上昇流を補う形で炉中
央部には下降流が形成される。そして頂壁6の中
央部に上記下降流を助勢するように吹込ノズル8
から二次空気がほぼ垂直下方に向けて吹込まれる
ため、フリーボード部4には、中央部が下降流で
炉壁に沿う周辺部が上昇流となる鉛直方向回流が
形成される。そこで、投入口7から投入された燃
焼物は効率よく流動床に到達する。
In the fluidized bed section 2, fluidized bed air is blown from the bottom 5, so that the fluidized sand is in a suspended state. The combustible material introduced from the combustible material inlet 7 falls into the center of the fluidized bed. There, the combustible material is heated by the fluidized sand and the gas in the fluidized bed, generating steam due to evaporation of water and gas due to combustion or thermal decomposition. dispersed into In addition, the gas rising in the fluidized bed is deflected to the side by the combustion materials and the gases generated from the combustion materials, creating an upward flow along the furnace wall. A downward flow is formed. Then, a blowing nozzle 8 is installed at the center of the top wall 6 so as to assist the above-mentioned downward flow.
Since the secondary air is blown almost vertically downward, a vertical circulation is formed in the freeboard section 4, with a downward flow in the center and an upward flow in the peripheral part along the furnace wall. Therefore, the combustible material inputted from the input port 7 efficiently reaches the fluidized bed.

また吹込まれた二次空気は、燃焼がほぼ完了し
たガスと混合し、下降中さらに輻射熱をうけるな
どして十分昇温された後、スロート部3の近傍で
流動床部2から上昇してきた未燃物を多く含むガ
スと衝突するため、衝突後直ちに火炎を形成して
効果的に未燃分の燃焼を行なうことができる。し
かも、燃焼後のガスと予混合されているため、酸
素濃度は比較的低く、火炎部の温度上昇は比較的
小さいために火炎部での窒素酸化物の生成が抑制
される効果もある。又、そこで火炎の位置はスロ
ート部3近傍となり、躍動する流動砂を介して効
率的に流動床を加熱すると共に、輻射熱により下
方の流動床を直接加熱することになる。従つて、
流動床内で燃焼物が燃焼する割合、即ち燃焼率が
低くフリーボード部に排出する未燃分が多い場合
でも、熱収支は良好となる。しかも、流動床2内
での燃焼率が低下すれば、それを補なう形でフリ
ーボード部4における火炎が一層増強され、その
火炎による加熱量が増大するため、流動床の温度
は高く、かつ安定したものとなる。
In addition, the blown secondary air mixes with gas that has almost completed combustion, receives radiant heat during its descent, and is sufficiently heated, and then the air that rises from the fluidized bed section 2 near the throat section 3 Since it collides with gas containing a large amount of combustible material, a flame is formed immediately after the collision, and the unburnt material can be effectively combusted. Furthermore, since it is premixed with the gas after combustion, the oxygen concentration is relatively low, and the temperature rise in the flame section is relatively small, which has the effect of suppressing the formation of nitrogen oxides in the flame section. Further, the position of the flame is near the throat portion 3, and the fluidized bed is efficiently heated through the moving fluidized sand, and the fluidized bed below is directly heated by the radiant heat. Therefore,
Even when the rate of combustion of the combustible material in the fluidized bed, that is, the combustion rate, is low and the amount of unburned matter discharged to the freeboard portion is large, the heat balance is good. Moreover, if the combustion rate in the fluidized bed 2 decreases, the flame in the freeboard section 4 will be further strengthened to compensate for it, and the amount of heating by the flame will increase, so the temperature of the fluidized bed will be high. and stable.

本実施例によれば、火炎位置を低くすることが
できるので、フリーボード部における燃焼をその
低い部分でほぼ完了させることができ、従つて未
燃分の量に比較してフリーボード部4の容積を小
さくすることができる。その結果、燃焼量が同じ
であれば、下から吹込まれる流動床用空気用、即
ち空気比を下げて流動床面積を縮小し、かつフリ
ーボード容積も従来と同等或いはそれより小さい
全体にコンパクトな燃焼炉を得ることができる。
According to this embodiment, since the flame position can be lowered, combustion in the freeboard portion can be almost completed at that lower portion, and therefore, the amount of freeboard portion 4 is smaller than the amount of unburned material. The volume can be reduced. As a result, if the combustion amount is the same, the air for the fluidized bed that is blown in from below, that is, the air ratio is lowered, the fluidized bed area is reduced, and the freeboard volume is the same or smaller than the conventional one. It is possible to obtain a combustion furnace.

本実施例は、フリーボード部4の低い部分に火
炎を形成し、そこで燃焼をほぼ完了させてしまう
ことができるため、フリーボード部4において積
極的に外部に熱を取出しても燃焼または流動床温
度に対する悪影響のおそれが少ない。また燃焼済
の高温ガスが壁面に沿つて流れることにより、ボ
イラ化壁10の伝熱量が多くなるという副次的効
果も生ずる。従つて、廃棄物を燃焼してその熱を
回収し有効利用しようとする場合、本実施例の燃
焼炉は極めて有利である。
In this embodiment, the flame is formed in the lower part of the freeboard section 4, and the combustion can be almost completed there. There is little risk of adverse effects on temperature. Furthermore, as the burned high-temperature gas flows along the wall surface, a secondary effect occurs in that the amount of heat transferred through the boiler wall 10 increases. Therefore, the combustion furnace of this embodiment is extremely advantageous when burning waste and recovering and effectively utilizing the heat.

第2図は、スロート部3から上方フリーボード
部4までの部分の構造は第1実施例と同じである
が、スロート部3下方の流動床部2が特殊な構造
である本発明の第2実施例を示す。
FIG. 2 shows a second embodiment of the present invention in which the structure of the portion from the throat section 3 to the upper freeboard section 4 is the same as that of the first embodiment, but the fluidized bed section 2 below the throat section 3 has a special structure. An example is shown.

第2実施例において、流動床部2は移動層部1
1と流動層部12との二部分から構成され、炉壁
からオーバーハングさせたデフレクタ13を設け
るなどして、流動床部2内においても旋回流を発
生するようになつている。
In the second embodiment, the fluidized bed section 2 is the moving bed section 1.
1 and a fluidized bed section 12, and by providing a deflector 13 overhanging from the furnace wall, a swirling flow is generated even within the fluidized bed section 2.

移動層部11では、底面5からの吹込空気量を
流動砂が浮遊するのに必要な最小限のものとし、
流動砂は他律的移動状態に保持される。一方流動
層部12では底面5からの吹込空気量を多くし、
流動砂は激しく運動してスロート部3から躍り出
してフリーボード部4に舞い上る状態に保持され
る。
In the moving bed section 11, the amount of air blown from the bottom surface 5 is set to the minimum necessary for floating the fluidized sand,
The fluidized sand is kept in a state of heteronomous movement. On the other hand, in the fluidized bed section 12, the amount of air blown from the bottom 5 is increased,
The fluidized sand moves violently, jumps out from the throat part 3, and is held in a state where it flies up to the freeboard part 4.

移動層部11は燃焼物が落下してくる流動床の
中央部に形成され、その両側はデフレクタ13を
備えた流動層部12となつている。そして、移動
層部11に落下してきた燃焼物は、スロート部3
から落ちてきた或いは流動層上部から舞込んでき
た流動砂にすみやかに覆われ下降してゆく移動層
にひきずり込まれ、流動床部2に埋没してしま
う。一方、底部の流動層部12側では、流動砂が
激しく舞上つているため、移動層部11側流動砂
は流動層部12側の運動に引摺られ、図のような
旋回運動を行なう。それに伴つて供給燃焼物も分
散し、流動床全体に拡散する。
The moving bed section 11 is formed in the center of the fluidized bed where the combustion material falls, and the fluidized bed sections 12 are provided with deflectors 13 on both sides thereof. Then, the combustion material that has fallen into the moving layer section 11 is transported to the throat section 3.
They are quickly covered with fluidized sand that has fallen from the bed or flowed in from the upper part of the fluidized bed, and are dragged into the descending moving bed and buried in the fluidized bed section 2. On the other hand, on the fluidized bed section 12 side at the bottom, the fluidized sand is flying up violently, so the fluidized sand on the moving bed section 11 side is dragged by the movement on the fluidized bed section 12 side, and performs a swirling motion as shown in the figure. Along with this, the feed combustion material is also dispersed and diffused throughout the fluidized bed.

そのため、第1実施例よりも流動床面積が広い
場合でも燃焼物を特別な方法で供給することなし
に、良好な燃焼状態を得ることができる。
Therefore, even when the fluidized bed area is larger than in the first embodiment, a good combustion state can be obtained without using a special method to supply the combustion material.

流動床部2の炉壁上端には、内方に向つてオー
バーハング状に傾斜したデフレクタ13が設けら
れているため、下方から吹込まれた空気を含むガ
スは強い方向性を与えられながら流動床部から噴
出し、スロート部3を通過した後丁度反対側の壁
或いは側壁に衝突するように進行し、衝突後第1
実施例の場合と同様にその運動エネルギーは分散
して炉壁内面に沿う上昇流となる。この上昇流は
流動床部からの噴出がデフレクタ13によつて強
められているので、フリーボード部4における旋
回流は第1実施例の場合よりさらに強力である。
また上昇するガス流が強くかつ左右交差している
ことから、中央下降流との混合も良好で生じる火
炎が燃焼速度の大きく体積の大きな火炎となるた
め、流動砂との熱交換量や流動床の受熱効率も高
く、第1実施例より一層強い作用を奏する。
At the upper end of the furnace wall of the fluidized bed section 2, a deflector 13 is provided that slopes inward in an overhanging manner, so that the gas containing air blown in from below is given strong directionality and flows through the fluidized bed. After passing through the throat part 3, it advances so as to collide with the opposite wall or side wall, and after the collision, the first
As in the case of the embodiment, the kinetic energy is dispersed and becomes an upward flow along the inner surface of the furnace wall. Since the upward flow ejected from the fluidized bed section is strengthened by the deflector 13, the swirling flow in the freeboard section 4 is even stronger than in the first embodiment.
In addition, since the ascending gas flow is strong and intersects left and right, it mixes well with the central downward flow, resulting in a flame with a high burning rate and a large volume. The heat receiving efficiency is also high, and the effect is stronger than that of the first embodiment.

ボイラ化壁10は、第1および第2実施例を通
じて、炉壁近傍を上昇する燃焼ガス流れに加え
て、火炎からの輻射熱によつても加熱される。そ
のため、体積の大きい火炎により高い熱貫流係数
が得られる。また直接炉内において熱交換が行な
われるため、炉頂温度を抑えて水スプレーやダス
トが煙道に溶融付着を防止するための、過剰な二
次空気の吹込みなどによるガスの冷却が回避さ
れ、従つて熱回収の絶対量を増加することができ
る。このように伝熱面積が小さくても多量の熱回
収が可能となる。
In the first and second embodiments, the boiler wall 10 is heated not only by the flow of combustion gas rising near the furnace wall but also by radiant heat from the flame. Therefore, a high heat transmission coefficient can be obtained due to the flame having a large volume. In addition, since heat exchange occurs directly in the furnace, cooling of the gas by excessive secondary air blowing, etc., which suppresses the furnace top temperature and prevents water spray and dust from melting and adhering to the flue, is avoided. , thus the absolute amount of heat recovery can be increased. In this way, even if the heat transfer area is small, a large amount of heat can be recovered.

流動床の温度が800℃以上にもなると、それを
抑えるため流動床に直接水を注入することが従来
から行なわれてきたが、このような従来の方法で
は熱回収量が減少してしまう。これに対し、流動
床に対する空気の吹込量を減少させて燃焼率を下
げるようにすれば、本実施例の燃焼炉の場合フリ
ーボード部での未燃分の燃焼を確実に行なうこと
ができると共に火炎の効果を増大することができ
るので、熱回収量を低下させずにすむので有利で
ある。
When the temperature of the fluidized bed exceeds 800°C, water has traditionally been injected directly into the bed in order to suppress the temperature, but this conventional method reduces the amount of heat recovered. On the other hand, if the combustion rate is lowered by reducing the amount of air blown into the fluidized bed, in the case of the combustion furnace of this embodiment, it is possible to reliably burn the unburned matter in the freeboard part, and This is advantageous because the effectiveness of the flame can be increased without reducing the amount of heat recovery.

なお、第1および第2の実施例の燃焼炉は、水
平断面を矩形としても或いは円形としてもよい。
また、天井壁は必ずしも水平でなくてもよく、例
えば炉はボイラー化壁とせずフリーボード部が傾
斜し、そのままガス冷却室やボイラに接続する形
のものであつても中央の下降流とスロート部近傍
の状況は本質的に第1、2の実施例と同様であ
り、本発明は有効に適用される。又、特に第2の
実施例で巾が1〜2mと狭い流動床の場合、必ず
しも炉頂から燃焼物を供給する必要はなく、炉の
側壁中央から供給してもよい。
Note that the combustion furnaces of the first and second embodiments may have a horizontal cross section that is rectangular or circular.
In addition, the ceiling wall does not necessarily have to be horizontal; for example, even if the furnace does not have a boiler wall and the freeboard part is slanted and is connected directly to the gas cooling room or boiler, the central downward flow and throat The situation around the part is essentially the same as in the first and second embodiments, and the present invention can be effectively applied. Further, particularly in the case of the fluidized bed having a narrow width of 1 to 2 m in the second embodiment, it is not necessarily necessary to supply the combustion material from the top of the furnace, but it may be supplied from the center of the side wall of the furnace.

[発明の効果] 本発明は、燃焼物投入口の周囲に二次空気吹込
ノズルを鉛直下方に向けて設置して、かつ炉頂壁
面に開口した状態に設けて、前記フリーボード部
に中央部が下降流で炉壁周辺部が上昇流となる鉛
直方向回流を前記空気吹出部の空気と二次空気吹
込ノズルからの空気とで形成したことにより、フ
リーボード部の低い部分に火炎を形成し、そこで
燃焼をほぼ完了させることができ、フリーボード
部において積極的に外部に熱を取出しても燃焼ま
たは流動床温度に対する悪影響がなく、しかも燃
焼済の高温ガスが壁面に沿つて流れるので炉周壁
のボイラ化壁の伝熱量は多くなり、廃棄物を燃焼
する際に熱回収による有効利用が大幅に高められ
る、即ち、二次空気が吹込口から流動床に達する
までに十分予熱昇温された後に未燃分を含むガス
と衝突して直ちにスロート部近傍において火炎を
形成するため、燃焼中のガスを冷却して熱バラン
スを悪化させることなしに燃焼を促進することが
でき、また流動床用空気量を少なくして流動床面
積を小さくすることが可能となり、コンパクトな
燃焼炉を得ることができる。
[Effects of the Invention] The present invention provides a secondary air blowing nozzle that is installed around the combustion material inlet so as to face vertically downward and open to the top wall of the furnace. The air from the air blowing section and the air from the secondary air blowing nozzle form a vertical circular flow in which the air flows downward and the area around the furnace wall rises, thereby forming a flame in the low part of the freeboard section. There, combustion can be almost completed, and even if heat is actively taken out to the outside in the freeboard section, there will be no adverse effect on the combustion or the temperature of the fluidized bed.Furthermore, since the burned high-temperature gas flows along the wall surface, the surrounding wall of the furnace The amount of heat transferred through the boiler walls of the boiler is increased, and the effective use of heat recovery during waste combustion is greatly increased, i.e., the secondary air is sufficiently preheated and heated before it reaches the fluidized bed from the inlet. It later collides with gas containing unburned content and immediately forms a flame near the throat, so combustion can be accelerated without cooling the burning gas and worsening the heat balance. It becomes possible to reduce the amount of air and the area of the fluidized bed, making it possible to obtain a compact combustion furnace.

例えば、燃焼物の低位発熱量が3000Kcal/Kg
もあれば、流動床底面よりの空気吹込量は余熱な
しに理論空気量の半分程度で間に合い、従つて流
動床面積を半分程度にすることが可能で、そのた
めフリーボード部容積の増加なしでも燃焼上問題
は生じない。しかもボイラー化壁とすれば、小さ
な伝熱面積で大きい熱回収が可能であり、熱貫流
係数を平均80Kcal/m2時℃程度まで上げること
ができる。
For example, the lower heating value of the combustion material is 3000Kcal/Kg
If there is, the amount of air blown from the bottom of the fluidized bed can be reduced to about half the theoretical air amount without residual heat, and the area of the fluidized bed can therefore be reduced to about half, so combustion can be achieved without increasing the freeboard volume. No problems arise. Moreover, if the boiler wall is used, it is possible to recover a large amount of heat with a small heat transfer area, and the heat transmission coefficient can be raised to an average of 80 Kcal/m 2 hours Celsius.

本発明により流動床燃焼炉はその性能を大幅に
改善され、特に廃棄物を焼却してその燃焼熱を回
収利用する炉においてその改善が顕著である。
According to the present invention, the performance of a fluidized bed combustion furnace has been greatly improved, and the improvement is particularly remarkable in a furnace that incinerates waste and recovers and utilizes the combustion heat.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、本発明のそれぞれ第1
および第2実施例の縦断側面図である。 1……燃焼炉、2……流動床部、3……スロー
ト部、4……フリーボード部、5……底面、6…
…頂壁、7……燃焼物投入口、8……吹込ノズ
ル、9……排ガスノズル、10……ボイラ化壁、
11……移動層部、12……流動層部、13……
デフレクタ。
FIG. 1 and FIG. 2 illustrate the first embodiment of the present invention, respectively.
and FIG. 7 is a vertical side view of the second embodiment. DESCRIPTION OF SYMBOLS 1... Combustion furnace, 2... Fluidized bed part, 3... Throat part, 4... Freeboard part, 5... Bottom surface, 6...
...Top wall, 7...Combustible material inlet, 8...Blowing nozzle, 9...Exhaust gas nozzle, 10...Boiler conversion wall,
11...Moving bed section, 12...Fluidized bed section, 13...
deflector.

Claims (1)

【特許請求の範囲】[Claims] 1 下から通ガス面積の狭い流動床部2と通ガス
面積が徐々に拡大するスロート部3及び通ガス面
積が広いフリーボード部4とを順次持つた焼却炉
1であつて、前記流動床部2の底面5を流動床形
成用空気の吹出部とし、流動床に対向するフリー
ボード部4の炉頂壁6の中央に燃焼物投入口7を
備えた流動床焼却炉において、前記燃焼物投入口
7の周囲に二次空気吹込ノズル8を鉛直下方に向
けて設置して、かつ炉頂壁面に開口した状態に設
けて、前記フリーボード部4に中央部が下降流で
炉壁周辺部が上昇流となる鉛直方向回流を前記空
気吹出部の空気と二次空気吹込ノズルからの空気
とで形成したことを特徴とする流動床焼却炉。
1. An incinerator 1 having a fluidized bed part 2 with a narrow gas passing area, a throat part 3 with a gradually expanding gas passing area, and a freeboard part 4 with a wide gas passing area sequentially from the bottom, the fluidized bed part In a fluidized bed incinerator, the bottom surface 5 of 2 is used as an air blowing part for forming a fluidized bed, and a combustible material inlet 7 is provided at the center of the furnace top wall 6 of the freeboard section 4 facing the fluidized bed. A secondary air blowing nozzle 8 is installed around the port 7 so as to face vertically downward and open to the top wall of the furnace, so that the freeboard part 4 has a downward flow in the center and a flow in the peripheral part of the furnace wall. 1. A fluidized bed incinerator characterized in that a vertical recirculation flow, which is an upward flow, is formed by air from the air blowing section and air from a secondary air blowing nozzle.
JP14145484A 1984-07-10 1984-07-10 Fluidized bed incinerator Granted JPS6122114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14145484A JPS6122114A (en) 1984-07-10 1984-07-10 Fluidized bed incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14145484A JPS6122114A (en) 1984-07-10 1984-07-10 Fluidized bed incinerator

Publications (2)

Publication Number Publication Date
JPS6122114A JPS6122114A (en) 1986-01-30
JPH0359327B2 true JPH0359327B2 (en) 1991-09-10

Family

ID=15292280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14145484A Granted JPS6122114A (en) 1984-07-10 1984-07-10 Fluidized bed incinerator

Country Status (1)

Country Link
JP (1) JPS6122114A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579070A (en) * 1985-03-01 1986-04-01 The M. W. Kellogg Company Reducing mode circulating fluid bed combustion
JP3037033B2 (en) * 1993-07-13 2000-04-24 日本電気株式会社 Dot impact printer device
CN1318801C (en) * 2004-12-30 2007-05-30 云南锡业集团有限责任公司 Secondary burning method and device in top blow sinking smelting process
CN104848230B (en) * 2015-05-31 2017-01-25 北京四维天拓技术有限公司 Cyclone incinerator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547779A (en) * 1977-06-20 1979-01-20 Energy Products Of Idaho Cineration pyrolytic gasifying system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547779A (en) * 1977-06-20 1979-01-20 Energy Products Of Idaho Cineration pyrolytic gasifying system

Also Published As

Publication number Publication date
JPS6122114A (en) 1986-01-30

Similar Documents

Publication Publication Date Title
JP4479655B2 (en) Grate-type waste incinerator and its combustion control method
US4823740A (en) Thermal reactor
JP2004205161A (en) Solid fuel boiler and boiler combustion method
CN106352343A (en) Gasifying incinerator applicable to household garbage with high heat value
US5127345A (en) Combustion apparatus and combustion control method therefor
CN111981473A (en) Slag burnout system and method of biomass boiler
JPH0359327B2 (en)
US5915309A (en) Fluidized bed incinerator
JP6887917B2 (en) Incinerator plant
CN100441952C (en) Composite circulating fluidized bed system for high performance clean burning of urban domestic garbage
JP3989333B2 (en) Operation method of waste incinerator
JPH05180413A (en) Fluidized bed combustion boilers
JP2642568B2 (en) Secondary combustion method of refuse incinerator
JP2005265410A (en) Waste incinerator
CN112503535A (en) Low NOXPollutant garbage incinerator
EP3054214B1 (en) Method for feeding air to a fluidized bed boiler, a fluidized bed boiler and fuel feeding means for a fluidized bed boiler
JPH08254301A (en) Furnace wall structure for fluidized bed boiler
EP1500875A1 (en) Method of operating waste incinerator and waste incinerator
JP2001108220A (en) Waste incinerator
KR890004814B1 (en) Fluidized bed incinerating device
JP2014211243A (en) Combustion control system for refuse incinerator
JP3030016B2 (en) Operating method of fluidized bed incinerator and its incinerator
JP2941785B1 (en) Operating method of fluidized bed incinerator and its incinerator
KR100686441B1 (en) Temperature Control apparatus and Control method at the combustor exit in a circulating fluidized bed combustion system
JP3995237B2 (en) Operation method of waste incinerator