JPH05180413A - Fluidized bed combustion boilers - Google Patents

Fluidized bed combustion boilers

Info

Publication number
JPH05180413A
JPH05180413A JP34582191A JP34582191A JPH05180413A JP H05180413 A JPH05180413 A JP H05180413A JP 34582191 A JP34582191 A JP 34582191A JP 34582191 A JP34582191 A JP 34582191A JP H05180413 A JPH05180413 A JP H05180413A
Authority
JP
Japan
Prior art keywords
fluidized bed
combustion
furnace
heat transfer
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34582191A
Other languages
Japanese (ja)
Other versions
JP3095499B2 (en
Inventor
Yoshihisa Arakawa
善久 荒川
Toshio Haneda
壽夫 羽田
Hiroshi Takatsuka
汎 高塚
Yukihisa Fujima
幸久 藤間
Kenji Tagashira
田頭  健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP03345821A priority Critical patent/JP3095499B2/en
Publication of JPH05180413A publication Critical patent/JPH05180413A/en
Application granted granted Critical
Publication of JP3095499B2 publication Critical patent/JP3095499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fluidized bed boiler which is capable of inhibiting the generation of NOx and SOx and controlling the temperature of a fluidized bed. CONSTITUTION:A denitration area is formed according to each function in a gasification primary combustion area 22, a secondary denitration combustion area 23, a third high temperature perfect combustion area 24 and a furnace upper part outlet 25 laid out in a furnace 21 having a fluidized bed 28 which serves as a foam type fluidized bed where all the areas are directed from the lover part of the furnace at the upper part of the furnace. For example, coal, oil, gas and other various kinds of wastes are used as a fuel 26 under the optimum condition of each process while Line stone or the like is used as a desulfurizing agent 27, which makes it possible to carry out excellent forming type fluidized bed combustion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原動機製品の流動層方式
の流動層燃焼ボイラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed combustion boiler of a fluidized bed type for a prime mover product.

【0002】[0002]

【従来の技術】気泡型流動層燃焼では、従来、空気の多
段投入によりNOx発生の抑制は可能であったが、脱硫
は層内で行なわれるため、NOx,SOx両者を抑制す
る事が困難であった。また、流動層温度の制御機構もな
く、燃料、ボイラ負荷等の変化に対応する事も困難であ
った。
2. Description of the Related Art In bubble-type fluidized bed combustion, conventionally, it was possible to suppress the generation of NOx by introducing air in multiple stages, but since desulfurization is carried out in the bed, it is difficult to suppress both NOx and SOx. there were. Further, there was no control mechanism for the fluidized bed temperature, and it was difficult to cope with changes in fuel, boiler load, etc.

【0003】図2に従来の流動層ボイラの一実施例を示
す。同図に示すように、火炉11下部には1次空気12
が投入され、流動層13が形成される。燃料としての石
炭14は流動層13内に投入され、脱硫剤(石灰石等)
15とともに層内で燃焼、脱硫反応が進行する。
FIG. 2 shows an embodiment of a conventional fluidized bed boiler. As shown in FIG.
Is charged and the fluidized bed 13 is formed. Coal 14 as fuel is put into the fluidized bed 13 and desulfurization agent (limestone etc.)
Combustion and desulfurization reaction proceed in the layer with 15.

【0004】火炉11の中間点より2次空気16を投入
するが、NOx抑制のためこの量を増加させると流動層
内の空気比が低下し脱硫反応が起きにくくなるという欠
点がある。火炉11を出た燃焼ガスは、火炉上部伝熱面
17、対流伝熱面18で冷却され、集塵装置を経て大気
へ放出される。一方、ガス中から分離された未燃分は、
未燃灰リサイクル19を経て流動層内へ投入される。
尚、流動層13の内部には、層温度を制御するために層
内管20が設置されている。
The secondary air 16 is introduced from the middle point of the furnace 11. However, if this amount is increased to suppress NOx, the air ratio in the fluidized bed is lowered and the desulfurization reaction is difficult to occur. The combustion gas exiting the furnace 11 is cooled by the furnace upper heat transfer surface 17 and the convection heat transfer surface 18, and is discharged to the atmosphere through the dust collector. On the other hand, the unburned matter separated from the gas is
It is put into the fluidized bed through the unburned ash recycling 19.
Inside the fluidized bed 13, an in-bed tube 20 is installed to control the bed temperature.

【0005】[0005]

【発明が解決しようとする課題】ところで、気泡型流動
層燃焼方式においては、二段燃焼はNOx低減手段とし
て従来から採用されているが、二段燃焼を行なうと、流
動層内の空気比が低下し、酸化雰囲気下での反応である
石灰石による脱硫反応が防げられるという問題がある。
また、流動層燃焼は、一般に800〜900℃の低温燃
焼であるため、N2Oの発生量が多く、ダイオキシンの
分解にも充分な温度となっていないという不具合があ
る。
By the way, in the bubble type fluidized bed combustion system, the two-stage combustion is conventionally adopted as the NOx reducing means. However, when the two-stage combustion is performed, the air ratio in the fluidized bed is increased. There is a problem that the desulfurization reaction due to limestone, which is a reaction in an oxidizing atmosphere, is reduced.
Further, since fluidized bed combustion is generally low temperature combustion at 800 to 900 ° C., there is a problem that a large amount of N 2 O is generated and the temperature is not sufficient for decomposition of dioxin.

【0006】本発明は上記問題に鑑み、NOx,SOx
の発生を抑制しつつ流動層温度の制御を可能とした流動
層燃焼ボイラを提供することを目的とする。
In view of the above problems, the present invention is NOx, SOx
An object of the present invention is to provide a fluidized bed combustion boiler capable of controlling the temperature of the fluidized bed while suppressing the occurrence of

【0007】[0007]

【課題を解決するための手段】前記目的を達成する本発
明に係る流動層燃焼ボイラの構成は、石油,油,ガス,
各種廃棄物等を燃料とし、石灰石等を脱硫剤として使用
する流動層燃焼方式のボイラであって、火炉下部に気泡
型流動層となる濃厚層を有し、該濃厚層の空気比を理論
燃焼空気量の0.5〜0.8の還元雰囲気を形成したガ
ス化1次燃焼域と、上記層上に2次空気投入口を設け、
2次空気投入後の空気比を理論燃焼空気量の0.8〜
1.0としてNOx分解領域を形成した2次脱硝燃焼域
と、該2次脱硝燃焼域の上部に3次空気投入口を設け、
未燃ガス燃焼による雰囲気温度の上昇によるN2O,ダ
イオキシン分解領域を形成した3次高温完全燃焼域と、
火炉出口部に伝熱管のガス流速が下部燃焼炉の空塔速度
よりも早くなる伝熱管群を設置し、伝熱管群出口の空塔
速度を下部燃焼炉の空塔速度よりも遅くして伝熱管群上
部に粒子の滞留する領域を形成すると共に、伝熱面積を
適宜選定して雰囲気ガス温度800℃〜900℃の脱硫
反応域を形成した脱硫域とを具備してなることを特徴と
する。
The structure of the fluidized bed combustion boiler according to the present invention which achieves the above-mentioned object is composed of oil, oil, gas,
A fluidized bed combustion type boiler that uses various wastes as fuel and uses limestone as a desulfurizing agent, and has a dense layer that becomes a bubble type fluidized bed at the bottom of the furnace, and the air ratio of the rich layer is theoretically burned. A gasification primary combustion zone in which a reducing atmosphere having an air content of 0.5 to 0.8 is formed, and a secondary air inlet is provided on the layer,
The air ratio after the secondary air is charged is 0.8 to the theoretical combustion air amount.
A secondary denitration combustion region in which a NOx decomposition region is formed as 1.0, and a tertiary air inlet is provided above the secondary denitration combustion region,
A third high temperature complete combustion region in which N 2 O and dioxin decomposition regions are formed due to an increase in atmospheric temperature due to unburned gas combustion
A heat transfer tube group is installed at the exit of the furnace so that the gas flow velocity of the heat transfer tube is higher than the superficial velocity of the lower combustion furnace, and the superficial velocity at the exit of the heat transfer tube group is set to be slower than the superficial velocity of the lower combustion furnace. It is characterized in that it comprises a desulfurization zone in which a region where particles are retained is formed in the upper part of the heat tube group and a desulfurization reaction zone having an atmospheric gas temperature of 800 ° C to 900 ° C is formed by appropriately selecting a heat transfer area. .

【0008】[0008]

【作用】前記構成において、気泡流動層域では、理論燃
焼用空気の0.5〜0.8倍の1次空気を投入し、還元雰囲
気でガス化燃焼を行なう。流動層上方に導かれた未燃ガ
スは、層上に投入された2次空気で一部燃焼し、空気比
0.8〜1.0の高温還元雰囲気を形成し、NOxの還
元分解反応が進行する。2次空気投入後の残留未燃ガス
は、3次空気投入により燃焼し、高温酸化雰囲気を形成
し、N2O、ダイオキシンの分解を促進する。炉出口の
燃焼ガスは酸素を含んではいるが高温状態であり、脱硫
反応に適した温度まで冷却する必要が有る。炉出口に設
置した冷却面は、このガスを冷却する目的と、燃焼炉と
脱硫部とを分割する役割を持っている。炉下部より上昇
してきた石灰石を含む微粒子は、炉出口冷却面を通過し
て炉上部の脱硫域に達する。冷却面内のガス速度は、炉
下部より早くなる様寸法が決められており、冷却面出口
のガス速度は炉下部より遅くなる様寸法が決められてい
るため、炉を上昇してきた粒子の一部は冷却面上部で落
下、上昇をくり返す。そして、炉上部に石灰石を含む濃
厚な微粒子の群が形成され、この部分の温度雰囲気を8
00〜850℃に維持する事により、脱硫反応を促進す
る事が出来る。
In the aforesaid construction, in the bubbling fluidized bed region, 0.5 to 0.8 times as much primary air as theoretical combustion air is introduced and gasification combustion is carried out in a reducing atmosphere. The unburned gas guided to the upper side of the fluidized bed is partially burned by the secondary air introduced into the bed to form a high-temperature reducing atmosphere with an air ratio of 0.8 to 1.0, and the NOx reduction decomposition reaction is performed. proceed. The residual unburned gas after the introduction of the secondary air is burned by the introduction of the tertiary air to form a high temperature oxidizing atmosphere, and promotes the decomposition of N 2 O and dioxin. The combustion gas at the furnace outlet contains oxygen, but is in a high temperature state, and needs to be cooled to a temperature suitable for the desulfurization reaction. The cooling surface installed at the furnace outlet has the purpose of cooling this gas and the role of dividing the combustion furnace and the desulfurization section. The fine particles containing limestone that have risen from the lower part of the furnace pass through the cooling surface of the furnace outlet and reach the desulfurization zone in the upper part of the furnace. The gas velocity in the cooling surface is dimensioned to be faster than that in the lower part of the furnace, and the gas velocity at the outlet of the cooling surface is dimensioned to be slower than that in the lower part of the furnace. The part repeatedly falls and rises above the cooling surface. Then, a group of dense fine particles containing limestone is formed in the upper part of the furnace, and the temperature atmosphere in this part is adjusted to 8
By maintaining the temperature at 00 to 850 ° C, the desulfurization reaction can be promoted.

【0009】[0009]

【実施例】以下、本発明に係る流動層ボイラの好適な一
実施例を図面を参照して説明する。図1は本実施例に係
る流動層ボイラの概念図を示す。同図に示すように、気
泡型流動層となる濃厚層を有する火炉21内には、火炉
下部から火炉上部へ向ってガス化1次燃焼域22、2次
脱硝燃焼域23、3次高温完全燃焼域24及び火炉上部
出口に脱硫域25を各々機能別に形成してなり、例えば
石炭,油,ガス,各種廃棄物等を燃料26とし石灰石等
を脱硫剤27として使用することで気泡型流動層燃焼を
行っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a fluidized bed boiler according to the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram of a fluidized bed boiler according to this embodiment. As shown in the figure, in the furnace 21 having a dense layer that is a bubble type fluidized bed, the gasification primary combustion zone 22, the secondary denitration combustion zone 23, and the tertiary high temperature complete combustion zone from the lower furnace to the upper furnace. A combustion zone 24 and a desulfurization zone 25 are formed at the upper outlet of the furnace for each function. For example, coal, oil, gas, various wastes, etc. are used as fuel 26, and limestone etc. are used as desulfurization agent 27. Burning.

【0010】ガス化1次燃焼域22は、濃厚層としての
気泡型の流動層28が形成され、投入された燃料例えば
石炭26はここで導入される1次空気29によって燃焼
される。ここで、導入する1次空気29の量は濃厚層の
空気比を理論燃焼空気量の0.5〜0.8としており、
還元雰囲気を形成し、上記石炭26は還元燃焼となる。
低NOx燃焼を行なうには、この空気比の範囲が望まし
い。
In the gasification primary combustion zone 22, a bubble type fluidized bed 28 is formed as a rich layer, and the injected fuel such as coal 26 is combusted by the primary air 29 introduced therein. Here, the amount of the primary air 29 to be introduced is such that the air ratio of the rich layer is 0.5 to 0.8 of the theoretical combustion air amount,
A reducing atmosphere is formed, and the coal 26 undergoes reducing combustion.
This range of air ratio is desirable for low NOx combustion.

【0011】2次脱硝燃焼域23は、上記流動層28の
上方から導入する2次空気投入口を設け、投入後の空気
比が理論燃焼空気量の0.8〜1.0となる2次空気3
0を投入し、流動層28から上昇する未燃ガスの一部を
燃焼し、3次空気投入までの間に脱硝反応に最適な雰囲
気を形成している。
The secondary denitration combustion zone 23 is provided with a secondary air inlet which is introduced from above the fluidized bed 28, and the secondary air ratio after injection is 0.8 to 1.0 of the theoretical combustion air amount. Air 3
0 is charged, a part of the unburned gas rising from the fluidized bed 28 is burned, and an optimal atmosphere for the denitration reaction is formed until the tertiary air is charged.

【0012】3次高温完全燃焼域24は3次空気投入口
を設け、未燃ガス燃焼による雰囲気温度の上昇によるN
2O、ダイオキシンを、3次空気31の導入により火炉
上部伝熱面32までの間で高温の酸化雰囲気を形成し、
完全燃焼させている。
The tertiary high temperature complete combustion zone 24 is provided with a tertiary air injection port, and N due to an increase in atmospheric temperature due to unburned gas combustion.
2 O and dioxin form a high temperature oxidizing atmosphere between the furnace upper heat transfer surface 32 by introducing the tertiary air 31,
It is completely burned.

【0013】脱硫域25は火炉出口部近傍に設けられた
伝熱管群よりなる火炉上部伝熱面32を有し、伝熱管の
ガス流速が下部燃焼炉の空塔速度よりも早くすると共
に、伝熱管出口の空塔速度を下部燃焼炉の空塔速度より
も遅くすることで伝熱管群上部に粒子の滞留する領域を
形成している。すなわち、炉を上昇してきた粒子の一部
は冷却面上部で落下,上昇をくり返すこととなる。そし
て、伝熱面積を適宜選定することで脱硫反応に最適な雰
囲気ガス温度800〜900℃の脱硫反応域をサイクロ
ン33までの間に形成することとなる。
The desulfurization zone 25 has a furnace upper heat transfer surface 32 composed of a heat transfer tube group provided near the furnace outlet, and the gas flow velocity of the heat transfer tubes is made faster than the superficial velocity of the lower combustion furnace and By making the superficial velocity of the heat tube outlet slower than the superficial velocity of the lower combustion furnace, a region where particles are retained is formed in the upper part of the heat transfer tube group. In other words, some of the particles that have risen in the furnace will fall and rise repeatedly above the cooling surface. Then, by appropriately selecting the heat transfer area, the desulfurization reaction zone having the optimum atmospheric gas temperature of 800 to 900 ° C. for the desulfurization reaction is formed up to the cyclone 33.

【0014】よって流動層28から飛散した脱硫剤27
は火炉21、火炉上部伝熱面32を通過し火炉出口の脱
硫域25で減速され、濃度の高い脱硫雰囲気が形成さ
れ、SOxが脱硫剤に吸着される。
Therefore, the desulfurizing agent 27 scattered from the fluidized bed 28
Passes through the furnace 21 and the upper heat transfer surface 32 of the furnace and is decelerated in the desulfurization zone 25 at the outlet of the furnace to form a high-concentration desulfurization atmosphere, and SOx is adsorbed by the desulfurizing agent.

【0015】火炉出口の脱硫域25から飛散した粒子は
下端に循環粒子ホッパ34を備えたサイクロン33で捕
集され、当該循環粒子ホッパ34で貯えられ、次いで当
該循環粒子ホッパ34出口に設けられた循環粒子調整バ
ルブ35により循環流動層を制御し、流動層式熱交換器
流動用ガス36を導入する流動層式熱交換器37に導か
れる。
Particles scattered from the desulfurization zone 25 at the outlet of the furnace are collected by a cyclone 33 having a circulating particle hopper 34 at the lower end, stored in the circulating particle hopper 34, and then provided at the outlet of the circulating particle hopper 34. The circulating fluidized bed is controlled by the circulating particle adjusting valve 35, and the fluidized bed heat exchanger is introduced to the fluidized bed heat exchanger 37 for introducing the flowing gas 36.

【0016】流動層式熱交換器37の中には、層内管3
8が設置されており、循環灰を冷却後前記流動層28に
戻すことにより、燃焼温度の制御が可能となる。
Inside the fluidized bed heat exchanger 37, the inner tube 3
8 is installed, and the combustion temperature can be controlled by returning the circulating ash to the fluidized bed 28 after cooling.

【0017】また、サイクロン33の出口からのガス
は、対流伝熱面39を経て冷却後、集塵器、煙突へと導
かれている。これは特に燃料26として例えば廃棄等で
腐食性ガスを発生するものを使用する際、伝熱器の腐食
の防止に有効である。
The gas from the outlet of the cyclone 33 is guided to the dust collector and the chimney after cooling through the convection heat transfer surface 39. This is particularly effective in preventing corrosion of the heat exchanger when using as the fuel 26, for example, one that generates a corrosive gas when discarded.

【0018】[0018]

【発明の効果】以上、実施例と共に説明したように、本
発明に係る流動層燃焼ボイラは、燃料の燃焼過程をガス
化1次燃焼域、2次脱硝燃焼域、3次高温完全燃焼域及
び脱硫域というプロセスに分け、それぞれ最適な条件を
実現し、NOx,SOxの発生を抑制しつつ流動層温度
の制御を可能とするという効果を奏する。
As described above with reference to the embodiments, the fluidized bed combustion boiler according to the present invention is configured to convert the combustion process of fuel into the gasification primary combustion zone, secondary denitration combustion zone, tertiary high temperature complete combustion zone and The process is divided into a desulfurization zone, and optimum conditions are realized for each process, and it is possible to control the fluidized bed temperature while suppressing the generation of NOx and SOx.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に係る流動層燃焼ボイラの概念図であ
る。
FIG. 1 is a conceptual diagram of a fluidized bed combustion boiler according to this embodiment.

【図2】従来技術に係る流動層燃焼ボイラの概念図であ
る。
FIG. 2 is a conceptual diagram of a fluidized bed combustion boiler according to a conventional technique.

【符号の説明】[Explanation of symbols]

21 火炉 22 ガス化1次燃焼域 23 2次脱硝燃焼域 24 3次高温完全燃焼域 25 脱硫域 26 燃料 27 脱硫剤 28 流動層 29 1次空気 30 2次空気 31 3次空気 32 火炉上部伝熱面 33 サイクロン 34 循環粒子ホッパ 35 循環粒子調整バルブ 36 流動層式熱交換器流動層用ガス 37 流動層式熱交換器 38 層内管 39 対流伝熱面 21 furnace 22 gasification primary combustion zone 23 secondary denitration combustion zone 24 third high temperature complete combustion zone 25 desulfurization zone 26 fuel 27 desulfurization agent 28 fluidized bed 29 primary air 30 secondary air 31 tertiary air 32 heat transfer over furnace Surface 33 Cyclone 34 Circulating particle hopper 35 Circulating particle adjusting valve 36 Fluidized bed heat exchanger Gas for fluidized bed 37 Fluidized bed heat exchanger 38 Inner layer tube 39 Convection heat transfer surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤間 幸久 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 田頭 健二 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukihisa Fujima 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanhishi Heavy Industries Ltd. Nagasaki Research Institute (72) Kenji Tagashi, 5-717, Fukahori-cho, Nagasaki-shi, Nagasaki No. 1 Sanryo Heavy Industries Ltd. Nagasaki Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 石油,油,ガス,各種廃棄物等を燃料と
し、石灰石等を脱硫剤として使用する流動層燃焼方式の
ボイラであって、 火炉下部に気泡型流動層となる濃厚層を有し、該濃厚層
の空気比を理論燃焼空気量の0. 5〜0. 8の還元雰囲
気を形成したガス化1次燃焼域と、 上記層上に2次空気投入口を設け、2次空気投入後の空
気比を理論燃焼空気量の0. 8〜1. 0としてNOx分
解領域を形成した2次脱硝燃焼域と、 該2次脱硝燃焼域の上部に3次空気投入口を設け、未燃
ガス燃焼による雰囲気温度の上昇によるN2O,ダイオ
キシン分解領域を形成した3次高温完全燃焼域と、 火炉出口部に伝熱管のガス流速が下部燃焼炉の空塔速度
よりも早くなる伝熱管群を設置し、伝熱管群出口の空塔
速度を下部燃焼炉の空塔速度よりも遅くして伝熱管群上
部に粒子の滞留する領域を形成すると共に、伝熱面積を
適宜選定して雰囲気ガス温度800℃〜900℃の脱硫
反応域を形成した脱硫域とを具備してなることを特徴と
する流動層燃焼ボイラ。
1. A fluidized bed combustion type boiler that uses petroleum, oil, gas, various wastes, etc. as fuel, and uses limestone, etc. as a desulfurizing agent, and has a dense layer that forms a bubble type fluidized bed at the bottom of the furnace. Then, the air ratio of the rich layer is set to a gasification primary combustion region in which a reducing atmosphere having a theoretical combustion air amount of 0.5 to 0.8 is formed, and a secondary air inlet is provided on the layer to provide secondary air. The secondary denitration combustion region where the NOx decomposition region is formed by setting the air ratio after injection to the theoretical combustion air amount of 0.8 to 1.0, and the tertiary air injection port is provided at the upper part of the secondary denitration combustion region. A high temperature complete combustion region where N 2 O and dioxin decomposition regions are formed due to an increase in ambient temperature due to combustion of combustion gas, and a heat transfer tube where the gas flow velocity of the heat transfer tube at the furnace outlet is faster than the superficial velocity of the lower combustion furnace Group, and set the superficial velocity at the heat transfer tube group outlet to be slower than that of the lower combustion furnace. A desulfurization zone is formed in which an area where particles are retained is formed in the upper portion of the heat transfer tube group, and a desulfurization reaction zone having an atmospheric gas temperature of 800 ° C. to 900 ° C. is formed by appropriately selecting a heat transfer area. Fluidized bed combustion boiler.
【請求項2】 請求項1記載の流動層燃焼ボイラにおい
て、 脱硫域出口部に脱硫反応域から飛散した脱硫剤及び未燃
分を捕集するサイクロンと、該サイクロン下部にこれら
の粒子を貯えるホッパと、該ホッパ出口に粒子の循環量
を制御する循環粒子調整バルブとを設けてなることを特
徴とする流動層燃焼ボイラ。
2. The fluidized bed combustion boiler according to claim 1, wherein a cyclone for collecting the desulfurizing agent and unburned components scattered from the desulfurization reaction zone at the desulfurization zone outlet, and a hopper for storing these particles under the cyclone. And a circulating particle adjusting valve for controlling a circulating amount of particles at the outlet of the hopper.
【請求項3】 請求項1又は2記載の流動層燃焼ボイラ
において、 サイクロン捕集粒子を流動層式熱交換器に導き、冷却粒
子量を制御しながら火炉に再投入し燃焼温度を制御可能
することを特徴とする流動層燃焼ボイラ。
3. The fluidized bed combustion boiler according to claim 1, wherein the cyclone trapped particles are guided to a fluidized bed heat exchanger, and the combustion temperature can be controlled by recharging the cyclone particles into the furnace while controlling the amount of cooling particles. A fluidized bed combustion boiler characterized in that
【請求項4】 請求項1〜3記載の流動層燃焼ボイラに
おいて、 腐食性ガスを発生する燃料を使用する際、過熱器の高温
部を流動層式熱交換器内に設置し、粒子と熱交換し、伝
熱管の腐食を防止することを特徴とする流動層燃焼ボイ
ラ。
4. The fluidized bed combustion boiler according to claim 1, wherein when a fuel generating corrosive gas is used, the high temperature part of the superheater is installed in a fluidized bed heat exchanger to generate particles and heat. A fluidized bed combustion boiler, which is replaced to prevent corrosion of the heat transfer tubes.
JP03345821A 1991-12-27 1991-12-27 Fluidized bed combustion boiler Expired - Fee Related JP3095499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03345821A JP3095499B2 (en) 1991-12-27 1991-12-27 Fluidized bed combustion boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03345821A JP3095499B2 (en) 1991-12-27 1991-12-27 Fluidized bed combustion boiler

Publications (2)

Publication Number Publication Date
JPH05180413A true JPH05180413A (en) 1993-07-23
JP3095499B2 JP3095499B2 (en) 2000-10-03

Family

ID=18379207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03345821A Expired - Fee Related JP3095499B2 (en) 1991-12-27 1991-12-27 Fluidized bed combustion boiler

Country Status (1)

Country Link
JP (1) JP3095499B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198111A (en) * 1993-12-29 1995-08-01 Mitsui Eng & Shipbuild Co Ltd Combustor inside temperature control method for circulating fluidized bed boiler
JPH1182968A (en) * 1997-09-08 1999-03-26 Ishikawajima Harima Heavy Ind Co Ltd Rdf fired circulation fluidized bed furnace
JP2009139043A (en) * 2007-12-10 2009-06-25 Metawater Co Ltd Sludge incineration equipment and sludge incineration method using it
JP2010175157A (en) * 2009-01-30 2010-08-12 Metawater Co Ltd Fluidized incinerator
JP2010230280A (en) * 2009-03-27 2010-10-14 Mitsubishi Heavy Ind Ltd Bubble fluidized bed boiler and method for operating the same
CN106989386A (en) * 2017-05-08 2017-07-28 中国华能集团清洁能源技术研究院有限公司 A kind of depth presses down the CFBB of nitrogen minimum discharge
JP2018200150A (en) * 2017-05-29 2018-12-20 国立研究開発法人産業技術総合研究所 Combustion furnace for organic waste and processing system for organic waste using the combustion furnace
CN114135897A (en) * 2021-11-24 2022-03-04 吉林省电力科学研究院有限公司 On-line monitoring method for boiler burning high-sulfur coal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198111A (en) * 1993-12-29 1995-08-01 Mitsui Eng & Shipbuild Co Ltd Combustor inside temperature control method for circulating fluidized bed boiler
JPH1182968A (en) * 1997-09-08 1999-03-26 Ishikawajima Harima Heavy Ind Co Ltd Rdf fired circulation fluidized bed furnace
JP2009139043A (en) * 2007-12-10 2009-06-25 Metawater Co Ltd Sludge incineration equipment and sludge incineration method using it
JP2010175157A (en) * 2009-01-30 2010-08-12 Metawater Co Ltd Fluidized incinerator
JP2010230280A (en) * 2009-03-27 2010-10-14 Mitsubishi Heavy Ind Ltd Bubble fluidized bed boiler and method for operating the same
CN106989386A (en) * 2017-05-08 2017-07-28 中国华能集团清洁能源技术研究院有限公司 A kind of depth presses down the CFBB of nitrogen minimum discharge
JP2018200150A (en) * 2017-05-29 2018-12-20 国立研究開発法人産業技術総合研究所 Combustion furnace for organic waste and processing system for organic waste using the combustion furnace
CN114135897A (en) * 2021-11-24 2022-03-04 吉林省电力科学研究院有限公司 On-line monitoring method for boiler burning high-sulfur coal
CN114135897B (en) * 2021-11-24 2023-12-19 吉林省电力科学研究院有限公司 Online monitoring method for high-sulfur coal fired boiler

Also Published As

Publication number Publication date
JP3095499B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
KR100595042B1 (en) Fuel gasification system
US4843981A (en) Fines recirculating fluid bed combustor method and apparatus
PL203974B1 (en) Circulating fluidized bed reactor with selective catalytic reduction
US5103773A (en) Fluid bed furnace
EP0698763B1 (en) Circulating fluidized bed repowering to reduce SOx and NOx emissions from industrial and utility boilers
EP0597458B1 (en) Fluidized-bed incinerator
JPH05501080A (en) A device that reacts gas and powder inside an enclosure.
JPH05180413A (en) Fluidized bed combustion boilers
US4470254A (en) Process and apparatus for coal combustion
US5396849A (en) Combustion method producing low levels of pollutants and apparatus for same
EP0851173B1 (en) A method of controlling nitrous oxide in circulating fluidized bed steam generators
JP2889049B2 (en) Method for reducing N2O and NOx in fluidized bed combustion
KR100387732B1 (en) Circulation Fluidized Bed Boiler System Mounted with Pelletizer for Anthracite
JP3763656B2 (en) Circulating fluidized bed combustor
JP2000213707A (en) Combustion apparatus
JPH0359327B2 (en)
RU2321799C1 (en) Method of burning combustible shale in boiler with circulating fluidized bed
JP2005121342A (en) Operation method of circulating fluidized bed furnace
JPH08219425A (en) Composite fluidized bed waste combustion boiler
JPH057731A (en) Denitration device of fluidized bed boiler
Kerr et al. Fluidised bed combustion: Improved system design leading to reduced pollutant emissions
JPH0658165B2 (en) Reburning method for unburned components in fluidized bed combustion boiler
JPH06281108A (en) Method for mixed combustion of low calorific value gas/in circulation fludized bed type boiler
JPH03129201A (en) Method of reducing nitrogen oxide during combustion at fluidized bed
JPH0370124B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000704

LAPS Cancellation because of no payment of annual fees